安徽省芜湖市七年级(上)期末数学试卷

合集下载

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题一、选择题1.购买单价为a元的物品10个,付出b元(b>10a),应找回()A.(b﹣a)元B.(b﹣10)元C.(10a﹣b)元D.(b﹣10a)元2.﹣3的相反数是()A.13-B.13C.3-D.33.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.4.将图中的叶子平移后,可以得到的图案是()A.B.C.D.5.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.76.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab27.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米8.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 9.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离10.下列计算正确的是( ) A .-1+2=1 B .-1-1=0C .(-1)2=-1D .-12=111.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=212.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 14.单项式﹣22πa b的系数是_____,次数是_____.15.已知23,9n mn a a -==,则m a =___________.16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.﹣225ab π是_____次单项式,系数是_____.22.方程x+5=12(x+3)的解是________.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.观察“田”字中各数之间的关系:则c的值为____________________.三、解答题25.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.26.(1)3x+5(x+2)=2(2)33-x﹣1=242+x27.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111 234x yx y-+⎧+=⎪⎨⎪+=⎩28.已知,,,A B C D四点如图所示,请按要求画图.(1)画直线AB;(2)若所画直线AB表示一条河流,点,C D分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB上确定点P,使得在点P处开渠到两块稻田,C D的距离之和最短,并说明理由.29.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?30.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?四、压轴题31.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数32.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.33.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.D解析:D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.5.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.6.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.8.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.9.A解析:A 【解析】 【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案. 【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”. 故答案为:A. 【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.10.A解析:A 【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数. 故选:B 【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题 13.2 【解析】 【分析】把x=3代入方程计算即可求出a 的值. 【详解】解:把x=3代入方程得:6+a=3a+2, 解得:a=2. 故答案为:2 【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2 【解析】 【分析】把x=3代入方程计算即可求出a 的值. 【详解】解:把x=3代入方程得:6+a=3a+2, 解得:a=2. 故答案为:2 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.﹣; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】解:单项式﹣的系数是﹣,次数是2+1=3, 故答案是:﹣;3. 【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】 解:单项式﹣22πa b的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键.解析:1 a b【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】 解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.19.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)下列方程中,是一元一次方程的是()A . 5x﹣2y=9B . x2﹣5x+4=0C . +3=0D . ﹣1=32. (2分) (2018·梧州) 下列各式计算正确的是()A . a+2a=3aB . x4•x3=x12C . ()﹣1=﹣D . (x2)3=x53. (2分) (2016八上·宁阳期中) 代数式,,,﹣,,,中,分式的个数为()A . 5个B . 4个C . 3个D . 2个4. (2分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A . 0B . 1C . -1D . -25. (2分)小林购买一部手机想入网,中国联通130网收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免,小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3h以上,则小林应选择()更省钱.A . 中国联通B . “神州行”储值卡C . 一样D . 无法确定6. (2分) (2018七上·滨州期中) 下列计算正确的是()A . 2a+b=2abB . ﹣5a2+3a2=﹣2C . 3x2y﹣3xy2=0D .7. (2分) (2019七上·吴兴期中) ()A . 1B . -3C . 3D . -58. (2分) (2019七下·南海期中) 用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式()A .B .C .D .9. (2分)国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今小王取出一年到期的本金和利息时,交纳利息税4.5元,则小王一年前存入银行的钱为()A . 1000元B . 977.5元C . 200元D . 250元10. (2分)(2020·黑龙江) 李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A .B .C .D .11. (2分)古代有这样一个寓言故事,驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是().A . 5B . 6C . 7D . 812. (2分)下列方程组是二元一次方程组的有()① ;② ;③ ;④ .A . 1个B . 2个C . 3个D . 4个13. (2分) (2019九上·景县期中) 设a、β是方程x2+x+2012=0的两个实数根,则a2+2a+β的值为()A . -2014B . 2014C . 2013D . -201314. (2分) (2017七下·南通期中) 如果中的解x、y相同,则m的值是()A . 1B . -1C . 2D . -215. (2分)已知-5a2mb和7b3-na4是同类项,则m+n的值是()A . 2B . 3C . 4D . 516. (2分)(2019·石家庄模拟) 我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确是()A .B .C .D .二、填空题 (共13题;共14分)17. (1分) (2017七上·赣县期中) 一个多项式加上2x2﹣x+5等于4x2﹣6x﹣3,则这个多项式为________.18. (1分)小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了________分.19. (1分)在解方程﹣ =2时,去分母得________.20. (1分) (2018七上·安达期末) 矩形的周长为30,若一边长用字母x表示,则此矩形的面积是________21. (1分) (2015七上·永定期中) 若单项式﹣3amb3与4a2bn是同类项,则m+n=________.22. (1分) (2016七上·青山期中) 观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a﹣b+m=________.23. (1分) (2017七上·忻城期中) 己知:|x|=5,则x的值是________.24. (1分)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票________ 张.25. (1分)方程组的解是________.26. (1分) (2017七下·天水期末) 若是方程x﹣ky=0的解,则k=________.27. (2分)(2010·希望杯竞赛) 整数x,y满足方程2xy+x+y=83,则x+y=________或________。

