广东省2021届新高考适应性测试题

合集下载

广东省深圳市2021届新高考适应性测试卷数学试题(3)含解析

广东省深圳市2021届新高考适应性测试卷数学试题(3)含解析

广东省深圳市2021届新高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC ∆中,D 在边AC 上满足13AD DC =u u u r u u u r ,E 为BD 的中点,则CE =u u u r( ).A .7388BA BC -u u u r u u u rB .3788BA BC -u u u r u u u r C .3788BA BC +u u u r u u u rD .7388BA BC +u uu r u u u r【答案】B 【解析】 【分析】由13AD DC =u u u r u u u r ,可得34CD CA =u u u r u u u r ,1()2CE CB CD =+u u u r u u u r u u u r 13()24CB CA =+u u ur u u u r ,再将CA BA BC =-u u u r u u u r u u u r 代入即可. 【详解】因为13AD DC =u u u r u u u r ,所以34CD CA =u u u r u u u r ,故1()2CE CB CD =+=u u u r u u u r u u u r 13()24CB CA +=u u ur u u u r133()244BC BA BC -+-=u u ur u u u r u u u r 3788BA BC -u u u r u u u r . 故选:B. 【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题. 2.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥ D .若αβ⊥,m α⊥,则//m β【答案】C 【解析】 【分析】在A 中,α与β相交或平行;在B 中,//n α或n ⊂α;在C 中,由线面垂直的判定定理得n α⊥;在D 中,m 与β平行或m β⊂. 【详解】设,m n 是两条不同的直线,,αβ是两个不同的平面,则: 在A 中,若//m α,//m β,则α与β相交或平行,故A 错误; 在B 中,若m α⊥,m n ⊥,则//n α或n ⊂α,故B 错误;在C 中,若m α⊥,//m n ,则由线面垂直的判定定理得n α⊥,故C 正确;在D 中,若αβ⊥,m α⊥,则m 与β平行或m β⊂,故D 错误. 故选C . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.3.设全集U =R ,集合{|(1)(3)0}A x x x =--≥,11|24xB x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.则集合()U A B I ð等于( )A .(1,2)B .(2,3]C .(1,3)D .(2,3)【答案】A 【解析】 【分析】先算出集合U A ð,再与集合B 求交集即可. 【详解】因为{|3A x x =≥或1}x ≤.所以{|13}U A x x =<<ð,又因为{}|24{|2}xB x x x =<=<. 所以(){|12}U A B x x ⋂=<<ð. 故选:A. 【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.4.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( )A .20B .30C .50D .60【答案】D 【解析】 【分析】先设A 点的坐标为(,)x y ,根据对称性可得(,)B x y --,在表示出1F AB ∆面积,由图象遏制,当点A 在椭圆的顶点时,此时1F AB ∆面积最大,再结合椭圆的标准方程,即可求解. 【详解】由题意,设A 点的坐标为(,)x y ,根据对称性可得(,)B x y --, 则1F AB ∆的面积为122S OF y c y =⨯⨯=, 当y 最大时,1F AB ∆的面积最大,由图象可知,当点A 在椭圆的上下顶点时,此时1F AB ∆的面积最大,又由22116925x y +=,可得椭圆的上下顶点坐标为(0,5),(0,5)-,所以1F AB ∆的面积的最大值为16925560S cb ==-⨯=. 故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.5.已知n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T 取最大值时n 的值为( ) A .2020 B .20l9C .2018D .2017【答案】B 【解析】 【分析】根据题意计算20190a >,20200a <,201920200a a +>,计算201810b <,201910b >,20182019110b b +>,得到答案. 【详解】n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,故20190a >,20200a <,201920200a a +>,12n n n n b a a a ++=,故1211n n n n a a b a ++=, 当2017n ≤时,10n b >,2018201820192020110a a a b =<,2019201920202021110a a a b =>, 2019202020182019201820192020201920202021201820192020202111110b a a a a a a a a a a a a b ++=+=>,当2020n ≥时,10nb <,故前2019项和最大. 故选:B . 【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用. 6.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .【答案】D 【解析】 【分析】通过取特殊值逐项排除即可得到正确结果. 【详解】 函数()1ln1x f x x -=+的定义域为{|1}x x ≠±,当12x =时,1()ln 302f =-<,排除B 和C ; 当2x =-时,(2)ln 30f -=>,排除A. 故选:D. 【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.7.