2019-2020学年安徽省芜湖市七年级(上)期末数学试卷解析版

2019-2020学年安徽省芜湖市七年级(上)期末数学试卷解析版

2019-2020学年安徽省芜湖市七年级(上)期末数学试卷一、选择题:(本大题12小题,每小题3分,共36分)每小题给出的四个选项中,只有一个是正确的,请将正确答案的代号填入表格中.1.(3分)实数2019的相反数是()A.B.C.﹣2019D.20192.(3分)在2,0,﹣2,﹣1这四个数中,最大的数是()A.2B.0C.﹣2D.﹣13.(3分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×1095.(3分)如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边6.(3分)如图,甲从A点出发向北偏东70°方向走50m至点B,乙从A出发向南偏西15°方向走80m至点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°7.(3分)一个多项式A与多项式B=2x2﹣3xy﹣y2的和是多项式C=x2+xy+y2,则A等于()A.3x2﹣2xy B.x2﹣4xy﹣2y2C.3x2﹣2xy﹣2y2D.﹣x2+4xy+2y28.(3分)如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.9.(3分)已知x=2y+3,则代数式9﹣8y+4x的值是()A.3B.21C.5D.﹣1510.(3分)若∠AOB=60°,∠AOC=40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°11.(3分)小麦同学做这样一道题“计算|(﹣3)+□|”,其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么“□”表示的数是()A.5B.﹣5C.11D.﹣5或1112.(3分)公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?()A.84B.86C.160D.162二、填空题(每题4分,共24分)13.(4分)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是.14.(4分)已知∠α=60°32',则∠α的补角是.15.(4分)已知线段AB=3cm,延长线段AB到C,使BC=4cm,延长线段BA到D,使AD=AC,则线段CD的长为cm.16.(4分)已知|a|=﹣a,=﹣1,|c|=c,化简|a+b|+|a﹣c|﹣|b﹣c|=.17.(4分)一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是.18.(4分)有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中直达容器底部,容器里的水升cm.三、解答题(共40分)19.(6分)先化简,再求值:(4x2﹣2xy+y2)﹣3(x2﹣xy+y2),其中20.(8分)列方程解应用题某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?21.(8分)如图,直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边分别位于OC的两侧.若OC刚好平分∠BOF,∠BOE=2∠COE,求∠BOD的度数.22.(8分)甲队有工人68人,乙队有工人44人,现调42名工人去支援这两个队,问应该调往甲、乙两队各多少人才能使调入后的乙队的工人人数是甲队人数的?23.(10分)将正整数1至2019按照一定规律排成下表:1234567891011121314151617181920212223242526272829303132……记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4.(1)直接写出a42=,a53=;(2)①如果a ij=2019,那么i=,j=;②用i,j表示a ij=;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由.2019-2020学年安徽省芜湖市七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题12小题,每小题3分,共36分)每小题给出的四个选项中,只有一个是正确的,请将正确答案的代号填入表格中.1.【解答】解:因为a的相反数是﹣a,所以2019的相反数是﹣2019.故选:C.2.【解答】解:这四个数在数轴上表示为:由数轴的特点可知,﹣2<﹣1<0<2.故选:A.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.4.【解答】解:将460000000用科学记数法表示为4.6×108.故选:C.5.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.6.【解答】解:由题意可得,∠DAB=70°,∴∠BAF=20°,∴∠BAC=∠BAF+∠F AE+∠CAE=20°+90°+15°=125°,故选C.7.【解答】解:依题意有A=x2+xy+y2﹣(2x2﹣3xy﹣y2)=x2+xy+y2﹣2x2+3xy+y2=﹣x2+4xy+2y2.故选:D.8.【解答】解:A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.9.【解答】解:∵x=2y+3,∴x﹣2y=3,∴9﹣8y+4x=9+4(x﹣2y)=9+4×3=9+12=21故选:B.10.【解答】解:∠BOC=∠AOB+∠AOC=60°+40°=100°,∠BOC=∠AOB﹣∠AOC=60°﹣40°=20°,故选:C.11.【解答】解:∵|(﹣3)+□|=8,∴(﹣3)+□=±8,∴□=﹣8﹣(﹣3)=﹣5或□=8﹣(﹣3)=11.故选:D.12.【解答】解:3+40×2+1=84.答:步道上总共使用84个三角形地砖.故选:A.二、填空题(每题4分,共24分)13.【解答】解:∵单项式x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,解得:m=2,n=3,故n m=32=9.故答案为:9.14.【解答】解:∵∠α=60°32',∴∠α的补角=180°﹣60°32'=119°28′,故答案为:119°28′.15.【解答】解:由线段的和差,得AC=AB+BC=3+4=7cm,由线段中点的性质,得CD=AD+AC=2AC=2×7=14cm,故答案为:14.16.【解答】解:∵|a|=﹣a,=﹣1,|c|=c,∴a≤0,b<0,c≥0,∴a+b<0,a﹣c≤0,b﹣c<0,则原式=﹣a﹣b+a﹣c+b﹣c=﹣2c.故答案为:﹣2c17.【解答】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为:1518.【解答】解:设容器内的水将升高xcm,据题意得:π•102×12+π•22(12+x)=π•102(12+x),1200+4(12+x)=100(12+x),1200+48+4x=1200+100x,96x=48,x=0.5.即容器内的水将升高0.5cm.故答案为:0.5.三、解答题(共40分)19.【解答】解:原式=4x2﹣2xy+y2﹣3x2+3xy﹣3y2=x2+xy﹣2y2,当x=﹣1,y=﹣时,原式=1+﹣=1.20.【解答】解:设卖出铅笔x支,则卖出圆珠笔(60﹣x)支,根据题意得:1.2×0.8x+2×0.9(60﹣x)=87,解得:x=25,∴60﹣x=60﹣25=35.答:卖出铅笔25支,卖出圆珠笔35支.21.【解答】解:设∠COE=α,则∠BOE=2α,∠BOC=3α,∵∠AOE=90°,∴∠BOF=90°+2α,又∵OC平分∠BOF,∴∠BOC=∠BOF=45°+α,∴3α=45°+α,解得α=22.5°,∴∠BOC=67.5°,∴∠BOD=180°﹣∠BOC=112.5°.22.【解答】解:设调往甲对x人,那么调往乙队为(42﹣x)人,(68+x)=44+(42﹣x),x=20,答:应该调往甲20人才能使调入后的乙队的工人人数是甲队人数的.23.【解答】解:(1)∵前面3行一共有8×3=24个数,∴第4行的第1个数为25,则第4行的第2个数为26,即a42=26;∵前面4行一共有8×4=32个数,∴第5行的第1个数为33,则第5行的第3个数为35,即a53=35.故答案为:26;35.(2)①∵2019=252×8+3,∴2019是第253行的第3个数,∴i=253,j=3.故答案为:253;3.②根据题意,可得a ij=8(i﹣1)+j.故答案为8(i﹣1)+j.(3)设这5个数中的最小数为x,则其余4个数可表示为x+4,x+9,x+11,x+18,依题意,得:x+x+4+x+9+x+11+x+18=2027,解得x=397.∵397=49×8+5,∴397是第50行的第5个数,而此时x+4=401是第51行的第1个数,与397不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2027.。