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21C .7D .3【答案】B 【解析】 【分析】利用等差数列的性质求出4a 的值,然后利用等差数列求和公式以及等差中项的性质可求出7S 的值. 【详解】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=. 故选:B. 【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题. 8.已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值范围是 A .(,1)-∞- B .(,1]-∞ C .[0,)+∞ D .[1,)+∞【答案】B 【解析】 【分析】 【详解】方法一:令()tan g x ax x =-,则(())f x x g x =⋅,21()cos g'x a x=-, 当1a ≤,(,)22x ππ∈-时,'()0g x ≤,()g x 单调递减, ∴(,0)2x π∈-时,()(0)0g x g >=,()()0f x x g x =⋅<,且()()()>0f x xg'x g x '=+,∴()0f 'x >,即()f x 在(,0)2π-上单调递增,(0,)2x π∈时,()(0)0g x g <=,()()0f x x g x =⋅<,且()()+()<0f 'x =xg'x g x ,∴()0f 'x <,即()f x 在(0,)2π上单调递减,∴0x =是函数()f x 的极大值点,∴1a ≤满足题意;当1a >时,存在(0,)2t π∈使得cos t =,即'()0g t =,又21()cos g'x a x =-在(0,)2π上单调递减,∴,()0x t ∈时,()(0)0g x g >=,所以()()0f x x g x =⋅>, 这与0x =是函数()f x 的极大值点矛盾. 综上,1a ≤.故选B .方法二:依据极值的定义,要使0x =是函数()f x 的极大值点,须在0x =的左侧附近,()0f x <,即tan 0ax x ->;在0x =的右侧附近,()0f x <,即tan 0ax x -<.易知,1a =时,y ax =与tan y x =相切于原点,所以根据y ax =与tan y x =的图象关系,可得1a ≤,故选B .9.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,:p A 、B 的体积不相等,:q A 、B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由题意分别判断命题的充分性与必要性,可得答案. 【详解】解:由题意,若A 、B 的体积不相等,则A 、B 在等高处的截面积不恒相等,充分性成立;反之,A 、B 在等高处的截面积不恒相等,但A 、B 的体积可能相等,例如A 是一个正放的正四面体,B 一个倒放的正四面体,必要性不成立,所以p 是q 的充分不必要条件, 故选:A. 【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力. 10.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n+的最小值为( ) A .97B .53C .43D .1310【答案】D 【解析】 【分析】根据已知条件和等比数列的通项公式,求出,m n 关系,即可求解. 【详解】22211232,7m n m n a a a a m n +-==∴+=,当1,6m n ==时,1453m n +=,当2,5m n ==时,141310m n +=, 当3,4m n ==时,1443m n +=,当4,3m n ==时,141912m n +=,当5,2m n ==时,14115m n +=,当6,1m n ==时,14256m n +=,14m n +最小值为1310. 故选:D. 【点睛】本题考查等比数列通项公式,注意,m n 为正整数,如用基本不等式要注意能否取到等号,属于基础题. 11.直三棱柱111ABC A B C -中,12CA CC CB ==,AC BC ⊥,则直线1BC 与1AB 所成的角的余弦值为( ) A .5 B .53C .25D .35【答案】A 【解析】 【分析】设122CA CC CB ===,延长11A B 至D ,使得111A B B D =,连1,BD C D ,可证1//AB BD ,得到1C BD ∠(或补角)为所求的角,分别求出111,,BC AB C D ,解1C BD V 即可. 【详解】设122CA CC CB ===,延长11A B 至D ,使得111A B B D =,连1,BD C D ,在直三棱柱111ABC A B C -中,1111//,AB A B AB A B =,11//,AB B D AB B D ∴=,四边形1ABDB 为平行四边形,1//AB BD ∴,1C BD ∴∠(或补角)为直线1BC 与1AB 所成的角,在1Rt BCC △中,22115BC CC BC =+=, 在111Rt A B C △中,221111111115,cos 5A B AC B C B AC =+=∠=, 在11AC D V 中,22211111111112cos 420168C D A C A D A C A D B A C =+-⋅∠=+-=,在11Rt AA B △中,22111113,3AB AA A B BD AB =+=∴==,在1BC D V 中,22211115cos 2565BC BD C D C BD BC BD +-∠===⋅. 故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.12.已知向量(22cos m x =r,()1,sin2n x =r ,设函数()f x m n =⋅r r,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2π D .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 【答案】D 【解析】 【分析】 【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin163x ππ+=≠±,∴f(x)不关于直线12x π=对称;当512x π=时,2sin(2)116x π++= ,∴f(x)关于点5(,1)12π对称; f(x)得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈-,∴f(x)在(,0)3π-上是增函数. 本题选择D 选项.二、填空题:本题共4小题,每小题5分,共20分。

广东省云浮市2021届新高考适应性测试卷数学试题(3)含解析

广东省云浮市2021届新高考适应性测试卷数学试题(3)含解析

广东省云浮市2021届新高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =若ABC ∆的面积2S =,a =2b =,则sin A 等于( )A .10B .6C .10或6D .1120或1136【答案】C【解析】【分析】将S =,a =2b =,代入S =225,9c c ==,再分类讨论,利用余弦弦定理求cos A ,再用平方关系求解.【详解】已知2S =,a =2b =,代入S =2=, 即4212450c c -+= ,解得225,9c c ==,当25c =时,由余弦弦定理得:222cos 210b c a A bc +-== ,sin 10A ==.当29c =时,由余弦弦定理得:2225cos 26b c a A bc +-== ,11sin 6A == . 故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.2.已知椭圆22y a +22x b=1(a>b>0)与直线1y a x b -=交于A ,B 两点,焦点F(0,-c),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( )AB.CD【答案】A【解析】【分析】联立直线与椭圆方程求出交点A ,B 两点,利用平面向量垂直的坐标表示得到关于,,a b c 的关系式,解方程求解即可.【详解】 联立方程222211y x a b y x a b⎧+=⎪⎪⎨⎪-=⎪⎩,解方程可得0x y a =⎧⎨=⎩或0x b y =-⎧⎨=⎩, 不妨设A(0,a),B(-b ,0),由题意可知,BA u u u r ·BF u u u r=0, 因为(),BA b a =u u u r ,(),BF b c =-u u u r ,由平面向量垂直的坐标表示可得,0b b ac ⋅-=,因为222b a c =-,所以a 2-c 2=ac ,两边同时除以2a 可得,210e e +-=,解得12e -=,故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于,,a b c 的关系式是求解本题的关键;属于中档题、常考题型.3.已知1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆外,则双曲线离心率的取值范围是( )A.(2,)+∞B.(3,2)C.(2,3)D.(1,2)【答案】A【解析】双曲线22xa﹣22yb=1的渐近线方程为y=ba±x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=ba(x﹣c),与y=﹣bax联立,可得交点M(2c,﹣2bca),∵点M在以线段F1F1为直径的圆外,∴|OM|>|OF1|,即有24c+2224b ca>c1,∴22ba>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.则e=ca>1.∴双曲线离心率的取值范围是(1,+∞).故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.一物体作变速直线运动,其v t-曲线如图所示,则该物体在1s~6s2间的运动路程为()m.A.1 B.43C.494D.2【答案】C 【解析】【分析】由图像用分段函数表示()v t ,该物体在1s~6s 2间的运动路程可用定积分612()d s v t t =⎰表示,计算即得解 【详解】由题中图像可得,2,01()2,1311,363t t v t t t t ⎧⎪≤<⎪=≤≤⎨⎪⎪+<≤⎩由变速直线运动的路程公式,可得61311132621()d 22d 1d 3s v t t tdt t t t ⎛⎫==+++ ⎪⎝⎭⎰⎰⎰⎰ 6132211231492(m)64t t t t ⎛⎫=+++= ⎪⎝⎭. 所以物体在1s~6s 2间的运动路程是49m 4. 故选:C【点睛】 本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题. 5.从集合{}3,2,1,1,2,3,4---中随机选取一个数记为m ,从集合{}2,1,2,3,4--中随机选取一个数记为n ,则在方程221x y m n +=表示双曲线的条件下,方程221x y m n+=表示焦点在y 轴上的双曲线的概率为( )A .917B .817C .1735D .935【答案】A【解析】【分析】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,分别计算出(),()P A P AB ,再利用公式()(/)()P AB P B A P A =计算即可. 【详解】 设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,由题意,334217()7535P A ⨯+⨯==⨯,339()7535P AB ⨯==⨯,则所求的概率为 ()9(/)()17P AB P B A P A ==. 故选:A.【点睛】 本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.6.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )A .43πB .16πC .163πD .323π 【答案】D【解析】【分析】设圆柱的底面半径为r ,则其母线长为2l r =,由圆柱的表面积求出r ,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为r ,则其母线长为2l r =,因为圆柱的表面积公式为2=22S r rl ππ+圆柱表,所以222224r r r πππ+⨯=,解得2r =,因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱,所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23, 所以所求圆柱内切球的体积为 2232=16=333V V ππ=⨯圆柱. 故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.7.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a ,2a ,3a ,L ,50a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =【答案】B【解析】【分析】【详解】 试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故26m =,12n =. 考点:程序框图、茎叶图.8.已知非零向量,a b r r 满足0a b ⋅=r r ,||3a =r ,且a r 与a b +r r 的夹角为4π,则||b =r ( ) A .6B .32C .22D .3【答案】D【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量a r ,b r 满足0a b =r r g ,可知两个向量垂直,||3a =r ,且a r 与a b +r r 的夹角为4π, 说明以向量a r ,b r 为邻边,a b +r r 为对角线的平行四边形是正方形,所以则||3b =r .故选:D .【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.9.已知复数()()2019311i i z i --=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4 B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =-D .z =【答案】D【解析】【分析】利用i 的周期性先将复数z 化简为42i z =-+即可得到答案.【详解】因为2i 1=-,41i =,5i i =,所以i 的周期为4,故4504334i 24i 24i 242i i i iz ⨯++++====-+-, 故z 的虚部为2,A 错误;z 在复平面内对应的点为(4,2)-,在第二象限,B 错误;z 的共轭复数为42z i =--,C 错误;z ==D 正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.10.已知向量(,1),(3,2)a m b m ==-r r ,则3m =是//a b r r 的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A【解析】向量1a m =r (,),32b m =-r (,),//a b r r ,则32m m =-(),即2230m m --=,3m =或者-1,判断出即可.【详解】解:向量1a m =r (,),32b m =-(,)r, //a b r r ,则32mm =-(),即2230m m --=, 3m =或者-1,所以3m =是3m =或者1m =-的充分不必要条件,故选:A .【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.11.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A .18B .14 C .16 D .12 【答案】B【解析】【分析】【详解】 甲同学所有的选择方案共有122412C C =种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有133C =种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率31124P ==,故选B . 12.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( )A.8 B.7 C.6 D.4 【答案】A【解析】【分析】=4==的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,=4=,=,2=,=1=,=,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8. 故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2021届新高考适应性测试卷历史试题 (含答案)

2021届新高考适应性测试卷历史试题 (含答案)

广东省2021届新高考适应性测试卷历史(一)一、选择题:本题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.《周礼・秋官》记载:“小司寇之职,掌外朝之政,以致万民而询焉。

一曰询国危,二曰询国迁,三曰询立君。

”西周时期,每当国家遇到重大问题,小司寇常向万民咨询。

这种制度体现了A.民众对日常政务的广泛参与B.宗法制下贵族对权力的垄断C.分封制下对边疆统治的加强D.氏族部落民主制的残余影响2.表1为春秋战国时期有关农业的一些记述。