安徽省芜湖市七年级(上)期末数学试卷

安徽省芜湖市七年级(上)期末数学试卷

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10 小题,共 30.0 分)1. 现实生活中,假如收入1000 元记作 +1000 元,那么 -800 表示()A. 支出800元B. 收入800元C. 支出200元D. 收入200元2.最近几年来,中国高铁发展快速,高铁技术不停走出国门,成为展现我国实力的新名片.此刻中国高速铁路运营里程将达到22000 公里,将 22000 用科学记数法表示应为()A. ×104B. 22×103C. ×103D. ×1053. 在( -2)3, -23,-( -2), -|-2|,( -2)2中,负数有()A. 1个B. 2个C.3个D.4个4.a, b 在数轴上的地点如下图,则以下式子正确的是()A. a+b>0B. ab<0C. |a|>|b|D. a+b>a-b5. 以下计算正确的选项是()A. 3a+a=3a2B. 4x2y-2yx2=2x2yC. 4y-3y=1D. 3a+2b=5ab6. 如图是一个正方体的睁开图,则“数”字的对面的字是()A.核B.D. 心 C. 素养7. 某商品标价 x 元,进价为400 元,在商场睁开的促销活动中,该商品按8 折销售获利()A. (8x-400) 元B. (400×8-x)元C. (0.8x-400)元D. (400×0.8-x)元8. 假如代数式4y2-2y+5 的值为 1,那么代数式 2y2-y+1 的值为()A.-1B. 2C. 3D. 49. 以下解方程去分母正确的选项是()A.B.由 x3-1=1-x2 ,得 2x-1=3-3x由 x-22-x4=-1,得2x-2-x=-4C.D.由 y3-1=y5 ,得 2 y-15=3y由 y+12=y3+1 ,得 3( y+1)=2 y+610.假如∠α和∠β互补,且∠α>∠β,则以下表示∠β的余角的式子中:① 90 °-∠β;②∠α-90 °;α+βα- β)③ 12(∠ ∠);④ 12 (∠ ∠ ).正确的有(A. 4个B. 3个C.2个D.1个二、填空题(本大题共 6 小题,共 18.0 分)11. 若 x、y 互为相反数, a、 b 互为倒数, c 的绝对值等于 2,则( x+y2 )2018 -( -ab)2018+c2=______.12. 已知 -5a2 m b 和 3a4b3-n是同类项,则12 m-n 的值是 ______.13. 某校组织学生和教师为边远山区学校捐献图书,原计划共捐献5000 册,实质捐献时学生比原计划多赠了 15% ,教师比原计划多赠了20%,实质共捐献 5825 册,则原计划学生捐献图书______册.14.如图,我们能够把曲折的河流改直,这样做的数学依照是______.改直后. A、B 丙地间的河流长度会 ______.(填“变短”,“变长”或“不变”),其原由是 ______.15.如图,点 C 是线段 AB 上一点,点 M、N、P 分别是线段 AC,BC,AB 的中点.AC=3cm,CP=1cm,线段 PN =______cm.16.大于 1 的正整数 m 的三次幂可“分裂”成若干个连续奇数的和.如 23=3+5 ,33=7+9+11 ,3 3 347 m 的值是______4 =13+15+17+19 ,,若 m “分裂”后,此中有一个奇数是,则.三、计算题(本大题共 4 小题,共24.0 分)17.计算:-42÷(-2)3- 49×(-32) 218.解方程:2x+13 -x-16 =1.19.请察看以下定义新运算的各式:1⊙ 3=1 ×4+3=7;3⊙( -1) =3×4-1=11;5⊙ 4=5 ×4+4=24;4⊙( -3) =4×4-3=13.(1)请你概括: a⊙ b=______ ;(2)若 a≠b,那么 a⊙ b______b⊙ a(填“=”或“≠”);(3)先化简,再求值:( a-b)⊙( 2a+b),此中 a 是最大的负整数, b 是绝对值最小的整数.20.先化简,再求值:5x2-2( 3y2+6xy) +( 2y2-5x2),此中x=13 , y=- 12 .四、解答题(本大题共 3 小题,共28.0 分)21.阅读资料:如图①,若点 B 把线段分红两条长度相等的线段AB 和 BC,则点 B 叫做线段 AC 的中点.回答以下问题:(1)如图②,在数轴上,点 A 所表示的数是 -2,点 B 所表示的数是 0,点 C 所表示的数是 3.①若 A 是线段 DB 的中点,则点 D 表示的数是 ______;②若 E 是线段 AC 的中点,求点 E 表示的数.( 2)在数轴上,若点M 表示的数是m 点 N 所表示的数是n,点 P 是线段 MN 的中点.①若点 P 表示的数是1,则 m、 n 可能的值是 ______(填写切合要求的序号);(i) m=0, n=2;( ii )m=-5 ,n=7 ;( iii ),;( iv )m=-1 , n=2②直接用含m、 n 的代数式表示点P 表示的数.22.为迎接南陵县足球联赛,某足球学校组织八年级 5 个班进行足球竞赛,规定每两个班级之间均要竞赛两场 .( 1)该校八年级每一个班要赛几场?如有n 个班竞赛,则每一个班要赛几场?( 2)规则为每班胜一场得 3 分,平一场得 1 分,负一场得0 分,到当前为止,若八( 1)班球队已经踢完全部竞赛,此中平的场数是负的场数的 2 倍,已得17 分,该球队胜了几场球?23.已知∠AOB=130 °,∠COD =80 °, OM , ON 分别是∠AOB 和∠COD 的均分线.(1)假如 OA,OC 重合,且 OD 在∠AOB 的内部,如图 1,求∠MON 的度数;(2)假如将图 1 中的∠COD 绕点 O 点顺时针旋转 n°( 0< n< 155),如图 2,①∠MON 与旋转度数n°有如何的数目关系?说明原由;②当 n 为多少时,∠MON 为直角?(3)假如∠AOB 的地点和大小不变,∠COD 的边 OD 的地点不变,改变∠COD 的大小;将图 1 中的 OC 绕着 O 点顺时针旋转 m°( 0< m< 100),如图 3,∠MON 与旋转度数 m°有如何的数目关系?说明原由.答案和分析1.【答案】 A【分析】解:依据题意得,假如收入 1000 元记作+1000 元,那么-800 表示支出 800 元.应选:A .第一审清题意,明确“正 ”和“负”所表示的意 义;再依据题意作答.本题主要考察了正负数的意义,解题重点是理解 “正”和“负”的相对性,明确什么是一 对拥有相反意 义的量.在一对拥有相反意 义的量中,先规定此中一个为正,则另一个就用 负表示.2.【答案】 A【分析】解:×104.应选:A .科学记数法的表示形式 为 a ×10n的形式,此中 1≤|a|<10,n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点移 动的位数同样.当原数 绝对值>1 时,n 是正数;当原数的绝对值< 1 时,n 是负数.本题考察科学记数法的表示方法.科学 记数法的表示形式 为 a ×10n的形式,其中 1≤|a|< 10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.【答案】 C【分析】3, 3 ,(),2 , 解:(-2),()=-8 -2 =-8 - -2 =2 -|-2|=-2 -2 =4则负数有 3 个.应选:C .直接利用相反数以及绝对值和有理数的乘方运算法则计算得出答案.本题主要考察了相反数以及 绝对值和有理数的乘方运算,正确掌握有关运算法例是解题重点.4.【答案】 B【分析】解:由数轴可知:b<0<a,∴ab< 0,应选:B.依据数轴上的两数地点即可求出答案.本题考察数轴,解题的重点是依据数轴找出两数的大小关系,本题属于基础题型.5.【答案】B【分析】解:A 、3a+a=4a,此选项计算错误;22 2B、4x y-2yx =2x y,此选项计算正确;D、3a 与 2b 不是同类项,不可以归并,此选项计算错误;应选:B.依据归并同类项法例逐个计算即可得.本题主要考察归并同类项,解题的重点是掌握“归并”是指同类项的系数的相加,并把获得的结果作为新的系数,要保持同类项的字母和字母的指数不变.6.【答案】D【分析】解:这是一个正方体的平面睁开图,共有六个面,此中“数”字的对面的字是养.应选:D.利用正方体及其表面睁开图的特色求解即可.本题考察了正方体相对两个面上文字的知识,解答本题的重点是从实物出发,联合详细的问题,辨析几何体的睁开图,经过联合立体图形与平面图形的转化,成立空间观点.7.【答案】C【分析】解:由题意可得,该商品按 8 折销售赢利为:()元,应选:C .依据题意,能够用代数式表示出 该商品按 8 折销售所获收益,本题得以解决.本题考察列代数式,解答本题的重点是明确题意,列出相应的代数式.8.【答案】 A【分析】解:依据题意知 4y 2-2y+5=1,则 4y 2-2y=-4,∴2y 2-y=-2,∴2y 2-y+1=-2+1=-1,应选:A .由代数式 4y 2-2y+5 的值为 1,可获得 4y 2-2y=-4,两边除以 2 获得 2y 2-y=-2 ,而后把 2y 2-y=-2 代入 2y 2-y+1 即可获得答案.本题考察了代数式求 值:先把代数式变形,而后利用整体代入的方法求代数式的值.【答案】 D9.【分析】解:A 、由 选项错误; ,得2x-6=3-3x ,此B 、由 选项错误 ;,得 2x-4-x=-4,此C 、由 ,得 5y-15=3y ,此选项错误 ;D 、由 ,得 3(y+1)=2y+6,此选项正确;应选:D .依据等式的性 质 2,A 方程的两 边都乘以 6,B 方程的两 边都乘以 4,C 方程的两边都乘以 15,D 方程的两 边都乘以 6,去分母后判断即可.本题主要考察认识一元一次方程,注意在去分母 时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.10.【答案】B【分析】解:∵∠α和∠β互补,∴∠α+∠β =180.°由于 90 °-∠β+∠β =90,°因此① 正确;又∠α-90 °+∠β=∠α+∠β-90 °=180°-90 °=90°,② 也正确;(∠α+∠β)+∠β= ×180°+∠β=90°+∠β≠ 90,°因此③ 错误;(∠α-∠β)+∠β=(∠α+∠β)=×180°=90°,因此④ 正确.综上可知,①②④均正确.应选:B.依据角的性质,互补两角之和为 180°,互余两角之和为 90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β =180°代入即可解出本题.本题考察了角之间互补与互余的关系,互补两角之和为 180°,互余两角之和为 90°.11.【答案】3【分析】解:由题意知 x+y=0,ab=1,c=2 或 c=-2,则 c 2=4,=020182018因此原式-(-1)+4=0-1+4=3,故答案为:3.先依据相反数的性质、倒数的定义及绝对值的性质得出 x+y=0,ab=1,c 2=4,再代入计算可得.本题主要考察有理数的混淆运算,解 题的重点是娴熟掌握相反数的性 质、倒数的定义及绝对值的性质,有理数的混淆运算 次序与运算法 则.12.【答案】 -1【分析】解:∵-5a 2m b 和 3a 4b 3-n是同类项,∴,解得:m=2、n=2,∴ m-n= ×2-2=1-2=-1, 故答案为:-1.依据同类项的定义:所含字母同样,而且同样字母的指数也同样,列出对于 m , n 的方程,求出 m ,n 的值,既而可求解.本题考察了同类项的知识,解答本题的重点是掌握同 类项定义中的两个 “同样 ”:同样字母的指数同样. 13.【答案】 3500【分析】解:原计划学生捐 赠图书 x 册,则教师捐书(5000-x )册,依题意得:15%x+(5000-x )×20%=5825-5000,解得 x=3500.故答案是:3500.设原计划学生捐 赠图书 x 册,则教师捐书(5000-x )册,依据“实质捐献时学生比原计划多赠了 15%,教师比原计划多赠了 20%,实质共捐献 5825”列出方程并解答即可.本题主要考察了一元一次方程的 应用,为了少出差 错,减少运算量,最好根据增添的 书数来列等量关系.14.【答案】 两点确立一条直线变短 两点之间线段最短【分析】解:我们能够把曲折的河流改直, 这样做的数学依照是两点确立一条直 线,改直后.A 、B 丙地间的河流长度会变短.其原由是两点之 间线段最短.故答案为:两点确立一条直线,变短,两点之间线段最短.依据两点确立一条直线和两点之间线段最短解答.本题考察了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵巧运用.15.