据此可知,当时表1A.铁犁牛耕开始出现B.耕作理论比较先进C.人与自然和谐相处D.小农经济不断发展3.汉代,儒学抛弃了战国时期孟子的“君轻”论和荀子的“从道不从君”论,代之以法家的“尊君卑臣”论,开始了“外王”对“内圣”的利用与压制。

这一转变A.表明儒法思想开始融合B.加快了儒学的政治化进程C.根源于佛道思想的冲击D.削弱了儒学伦理的教化作用4.唐前期,科举中制举科目以文辞科和儒学科居多,策问针对性不强;唐中后期则以政事科为主,策问的题材包括藩镇割据、军费开支、财政税收、土地兼并、边疆关系、吏治铨选等重大问题。

导致这一变化的主要原因是A.经世致用思潮的推动B.国家政治形势的变动C.门阀士族势力的衰落D.科举考试程序的改革5.明朝为防沿海军阀余党与海盗滋扰,实行“海禁”。

沿海人民生路被断,于是与倭寇勾结为乱。

政府遣戚继光等人平倭,同时逐渐放松对民间海外贸易限制,沿海形势逐渐稳定。

材料表明,A.东南沿海的私商是倭寇主力B.倭患隔断了中外商品贸易C.政府失去对民间贸易的控制D.政策转变促成倭患的解决6.吴敏树《柈湖文集》记载:“茶,巴陵故少种,道光末,江广人贩茶之洋,名红茶。

虑茶伪,专取生叶,高其值,人争共市。

而贸于本地者,名黑茶,乃取山中杂树叶为之,极有无一茶叶者,于是茶值三倍往时,苦难得,始有自种。

”这说明A.巴陵农业生产呈现专业化特征B.鸦片战争改变了巴陵人生活方式C.巴陵茶叶生产受外国市场影响D.茶叶成为巴陵出口西方主要商品7.除了“天父天子”的口号外,太平天国所宣传的思想内涵,与中国历史上传统民间宗教的思想并没有很大的差别。