【答案】32【分析】解:∵AP=AC+CP ,CP=1cm,∴AP=3+1=4cm,∵P 为 AB 的中点,∴AB=2AP=8cm ,∵CB=AB-AC ,AC=3cm,∴CB=5cm,∵N 为 CB 的中点,∴CN= BC=cm,∴PN=CN-CP= cm.故答案为:.依据线段中点的性质计算即可 CB 的长,联合图形、依据线段中点的性质可得CN 的长,从而得出 PN 的长.本题考察的是两点间的距离的计算,掌握线段的中点的性质、灵巧运用数形联合思想是解题的重点.16.【答案】19【分析】解:∵底数是 2 的分裂成 2 个奇数,底数为 3 的分裂成 3 个奇数,底数为 4 的分裂成 4 个奇数,∴m 3分裂成 m 个奇数,因此,到 m 3的奇数的个数为:2+3+4+ +m=,∵2n+1=347,n=173,∴奇数 347 是从 3 开始的第 173 个奇数,∵=170,=189,∴第 173 个奇数是底数为 19 的数的立方分裂的奇数的此中一个,即 m=19.故答案为:19.察看可知,分裂成的奇数的个数与底数同样,而后求出到m 3的全部奇数的个数的表达式,再求出奇数 347 的是从 3 开始的第 173 个数,而后确立出 173 所在的范围即可得解.考察了有理数的乘方,察看出分裂的奇数的个数与底数同样是解题的重点,还要娴熟掌握乞降公式.17.【答案】解:原式=-16÷(-8)-49×94=2-1=1 .【分析】先计算乘方,再计算乘除,最后计算加减可得.本题主要考察有理数的混淆运算,解题的重点是掌握有理数混淆运算次序和运算法例.18.【答案】解:去分母,得:2( 2x+1) -( x-1) =6,去括号,得:4x+2- x+1=6 ,移项,得: 4x-x=6-2-1 ,归并同类项,得:3x=3,系数化为1,得: x=1.【分析】依据等式的基天性质挨次去分母、去括号、移项、归并同类项、系数化为 1 可得.本题主要考察解一元一次方程的能力,解题的重点是娴熟掌握等式的基天性质和解一元一次方程的基本步骤.19.【答案】4a+b≠【分析】解:(1)由题意可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,a≠b,∴a⊙b≠b⊙a,故答案为:≠;(3)(a-b)⊙ (2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b,∵a 是最大的负整数,b 是绝对值最小的整数,∴a=-1,b=0,∴原式 =6×(-1)-3 ×0=-6.(1)依据题目中的例子,能够获得 a⊙b 的结果;(2)依据(1)中的结果和题意,能够解答本题;(3)依据(1)中的结果能够化简题目中的式子,而后依据 a 是最大的负整数,b 是绝对值最小的整数,能够获得 a、b 的值,从而能够解答本题本题考察有理数的混淆运算,解答本题的重点是明确有理数混淆运算的计算方法.20.【答案】解:原式=5x2-6y2-12xy+2y2-5x22=-4 y -12xy,当 x=13, y=- 12 时,原式 =-4 ×( -12 )2-12 ×13 ×( -12 )=-4 ×14 +2=-1+2=1 .【分析】先去括号,再归并同类项,最后辈入计算即可得.本题考察了整式的加减 -化简求值,娴熟掌握运算法则是解本题的重点.21.【答案】-4(i)(ii)(iii)【分析】解:(1)① 点 A 所表示的数是 -2,点B 所表示的数是0,A 是线段 DB 的中点,∴点 D 表示的数是 -4,故答案为:-4;②点 A 所表示的数是 -2,点C 所表示的数是3,E 是线段 AC 的中点,∴点 E表示的数为=.(2)① 点 M 表示的数是 m,点N 所表示的数是 n,点P 是线段 MN 的中点,点 P 表示的数是 1,∴1=,即m+n=2,∴m、n 可能的值是:(i)m=0,n=2;(ii)m=-5,n=7;(iii),.故答案为:(i)(ii)(iii);②点P表示的数为.(1)① 依照点A 所表示的数是-2,点B 所表示的数是0,A 是线段DB 的中点,即可获得点 D 表示的数;② 依照点 A 所表示的数是 -2,点C 所表示的数是3, E 是线段 AC 的中点,即可获得点 E 表示的数;(2)① 依照点 M 表示的数是 m,点N 所表示的数是 n,点P是线段 MN 的中点,点 P 表示的数是 1,即可获得 m、n 可能的值;② 依照中点公式即可获得结果.本题考察的是数轴,依据题意画出图形,利用数形联合求解是解答此题的关键.22.【答案】解:(1)∵每两个班级之间均要竞赛两场,∴如有2 个班竞赛,则每一个班要赛 2 场;∵如有 3 个班竞赛,则每一个班要赛 4 场;如有 4 个班竞赛,则每一个班要赛 6 场;∴如有5 个班竞赛,则每一个班要赛8 场;同理,如有 n 个班竞赛,则每一个班要赛2( n-1 )场;( 2)设该球队负了 x 场,则平了2x 场,则胜了(8-3x)场,依据题意得, 3( 8-3x) +2x=17 ,解得 x=1 ,则 8-3x=5.答:该球队胜了5场球.【分析】本题考察了一元一次方程的应用,理解足球竞赛的赛制得出每一个班要赛的场数是解题的重点.(1)依据每两个班级之间均要竞赛两场,分别求出有 2、3、4 个班竞赛时,每一个班要赛的场数,从而求解即可;(2)设该球队负了 x 场,则平了 2x 场,则胜了(8-3x)场,依据已得 17 排列出方程,求解即可 .23.【答案】解:(1)如图1,∵OM均分∠AOB,∠AOB=130°,∴∠AOM=12∠AOB=12 ×130 °=65 °,∵ON 均分∠COD ,∠COD =80 °,∴∠AON=12 ∠COD=12 ×80°=40 °,∴∠MON=∠AOM -∠AON=65°-40 °=25°;(2)①如图 2 中,∠MON =∠COM -∠NOC=65°+n°-40 °=n°+25°.②当∠MON =90 °时,n°+25 °=90 °,∴n=65 °.(3)如图 3 中,∠MON =∠COM -∠CON=65°+m°-12 (80°+m°)=12m°+25°.【分析】(1)依据角均分线的定义得:∠AOM=∠AOB=65° ,∠AON=40° ,相减可得∠MON 的度数;(2)① 依据角的和差定义计算即可;②建立方程求出 n 即可;(3)依据角的和差定义计算即可;本题考察角的计算、角均分线的定义、旋转变换等知识,解题的重点是娴熟掌握角的和差定义,属于中考常考题型.。

2020-2021学年安徽省芜湖市七年级(上)期末数学试卷(含解析)

2020-2021学年安徽省芜湖市七年级(上)期末数学试卷(含解析)

2020-2021学年安徽省芜湖市七年级第一学期期末数学试卷一、选择题(共12小题).1.﹣2021的倒数为()A.B.C.﹣2021D.20212.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1073.下列说法正确的是()A.的系数是﹣5B.单项式x的系数为1,次数为0C.xy+x﹣1是二次三项式D.﹣22xyz2的次数是64.一个正方体的每个面上各写一个汉字,它的表面展开图如图所示,那么正方体中与“古”字相对的面的汉字是()A.芜B.湖C.鸠D.兹5.下列运算正确的是()A.﹣2a+3a=﹣5a B.5y﹣3y=3C.7ab﹣7ba=0D.2m+3m=5m2 6.长方形按如图所示折叠,点D折叠到点D'的位置,已知∠D′FC=62°,则∠EFD等于()A.56°B.58°C.59°D.60°7.若关于x的方程2(x﹣m)=x﹣3的解是﹣7,则m的值为()A.﹣4B.4C.2D.﹣28.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°9.一只猎犬发现前方100米处有一头野猪以10米/秒的速度向正前方逃窜,猎犬立即以15米/秒的速度追赶(猎犬追赶路线与野猪逃跑路线在一条直线上),猎犬多少秒后可以追上野猪?若设猎犬x秒可追上野猪,根据题意,可列方程为()A.B.C.15x=10x+100D.10x+15x=10010.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.17811.设“●■▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应该放“●”的个数为()A.4B.3C.2D.112.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,﹣4}=2.则方程max{x,﹣x}=3x+4的解为()A.﹣1B.﹣2C.﹣1或﹣2D.1或2二、填空题(本大题共6小题,每小题4分,满分24分)13.若a、b互为相反数,则a﹣(2﹣b)的值为.14.一个角是它的补角的五分之一,则这个角的余角是度.15.已知|a﹣2|+(b﹣3)2=0,则a b=.16.某种商品第一次降价每件减10元,第二次降价是在第一次降价的基础上打“八折”出售的,两次降价后每件的价格是m元,则该商品的原价每件是元.17.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出h与慢车相遇.18.如图,数轴上点A,B,C对应的有理数分别是a,b,c,OA=OC=2OB,且a+2b+c =﹣4,则|a﹣b|+|b﹣c|=.三、解答题(本大题共有5小题,满分40分)19.先化简,再求值:,其中x=.20.如图,同一行的两个图形中小正方形的个数相等,但它们的排列方式不一样,根据不同的排列方式可以得到一列等式.(1)第n个图形中对应的等量关系是[1+2+3+…+(n+1)]×2=.(2)根据(1)的结论,求2+4+6+…+50的值.21.如图,AB=18cm,C是线段AB的三等分点,D是线段CB上一点,CD比DB长4cm,求CD的长.22.一家服装店在换季时积压了一批服装,为了缓解资金的压力,决定打折销售,其中一条裤子的成本为80元,按标价五折出售将亏30元.(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?23.如图,直角三角板的直角边OM在直线AB上,作射线OC,使∠BOC=125°.(1)三角板绕直角顶点O逆时针旋转,当直角边OM在∠BOC的内部,直角边ON在直线AB的下方时:①若∠BON=15°,求∠COM的度数;②若∠BON=α,求∠COM的度数(用含α的代数式表示);(2)若三角板绕点O按每秒7°的速度逆时针旋转一周,在旋转的过程中,经过多少秒时,射线OC恰好是∠AOM的平分线?参考答案一、选择题(本大题12小题,每小题3分,满分36分每小题都给出A、B、C、D四个选项,其中只有一个是符合题目要求的.1.﹣2021的倒数为()A.B.C.﹣2021D.2021【分析】直接利用倒数的定义分析得出答案.解:﹣2021的倒数为:﹣.故选:A.2.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:54700000用科学记数法表示为:5.47×107.故选:D.3.下列说法正确的是()A.的系数是﹣5B.单项式x的系数为1,次数为0C.xy+x﹣1是二次三项式D.﹣22xyz2的次数是6【分析】根据单项式的系数、次数,可判断A、B、D,根据多项式的表示,可判断C,可得答案.解:A的系数是﹣,故A错误;B单项式x的系数为1,次数为1,故B错误;C xy+x﹣1是二次三项式,故C正确;D﹣22xyz2的次数是4,故D错误;故选:C.4.一个正方体的每个面上各写一个汉字,它的表面展开图如图所示,那么正方体中与“古”字相对的面的汉字是()A.芜B.湖C.鸠D.兹【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:这是一个正方体的平面展开图,共有六个面,其中面“芜”与面“兹”相对,面“湖”与面“古”相对,“鸠”与面“镇”相对.故选:B.5.下列运算正确的是()A.﹣2a+3a=﹣5a B.5y﹣3y=3C.7ab﹣7ba=0D.2m+3m=5m2【分析】同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并,据此解答即可.解:A、﹣2a+3a=a.原计算错误,故此选项不符合题意;B、5y﹣3y=2y.原计算错误,故此选项不符合题意;C、7ab﹣7ba=0.原计算正确,故此选项符合题意;D、2m+3m=5m.原计算错误,故此选项不符合题意.故选:C.6.长方形按如图所示折叠,点D折叠到点D'的位置,已知∠D′FC=62°,则∠EFD等于()A.56°B.58°C.59°D.60°【分析】又平角的定义可得出∠D′FD的度数,因为折叠性质可知∠D′FE=∠DFE,即可得出答案.解:∵∠D′FC=62°,∴∠D′FD=180°﹣∠D′FC=180°﹣62°=118°,又∵∠D′FE=∠DFE,∴∠EFD=∠D′FD=.故选:C.7.若关于x的方程2(x﹣m)=x﹣3的解是﹣7,则m的值为()A.﹣4B.4C.2D.﹣2【分析】把x=﹣7代入方程2(x﹣m)=x﹣3得出2(﹣7﹣m)=﹣7﹣3,再求出方程的解即可.解:把x=﹣7代入方程2(x﹣m)=x﹣3得:2(﹣7﹣m)=﹣7﹣3,解得:m=﹣2,故选:D.8.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°【分析】画出图形,利用钟表表盘的特征解答.解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.9.一只猎犬发现前方100米处有一头野猪以10米/秒的速度向正前方逃窜,猎犬立即以15米/秒的速度追赶(猎犬追赶路线与野猪逃跑路线在一条直线上),猎犬多少秒后可以追上野猪?若设猎犬x秒可追上野猪,根据题意,可列方程为()A.B.C.15x=10x+100D.10x+15x=100【分析】根据猎犬比野猪多跑了100米,即可得出关于x的一元一次方程,此题得解.解:依题意得:15x﹣10x=100,即15x=10x+100.故选:C.