广东省韶关市2021届新高考适应性测试卷数学试题(3)含解析

广东省韶关市2021届新高考适应性测试卷数学试题(3)含解析

广东省韶关市2021届新高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141 432 341 342 234 142 243 331 112 322 342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( ) A .14B .15C .25D .35【答案】A 【解析】 【分析】由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解. 【详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为51204p ==. 故选:A. 【点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题. 2.已知复数21iz i =-,则z 的虚部为( ) A .-1 B .i -C .1D .i【答案】A 【解析】 【分析】分子分母同乘分母的共轭复数即可. 【详解】2i 2i(i 1)22i 1i i 1(i 1)(i+1)2z +-+====----,故z 的虚部为1-.故选:A. 【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.3.若i 为虚数单位,网格纸上小正方形的边长为1,图中复平面内点Z 表示复数z ,则表示复数2iz的点是( )A .EB .FC .GD .H【答案】C 【解析】 【分析】由于在复平面内点Z 的坐标为(1,1)-,所以1z i =-+,然后将1z i =-+代入2iz化简后可找到其对应的点. 【详解】 由1z i =-+,所以22(1)11i i i i i z i==--=--+,对应点G . 故选:C 【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.4.如图,平面α与平面β相交于BC ,AB α⊂,CD β⊂,点A BC ∉,点D BC ∉,则下列叙述错误的是( )A .直线AD 与BC 异面B .过AD 只有唯一平面与BC 平行C .过点D 只能作唯一平面与BC 垂直 D .过AD 一定能作一平面与BC 垂直 【答案】D 【解析】 【分析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断. 【详解】A.假设直线AD 与BC 共面,则A ,D ,B ,C 共面,则AB ,CD 共面,与AB α⊂,CD β⊂矛盾, 故正确.B. 根据异面直线的性质知,过AD 只有唯一平面与BC 平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过AD 不一定能作一平面与BC 垂直,故错误. 故选:D 【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.5.设复数z 满足31ii z=+,则z =( )A .1122i + B .1122-+i C .1122i - D .1122i -- 【答案】D 【解析】 【分析】根据复数运算,即可容易求得结果. 【详解】3(1)1111(1)(1)222i i i i z i i i i ----====--++-.故选:D. 【点睛】本题考查复数的四则运算,属基础题.6.已知三棱锥P ABC -的四个顶点都在球O 的球面上,PA ⊥平面ABC ,ABC ∆是边长为角形,若球O 的表面积为20π,则直线PC 与平面PAB 所成角的正切值为( )A .34B .C D【分析】设D 为AB 中点,先证明CD ⊥平面PAB ,得出CPD ∠为所求角,利用勾股定理计算,,PA PD CD ,得出结论. 【详解】设,D E 分别是,AB BC 的中点AE CD F =IPA ⊥Q 平面ABC PA CD ∴⊥ABC ∆Q 是等边三角形 CD AB ∴⊥又PA AB A =ICD \^平面PAB CPD ∴∠为PC 与平面PAB 所成的角ABC ∆Q 是边长为33CD AE ∴==,223AF AE ==且F 为ABC ∆所在截面圆的圆心 Q 球O 的表面积为20π ∴球O 的半径5OA =221OF OA AF ∴=-=PA ⊥Q 平面ABC 22PA OF ∴== 227PD PA AD ∴=+37tan 7CD CPD PD ∴∠===本题正确选项:C 【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.7.集合}{220A x x x =--≤,{}10B x x =-<,则A B U =( )A .}{1x x < B .}{11x x -≤< C .{}2x x ≤ D .{}21x x -≤<【答案】C先化简集合A,B ,结合并集计算方法,求解,即可. 【详解】解得集合()(){}{}21012A x x x x x =-+≤=-≤≤,{}1B x x =< 所以{}2A B x x ⋃=≤,故选C . 【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B ,难度较小.8.已知某口袋中有3个白球和a 个黑球(*a N ∈),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若3E ξ=,则D ξ= ( )A .12B .1C .32D .2【答案】B 【解析】由题意2ξ=或4,则221[(23)(43)]12D ξ=-+-=,故选B . 9.记M 的最大值和最小值分别为max M 和min M .若平面向量a r 、b r 、c r,满足()22a b a b c a b c ==⋅=⋅+-=r r r r r r r r,则( )A .maxa c-=r r B .maxa c+=r rC .mina c-=r rD .mina c+=r r【答案】A 【解析】 【分析】设θ为a r 、b r 的夹角,根据题意求得3πθ=,然后建立平面直角坐标系,设()2,0a OA ==r u u u r ,(b OB ==r u u u r ,(),c OC x y ==r u u u r,根据平面向量数量积的坐标运算得出点C 的轨迹方程,将a c -r r 和a c +r r转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得cos 2a b a b θ⋅=⋅=r r r r ,则1cos =2θ,0θπ≤≤Q ,3πθ∴=,建立平面直角坐标系,设()2,0a OA ==r u u u r ,()1,3b OB ==r u u u r ,(),c OC x y ==r u u u r,由()22c a b c ⋅+-=r r r r,可得()(),42322x y x y ⋅-=,即2242322x x y -+-=,化简得点C 的轨迹方程为()2233124x y ⎛-+-= ⎝⎭,则()222a c x y -=-+r r ,则a c -r r 转化为圆()2233124x y ⎛-+-= ⎝⎭上的点与点()2,0的距离,22max33371222a c ⎛⎫=+= ⎪ ⎪⎝⎭∴-r r,22min 33731222a c ⎛⎫=+= ⎪ ⎪⎝-⎭r r , ()222a c x y +=++r ra c +r r 转化为圆()223314x y ⎛-+-= ⎝⎭上的点与点()2,0-的距离, 22max3332393a c⎛⎫+=+= ⎪ ⎪⎝⎭∴+r r 22m 3339233im a c ⎛⎫-=+= ⎪⎪⎝⎭+ r r 故选:A. 【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.10.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B V 的面积为( ) A .2B .3C .42D .43【答案】D 【解析】 【分析】设双曲线C 的左焦点为1F ,连接11,AF BF ,由对称性可知四边形12AF BF 是平行四边形,设1122,AF r AF r ==,得222121242cos3c r r r r π=+-,求出12r r 的值,即得解.【详解】设双曲线C 的左焦点为1F ,连接11,AF BF , 由对称性可知四边形12AF BF 是平行四边形, 所以122AF F AF B S S =V V ,123F AF π∠=.设1122,AF r AF r ==,则222221212121242cos 3c r r r r r r r r π=+-=+-,又122r r a -=.故212416rr b ==,所以12121sin 23AF F S r r π==V 故选:D 【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.11.若两个非零向量a r 、b r 满足()()0a b a b +⋅-=r r r r ,且2a b a b +=-r r r r ,则a r 与b r夹角的余弦值为( )A .35B .35±C .12D .12±【答案】A 【解析】 【分析】设平面向量a r 与b r的夹角为θ,由已知条件得出a b =r r ,在等式2a b a b +=-r r r r 两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求. 【详解】设平面向量a r 与b r的夹角为θ,()()22220a b a b a b a b +⋅-=-=-=r r r r r r r r Q ,可得a b =r r ,在等式2a b a b +=-r r r r 两边平方得22222484a a b b a a b b +⋅+=-⋅+r r r r r r r r ,化简得3cos 5θ=.故选:A. 【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.12.若双曲线22214x y b -=的离心率2e =,则该双曲线的焦点到其渐近线的距离为( )A.B .2CD .1【答案】C 【解析】 【分析】根据双曲线的解析式及离心率,可求得,,a b c 的值;得渐近线方程后,由点到直线距离公式即可求解. 【详解】双曲线22214x y b -=的离心率2e =, 则2a =,c e a ==,解得c =(),所以b ===则双曲线渐近线方程为y x =20y ±=,不妨取右焦点,则由点到直线距离公式可得d ==故选:C. 【点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

广东省深圳市2021届新高考适应性测试卷数学试题(2)含解析

广东省深圳市2021届新高考适应性测试卷数学试题(2)含解析

广东省深圳市2021届新高考适应性测试卷数学试题(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( ) A .0B .2-C .52-D .3-【答案】C【解析】【分析】【详解】 试题分析:将参数a 与变量x 分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x 2+ax+1≥0对一切x ∈(0,12]成立,等价于a≥-x-1x 对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立, ∵y=-x-1x 在区间10,2⎛⎤ ⎥⎝⎦上是增函数 ∴115222x x--≤--=- ∴a≥-52∴a 的最小值为-52故答案为C . 考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题2.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .25【答案】B【解析】【分析】 由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X . 【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴, 336()5(1)555D X ∴=⨯⨯-=. 故选:B .【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用. 3.设i 是虚数单位,a R ∈,532ai i a i +=-+,则a =( ) A .2-B .1-C .1D .2 【答案】C【解析】【分析】 由532ai i a i+=-+,可得()()()5323232ai a i i a a i +=+-=++-,通过等号左右实部和虚部分别相等即可求出a 的值.【详解】 解:532ai i a i+=-+Q ,()()()5323232ai a i i a a i ∴+=+-=++- 53232a a a =+⎧∴⎨-=⎩,解得:1a =. 故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把2i 当成1进行运算. 4.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()U A B ⋂ð=( ) A .()(),35,-∞+∞UB .(](),35,-∞+∞UC .(][),35,-∞+∞UD .()[),35,-∞+∞U 【答案】D【解析】【分析】先计算集合B ,再计算A B I ,最后计算()U A B ⋂ð.【详解】 解:{}27100B x x x =-+<Q{|25}B x x ∴=<<, {}37A x x =≤<Q{|35}A B x x ∴=<I „,()[)U ,35(,)A B -∞+∞∴=U I ð.故选:D .【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.5.近年来,随着4G 网络的普及和智能手机的更新换代,各种方便的app 相继出世,其功能也是五花八门.某大学为了调查在校大学生使用app 的主要用途,随机抽取了56290名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用app 主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足10%的大学生使用app 主要玩游戏;③可以估计使用app 主要找人聊天的大学生超过总数的14. 其中正确的个数为( )A .0B .1C .2D .3【答案】C【解析】【分析】 根据利用app 主要听音乐的人数和使用app 主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用app 主要玩游戏的大学生所占的比例,可判断②的正误;计算使用app 主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用app 主要听音乐的人数为5380,使用app 主要看社区、新闻、资讯的人数为4450,所以①正确;使用app 主要玩游戏的人数为8130,而调查的总人数为56290,81300.1456290≈,故超过10%的大学生使用app 主要玩游戏,所以②错误;使用app 主要找人聊天的大学生人数为16540,因为165401562904>,所以③正确. 故选:C.【点睛】 本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题. 6.设O 为坐标原点,P 是以F 为焦点的抛物线24y x =上任意一点,M 是线段PF 上的点,且PM MF =,则直线OM 的斜率的最大值为( )A .1B .12 C.2 D【答案】A【解析】【分析】 设200(,),(,)2y P y M x y p ,因为PM MF =,得到200,442y y p x y p =+=,利用直线的斜率公式,得到020002244OM y k y p y p y p p ==++,结合基本不等式,即可求解. 【详解】由题意,抛物线24y x =的焦点坐标为(,0)2p F , 设200(,),(,)2y P y M x y p, 因为PM MF =,即M 线段PF 的中点,所以220001(),222442y y y p p x y p p =+=+=, 所以直线OM的斜率020*******OM y k y p y p y p p ==≤=++, 当且仅当00y p y p=,即0y p =时等号成立, 所以直线OM 的斜率的最大值为1.故选:A.本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.7.已知函数2()ln(1)f x x x -=+-,则函数(1)=-y f x 的图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3e g g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确.故选:A【点睛】本题考查了函数图像的性质,属于中档题.8.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )A .24πB .6πC 43πD .12π【答案】A【分析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,∵四面体所有棱长都是4, ∴正方体的棱长为22设球的半径为r ,则()222224r =+,解得6r =所以2424S r ππ==,故选:A .【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.9.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q I ð为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2] 【答案】B【解析】【分析】先求出{}{}|2,|03P x x Q x x =≤=<≤,得到{|2}R P x x =>ð,再结合集合交集的运算,即可求解.【详解】由题意,集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭, 所以{}{}|2,|03P x x Q x x =≤=<≤,则{|2}R P x x =>ð,所以(){|23}(2,3]R P Q x x =<≤=I ð.故选:B.本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.10.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2-- 【答案】C【解析】【分析】 对k 分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】k 为偶数时,sin cos 2sin cos A αααα=+=;k 为奇数时,sin cos 2sin cos A αααα=--=-,则A 的值构成的集合为{}2,2-.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.11.设全集U=R ,集合{}221|{|}x M x x x N x =≤=,<,则U M N =I ð( ) A .[]0,1B .(]0,1C .[)0,1D .(],1-∞【答案】A【解析】【分析】 求出集合M 和集合N,,利用集合交集补集的定义进行计算即可.【详解】{}20121{|}|{|}{|}0x M x x x x x N x x x =≤=≤≤==,<<,{}|0U N x x =≥ð,则{}011|]0[U M N x x =≤≤=I ,ð, 故选:A .【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.12.已知函数()e xf x x=,关于x 的方程()()()2140(f x m f x m m ++++=∈R)有四个相异的实数根,则m 的取值范围是( )A.44,ee1⎛⎫---⎪+⎝⎭B.()4,3--C.4e,3e1⎛⎫---⎪+⎝⎭D.4e,e1∞⎛⎫---⎪+⎝⎭【答案】A【解析】()e xf xx==e,0e,0xxxxxx⎧>⎪⎪⎨⎪-<⎪⎩,当0x>时()()()‘2e10,1,0,1x xf x x xx-===∈时,()f x单调递减,()1,x∞∈+时,()f x单调递增,且当()()()0,1,e,x f x∞∈∈+时,当()()()1,,e,x f x∞∞∈+∈+时, 当0x<时,()()2e1x xf xx-'-=>恒成立,(),0x∞∈-时,()f x单调递增且()()0,f x∞∈+,方程()()()2140(f x m f x m m++++=∈R)有四个相异的实数根.令()()2,14f x t t m t m=++++=0则()2120,,e1e40t e t e m m<<>∴++++<,()201040m m++++>且,即44,ee1m⎛⎫∈---⎪+⎝⎭.二、填空题:本题共4小题,每小题5分,共20分。