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.178【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解.解:根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选:B.11.设“●■▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应该放“●”的个数为()A.4B.3C.2D.1【分析】根据图形得出2a=c+b,b=c,求出a=b=c,再求出答案即可.解:设“●”的质量是a,“■”的质量是b,“▲”的质量是c,根据(1)(2)知:2a=c+b,b=c,即2a=c+c=b+b,即a=b=c,所以在“?”处应该放“●”的个数是2,故选:C.12.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,﹣4}=2.则方程max{x,﹣x}=3x+4的解为()A.﹣1B.﹣2C.﹣1或﹣2D.1或2【分析】分类讨论x与﹣x的大小,利用题中的新定义化简已知方程,求出解即可.解:当x>﹣x,即x>0时,已知方程变形得:x=3x+4,解得:x=﹣2<0,舍去;当x<﹣x,即x<0时,已知方程变形得:﹣x=3x+4,解得:x=﹣1,则方程的解为﹣1.故选:A.二、填空题(本大题共6小题,每小题4分,满分24分)13.若a、b互为相反数,则a﹣(2﹣b)的值为﹣2.【分析】利用相反数的意义求出a+b=0,代入原式计算即可求出值.解:因为a、b互为相反数,所以a+b=0,所以a﹣(2﹣b)=a﹣2+b=a+b﹣2=0﹣2=﹣2.故答案为:﹣2.14.一个角是它的补角的五分之一,则这个角的余角是60度.【分析】设这个角为x°,则余角为(90°﹣x°),补角为(180°﹣x°),再由一个角是它的补角的五分之一,可得出方程,解出即可.解:设这个角为x°,则余角为(90°﹣x°),补角为(180°﹣x°),则x=(180﹣x),解得:x=30,则这个角为30°,所以这个角的余角是90°﹣30°=60°.故答案为:60.15.已知|a﹣2|+(b﹣3)2=0,则a b=4.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解:由题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,所以,a b=×23=×8=4.故答案为:4.16.某种商品第一次降价每件减10元,第二次降价是在第一次降价的基础上打“八折”出售的,两次降价后每件的价格是m元,则该商品的原价每件是(m+10)元.【分析】设原价每件x元,根据两次降价后的价格是每件m元列出方程求解即可.解:设原价每件x元,由题意得,(x﹣10)×0.8=m,解得x=m+10.故答案为:(m+10).17.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出2h与慢车相遇.【分析】设快车开出xh后与慢车相遇,等量关系为:慢车走的路程+快车走的路程=300km,据此列方程求解.解:设快车开出xh后与慢车相遇,由题意得,40(1.5+x)+80x=300,解得:x=2,即快车开出2h与慢车相遇.故答案为:2.18.如图,数轴上点A,B,C对应的有理数分别是a,b,c,OA=OC=2OB,且a+2b+c =﹣4,则|a﹣b|+|b﹣c|=8.【分析】由数轴判断a,b,c的正负,再根据OA=OC=2OB找到a,b,c的关系,计算a,b,c的大小,进行计算即可.解:由数轴知:a<b<0<c,∴OA=﹣a,OB=﹣b,OC=c,∵OA=OC=2OB,∴c=﹣a,b=0.5a,∵a+2b+c=﹣4,∴a+a+(﹣a)=﹣4,∴a=﹣4,∴b=﹣2,c=4,∴|a﹣b|+|b﹣c|=|﹣4﹣(﹣2)|+|﹣2﹣4|=2+6=8.故答案为:8.三、解答题(本大题共有5小题,满分40分)19.先化简,再求值:,其中x=.【分析】首先去括号,进而合并同类项,再将已知代入求出即可.解:=x2+2x﹣3x2+2x=﹣2x2+4x,当x=时,原式=﹣2×(﹣)2+4×(﹣)=﹣﹣2=﹣.20.如图,同一行的两个图形中小正方形的个数相等,但它们的排列方式不一样,根据不同的排列方式可以得到一列等式.(1)第n个图形中对应的等量关系是[1+2+3+…+(n+1)]×2=(n+1)(n+2).(2)根据(1)的结论,求2+4+6+…+50的值.【分析】(1)根据提供的三个图形找到图形变化的规律,写出来即可;(2)利用(1)中的规律求解即可.解:(1)第1个图形中对应的等量关系是(1+2)×2=2×3;第2个图形中对应的等量关系是(1+2+3)×2=3×4;第3个图形中对应的等量关系是(1+2+3+4)×2=4×5;•••第n个图形中对应的等量关系是[1+2+3+…+(n+1)]×2=(n+1)(n+2);故答案为:(n+1)(n+2);(2)2+4+6+⋅⋅⋅+50=(1+2+3+⋅⋅⋅+25)×2=25×26=650.21.如图,AB=18cm,C是线段AB的三等分点,D是线段CB上一点,CD比DB长4cm,求CD的长.【分析】先根据AB=18cm,C是线段AB的三等分点求出AC及BC的长,再根据CD比DB长4cm求出CD的长.解:∵C是线段AB的三等分点,∴AC=6(cm),BC=AB﹣AC=12(cm)又∵CD+DB=BC,CD=DB+4,∴DB+4+DB=BC,2DB+4=12,DB=4,∴CD=AB﹣AC﹣DB=18﹣6﹣4=8(cm)22.一家服装店在换季时积压了一批服装,为了缓解资金的压力,决定打折销售,其中一条裤子的成本为80元,按标价五折出售将亏30元.(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?【分析】(1)可以设标价是x元,根据题意列方程解答,本题的等量关系是衣服的成本,分别以两者不同的方式表示出成本,即可列出方程.(2)设这件上衣的标价为y元,根据“两件衣服恰好不赢不亏”列出方程.解:(1)设标价为x元,则0.5x=80﹣30.解得x=100.即标价为100元.(2)设这件上衣的标价为y元,则0.9y+50=230,解得y=200即这件上衣的标价是200元.23.如图,直角三角板的直角边OM在直线AB上,作射线OC,使∠BOC=125°.(1)三角板绕直角顶点O逆时针旋转,当直角边OM在∠BOC的内部,直角边ON在直线AB的下方时:①若∠BON=15°,求∠COM的度数;②若∠BON=α,求∠COM的度数(用含α的代数式表示);(2)若三角板绕点O按每秒7°的速度逆时针旋转一周,在旋转的过程中,经过多少秒时,射线OC恰好是∠AOM的平分线?【分析】(1)①先根据∠BOM=∠MON﹣∠BON求∠BOM,再根据∠COM=∠BOC﹣∠BOM即可求解;②先根据∠BOC=125°,∠MON=90°,求出125°﹣∠COM=90°﹣∠BON,代入∠BON=α即可;(2)先求出射线OC恰好是∠AOM的平分线旋转的角度,再根据转速求出时间即可.解:(1)①∵∠BON=15°,∠MON=90°,∴∠BOM=90°﹣15°=75°,又∵∠BOC=125°,∴∠COM=125°﹣75°=50°;②∵∠BOC=125°,∠MON=90°,∴∠BOM=125°﹣∠COM,∠BOM=90°﹣∠BON,∴125°﹣∠COM=90°﹣∠BON,又∵∠BON=α,∴∠COM=α+35°;(2)∵∠BOC=125°,∴∠AOC=55°,当直线OC恰好平分∠AOM时,∠COM=∠AOC=55°,∴∠BOM=125°﹣55°=70°,此时,三角板旋转的角度为70°,∴旋转时间为70°÷7°=10(秒).。