广东省云浮市2021届新高考适应性测试卷数学试题(2)含解析

广东省云浮市2021届新高考适应性测试卷数学试题(2)含解析

广东省云浮市2021届新高考适应性测试卷数学试题(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是().A.15B.25C.310D.14【答案】A【解析】【分析】基本事件总数4520n=⨯=,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数4520n=⨯=,其和等于11包含的基本事件有:(9,2),(3,8),(7,4),(5,6),共4个,∴其和等于11的概率41205p==.故选:A.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.2.已知三棱柱1116.34ABC A B C O AB AC-==的个顶点都在球的球面上若,,,AB AC⊥112AA O=,则球的半径为( )A 317B.10C.132D.310【答案】C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R 13,即R =1323.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( )A .156B .124C .136D .180【答案】A【解析】【分析】因为711911212a a a a +==+,可得712a =,根据等差数列前n 项和,即可求得答案.【详解】 Q 711911212a a a a +==+,∴712a =,∴()113137131313121562a a S a +===⨯=. 故选:A.【点睛】本题主要考查了求等差数列前n 项和,解题关键是掌握等差中项定义和等差数列前n 项和公式,考查了分析能力和计算能力,属于基础题.4.已知3log 74a =,2log b m =,52c =,若a b c >>,则正数m 可以为( ) A .4B .23C .8D .17 【答案】C【解析】【分析】首先根据对数函数的性质求出a 的取值范围,再代入验证即可;【详解】解:∵3333log 27log 74log 814a =<=<=,∴当8m =时,2log 3b m ==满足a b c >>,∴实数m 可以为8.故选:C【点睛】本题考查对数函数的性质的应用,属于基础题.5.已知函数()2cos sin 6f x x x m π⎛⎫=⋅++ ⎪⎝⎭(m ∈R )的部分图象如图所示.则0x =( )A .32π B .56π C .76π D .43π- 【答案】C【解析】【分析】 由图象可知213f π⎛⎫=- ⎪⎝⎭,可解得12m =-,利用三角恒等变换化简解析式可得()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令()=0f x ,即可求得0x .【详解】 依题意,213f π⎛⎫=- ⎪⎝⎭,即252cos sin 136m ππ⋅+=-, 解得12m =-;因为()13112cos sin 2cos cos 6222f x x x x x x π⎫⎛⎫=⋅+-=⋅+-⎪ ⎪⎪⎝⎭⎝⎭ 21313sin cos cos 2cos 2sin 2226x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭ 所以02262x k πππ+=+,当1k =时,076x π=. 故选:C.【点睛】 本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.6.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 【答案】D【解析】试题分析:先画出可行域如图:由{2y xx y =+=,得(1,1)B ,由{x ay x ==,得(,)C a a ,当直线2z x y =+过点(1,1)B 时,目标函数2z x y =+取得最大值,最大值为3;当直线2z x y =+过点(,)C a a 时,目标函数2z x y =+取得最小值,最小值为3a ;由条件得343a =⨯,所以14a =,故选D.考点:线性规划.7.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A . B . C . D .【答案】A【解析】【分析】 由直线过椭圆的左焦点,得到左焦点为,且, 再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.【详解】 由题意,直线经过椭圆的左焦点,令,解得, 所以,即椭圆的左焦点为,且 ①直线交轴于,所以,,因为,所以,所以, 又由点在椭圆上,得 ②由,可得,解得, 所以, 所以椭圆的离心率为.故选A.【点睛】 本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).8.已知集合{}A m =,{}1,B m =,若A B A ⋃=,则m =( )A .03B .0或3C .13D .1或3 【答案】B【解析】【分析】【详解】因为A B A ⋃=,所以B A ⊆,所以3m =或m m =.若3m =,则{3},{1,3}A B ==,满足A B A ⋃=. 若m m =0m =或1m =.若0m =,则{1,3,0},{1,3,0}A B ==,满足A B A ⋃=.若1m =,{1,3,1},{1,1}A B ==显然不成立,综上0m =或3m =,选B.9.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a -+=-+(0a >且1a ≠),若(2)g a =,则函数()22f x x +的单调递增区间为( )A .(1,1)-B .(,1)-∞C .(1,)+∞D .(1,)-+∞【答案】D【解析】【分析】根据函数的奇偶性用方程法求出(),()f x g x 的解析式,进而求出a ,再根据复合函数的单调性,即可求出结论.【详解】依题意有()()2x x f x g x a a -+=-+, ①()()2()()--+-=-+=-+x x f x g x a a f x g x , ②①-②得(),()2-=-=x x f x a a g x ,又因为(2)g a =,所以2,()22-==-x x a f x ,()f x 在R 上单调递增,所以函数()22f x x +的单调递增区间为(1,)-+∞.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.10.已知直四棱柱1111ABCD A B C D -的所有棱长相等,60ABC ︒∠=,则直线1BC 与平面11ACC A 所成角的正切值等于( )A .6B .10C .5D .15 【答案】D【解析】【分析】以A 为坐标原点,AE 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴,建立空间直角坐标系.求解平面11ACC A 的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱1111ABCD A B C D -,60ABC ︒∠=,取BC 中点E ,以A 为坐标原点,AE 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴,建立空间直角坐标系.设2AB =,则11(0,0,0),(0,0,2),(3,1,0),(3,1,0),(3,1,2)A A B C C -,11(0,2,2),,0),(0,0,2)BC AC AA ===u u u r u u u r u u u r .设平面11ACC A 的法向量为(,,)n x y z =r ,则10,20,n AC y n AA z ⎧⋅=+=⎪⎨⋅==⎪⎩v v 取1x =,得(1,n =r .设直线1BC 与平面11ACC A 所成角为θ,则11sin 4||BC n BC n θ⋅===⋅u u u r r u u u r r ,cos 4θ∴==, ∴直线1BC 与平面11ACC A所成角的正切值等于5 故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题. 11.设全集U=R ,集合2{|340}A x x x =-->,则U A =ð( )A .{x|-1 <x<4}B .{x|-4<x<1}C .{x|-1≤x≤4}D .{x|-4≤x≤1}【答案】C【解析】【分析】解一元二次不等式求得集合A ,由此求得U A ð【详解】由()()234410x x x x --=-+>,解得1x <-或4x >. 因为{|1A x x =<-或4}x >,所以U {|14}x x A =-≤≤ð.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.12.已知全集为R ,集合122(1),{|20}A x y x B x x x -⎧⎫⎪⎪==-=-<⎨⎬⎪⎪⎩⎭,则()A B =R I ð( ) A .(0,2) B .(1,2] C .[0,1] D .(0,1]【解析】【分析】对于集合A ,求得函数()121yx -=-的定义域,再求得补集;对于集合B ,解得一元二次不等式, 再由交集的定义求解即可.【详解】{}12(1)|1,{|1}1R A x y x x y x x A x x x -⎧⎫⎧⎫⎪⎪==-===>∴=≤⎨⎬⎨⎬-⎪⎪⎩⎭⎩⎭ð, 2{|20}{|(2)0}{|02}B x x x x x x x x =-<=-<=<<,()(0,1]A B ∴=R I ð.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.二、填空题:本题共4小题,每小题5分,共20分。

八省联考2021新高考适应性考试化学真题(原卷+答案)(广东)

八省联考2021新高考适应性考试化学真题(原卷+答案)(广东)

第 5 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 6 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 19 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 20 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 11 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 12 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 3 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读
第 4 页,共 33 页
9/8
八省联考2021新高考适应性考试化学真题(原卷+答案)(广东) 考点详解 电子资料 独家秘笈 精准分析 解题技巧 精准押题 复习解读

广东省2021届高三新高考适应性测试卷物理试题

广东省2021届高三新高考适应性测试卷物理试题

绝密★启用前广东省2021 届新高考适应性测试卷物理(一)本试卷满分100 分,考试时间75 分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共10 小题,共46 分。

第1~7 题,每小题4 分,只有一个选项符合题目要求;第8~10 题,每小题6 分,有多个选项符合题目要求,全部选对得6 分,选对但不全的得3 分,有选错的得0 分。

1.物理教材中有很多经典的插图能够形象地表现出物理实验、物理现象及物理规律,下列四幅图涉及不同的物理知识或现象,下列说法正确的是A.图甲中,卢瑟福通过分析α粒子散射实验结果.发现了质子和中子B.图乙中,在光的颜色保持不变的情况下,入射光越强,饱和光电流越大C.图丙中,射线a 由电子组成,射线b 为电磁波,射线c 由α粒子组成D.图丁中,链式反应属于轻核裂变2.航天器回收的“跳跃式返回技术”指航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后再进入大气层。

这种复杂的回收技术我国已经掌握。

下图为航天器跳跃式返回过程示意图,大气层的边界为虚线大圆,已知地球半径为R,d 点到地面的高度为h,地球表面重力加速度为g。

下列说法正确的是A.航天器从a 到c 运动过程中一直处于完全失重状态B.航天器运动到d 点时的加速度为gR2 h2C.航天器在c 点的动能大于在e 点的动能3 D.航天器在 a 点机械能大于在 c 点的机械能3.如图所示,倾角为θ的斜面上有 A 、B 、C 三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的 D 点,已知 AB :BC :CD=5:3:1,由此可判断 A.A 、B 、C 处三个小球从抛出至落到 D 点运动时间之比为 1:2:3 B.A 、B 、C 处三个小球落在斜面上时的速度与初速度的夹角之比为 1:1:1 C.A 、B 、C 处三个小球的初速度大小之比为 10:9:6D.A 、B 、C 处三个小球的运动轨迹可能在空中相交4.如图所示,在两个倾角θ=30°、相互连接的斜面上分别放置质量为 m 1 和 m 2 的两个物体,物体间通过平行于斜面的不可伸长的轻绳跨过光滑的定滑轮连接,物体 m 1 与所在斜面间的动摩擦因数μ=,物体 m 25所在的斜面光滑,若物体 m 1 保持静止,最大静摩擦力等于滑动摩擦力,则m 1的值可能为m 2A. 1 3B. 32C.3D.55.2019 年 4 月 15 日正式实施《电动自行车安全技术规范》强制性国家标准,新标准全面提升了电动自行车的安全性能,最高车速调整为 25km/h ,整车质量(含电池)不超过 55kg ,蓄电池标称电压不超过 48V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档