芜湖市人教版七年级上册数学期末试卷及答案-百度文库

芜湖市人教版七年级上册数学期末试卷及答案-百度文库

芜湖市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,32.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5923.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .65.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 6.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -7.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .88.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =139.下列各数中,有理数是( ) A .2 B .π C .3.14 D .37 10.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,211.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.14.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.15.如图,若12l l //,1x ∠=︒,则2∠=______.16.若方程11222m x x --=++有增根,则m 的值为____. 17.16的算术平方根是 .18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为_________.20.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、解答题25.如图所示,OE 和OD 分别是∠AOB 和∠BOC 的平分线,且∠AOB =90°,∠EOD =67.5°的度数.(1)求∠BOD 的度数;(2)∠AOE 与∠BOC 互余吗?请说明理由.26.先化简,再求值:()()223a 4ab 2a ab ---,其中a 2=-,1b 2=. 27.如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm ,点P 从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;28.解方程:4x+2(x﹣2)=12﹣(x+4)29.某快车的计费规则如表1,小明几次乘坐快车的情况如表2,请仔细观察分析表格解答以下问题:(1)填空:a=,b=;(2)列方程求解表1中的x;(3)小明的爸爸23:10打快车从机场回家,快车行驶的平均速度是100公里/小时,到家后小明爸爸支付车费603元,请问机场到小明家的路程是多少公里?(用方程解决此问题)表1:某快车的计费规则里程费(元/公里)时长费(元/分钟)远途费(元/公里)5:00﹣23:00a9:00﹣18:00x12公里及以下0 23:00﹣次日5:00 3.218:00﹣次日9:000.5超出12公里的部分1.6(说明:总费用=里程费+时长费+远途费)表2:小明几次乘坐快车信息上车时间里程(公里)时长(分钟)远途费(元)总费用(元)7:3055013.510:052018b66.730.计算:(1)1108(2)2⎛⎫--÷-⨯-⎪⎝⎭(2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦. 四、压轴题31.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.32.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 33.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.2.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.5.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.6.C解析:C 【解析】 【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.7.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.8.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.11.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.12.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题13.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.15.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.16.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键17.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 18.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】 本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可. 【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=, BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 19.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.20.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.21.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()x x x x x+++++++=+1771416x+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、解答题25.(1)∠BOD=22.5°;(2)∠AOE与∠BOC互余.理由见解析.【解析】【分析】(1)根据角平分线的定义可求∠AOE与∠BOE,再根据角的和差关系可求∠BOD的度数;(2)根据角平分线的定义可求∠BOC,再根据角的和差关系可求∠AOE与∠BOC是否互余.【详解】解:(1)∵OE是∠AOB的平分线,∠AOB=90°,∴∠AOE=∠BOE=45°,∴∠BOD=∠EOD﹣∠BOE=22.5°;(2)∵OD是∠BOC的平分线,∴∠BOC=45°,∴∠AOE+∠BOC=45°+45°=90°,∴∠AOE与∠BOC互余.【点睛】本题考查了余角和补角,角平分线的定义,首先确定各角之间的关系,利用角平分线的定义来求.-,6.26.2a2ab【解析】根据整式的运算法则即可求出答案.【详解】解:原式2223a 4ab 2a 2ab a 2ab =--+=-当a 2=-,1b 2=时, 原式()1422422=-⨯-⨯=+ 6=.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.27.(1)经过30秒时间P 、Q 两点相遇;(2)点Q 是速度为613cm/秒或1013cm/秒. 【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,列出方程即可解决问题;(2)分两种情形求解即可.【详解】(1)设经过t 秒时间P 、Q 两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P 、Q 两点相遇.(2)∵AB=60cm ,PA=3PB ,∴PA=45cm ,OP=65cm .∴点P 、Q 的运动时间为65秒, ∵AB=60cm ,13AB=20cm , ∴QB=20cm 或40cm , ∴点Q 是速度为10+2065=613cm/秒或10+4065=1013cm/秒. 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型. 28.x =127【解析】【分析】 方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】去括号得:4x+2x ﹣4=12﹣x ﹣4,移项合并得:7x =12,解得:x =127. 【点睛】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.29.(1)2.2,12.8;(2)x =0.55;(3)机场到小明家的路程是122公里.【解析】【分析】(1)根据表中数据列方程,可求得a 的值,b 的值按照题中计费方式列式计算即可; (2)根据里程费+时长费+远途费=总费用,列方程求解即可;(3)设机场到小明家的路程是y 公里,则按照夜间乘车的计费方式,列方程求解即可.【详解】解:(1)由题意得:5a +5×0.5=13.5解得:a =2.2b =(20﹣12)×1.6=12.8故答案为:2.2,12.8;(2)由题意得:20×2.2+12.8+18x =66.718x =9.9x =0.55(3)设机场到小明家的路程是y 公里,则 3.2y +0.5×100y ×60+(y ﹣12)×1.6=603 解得y =122 答:机场到小明家的路程是122公里.【点睛】本题考查了一元一次方程在乘车问题中的应用,理清题中的数量关系,正确列方程,是解题的关键.30.(1)-12;(2)0【解析】【分析】(1)将除法变乘法计算,最后计算减法即可;(2)先算乘方和括号内的式子,然后计算乘法,最后计算加减.【详解】(1)解:原式=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=12-(2)解:原式=()111192523--⨯⨯- =()1166--⨯- =11-+=0【点睛】 本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.四、压轴题31.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+=1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.33.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案一、选择题1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短4.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)3 5.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x -+ 6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米 12.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.|-3|=_________;17.当a=_____时,分式13a a --的值为0. 18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.19.如果向东走60m 记为60m +,那么向西走80m 应记为______m.20.若a a -=,则a 应满足的条件为______.21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.22.当x= 时,多项式3(2-x )和2(3+x )的值相等.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、压轴题25.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.26.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.27.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.28.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.29.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.30.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.31.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a <0<b ,∴ab <0,即-ab >0又∵|a |>|b |,∴a <﹣b .故选:D .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.4.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.5.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式=22x y x y x y y x++-=--,故选:A.【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 11.A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.21.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.22.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.23.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.24.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、压轴题25.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A 1A 20=19A 3A 4=76.设线段MN 的运动速度为v 单位/秒,依题意,得:9v =76+5,解得:v =9.答:线段MN 的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.26.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.28.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.30.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,31.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P 在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒 B .4秒C .5秒D .6秒3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 6.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 7.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 8.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,29.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查10.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .211.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 16.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____. 17.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 20.因式分解:32x xy -= ▲ . 21.52.42°=_____°___′___″.22.4是_____的算术平方根. 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.27.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

芜湖市数学七年级上学期期末数学试题题

芜湖市数学七年级上学期期末数学试题题 一、选择题 1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3 B .13 C .13- D .32.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90° 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( ) A . B .C .D .4.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短5.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个6.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.在下边图形中,不是如图立体图形的视图是( )A.B.C.D.8.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.8 9.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=010.下列各数中,有理数是( )A2B.πC.3.14 D37 11.下列各组数中,互为相反数的是( )A.2与12B.2(1)-与1 C.2与-2 D.-1与21-12.下列调查中,调查方式选择正确的是( )A.为了了解1 000个灯泡的使用寿命,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解生产的一批炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查二、填空题13.已知线段AB=8 cm,在直线AB上画线段BC,使得BC=6 cm,则线段AC=________cm.14.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.15.﹣213的倒数为_____,﹣213的相反数是_____.16.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.17.16的算术平方根是.+=的解为最大负整数,则a的值为______.18.若关于x的方程2x3a419.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.20.若a、b是互为倒数,则2ab﹣5=_____.21.五边形从某一个顶点出发可以引_____条对角线.22.当x= 时,多项式3(2-x)和2(3+x)的值相等.23.4是_____的算术平方根.24.若代数式x2+3x﹣5的值为2,则代数式2x2+6x﹣3的值为_____.三、压轴题25.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.26.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.27.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.28.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB平分EOD∠时,求旋转角度α;②是否存在2BOC AOD∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 29.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.30.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.31.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 4.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 5.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.8.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.9.A解析:A【解析】A. 3x+1=4x 是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x 2−9=0是一元二次方程,故本选项错误;D. 2x −3y=0是二元一次方程,故本选项错误。

芜湖市人教版(七年级)初一上册数学期末测试题及答案

芜湖市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+5.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠6.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π7.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或738.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .09.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 10.下列各数中,绝对值最大的是( ) A .2 B .﹣1 C .0 D .﹣3 11.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)12.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠413.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==14.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠115.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.17.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.18.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 19.把53°24′用度表示为_____.20.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 21.9的算术平方根是________ 22.﹣30×(1223-+45)=_____. 23.如图,若12l l //,1x ∠=︒,则2∠=______.24.15030'的补角是______. 25.方程x +5=12(x +3)的解是________. 26.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 27.观察“田”字中各数之间的关系:则c 的值为____________________.28.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.29.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.三、压轴题31.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.34.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?35.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?38.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.5.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.6.D解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a 表示出AC 、BD 、AD 的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案. 【详解】∵AB a ,C 、D 分别是AB 、BC 的中点, ∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a π, 故选:D. 【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.7.A解析:A 【解析】 【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可. 【详解】解:(x+3)2=4, x ﹣3=±2, 解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5), 解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ), 解得:m =﹣1, 故选:A . 【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.8.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.9.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.11.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 12.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.13.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.14.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.17.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.18.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.19.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.20.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.22.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 23.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.24.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.25.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.26.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.27.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a =28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. 现实生活中,如果收入 1000 元记作+1000 元,那么-800 表示()A. 支出 800 元B. 收入 800 元C. 支出 200 元D. 收入 200 元2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名 片.现在中国高速铁路营运里程将达到22000 公里,将 22000 用科学记数法表示应 为( )A. 2.2×104B. 22×103C. 2.2×103D. 0.22×105 3. 在(-2) ,-2 ,-(-2),-|-2|,(-2) 中,负数有()A. 1 个B. 2 个C. 3 个D. 4 个4.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A. a+b>0B. ab<0C. |a|>|b|D. a+b>a−b5.下列计算正确的是()A. 3a+a=3a2 C. 4y−3y=1B. D.4x2y−2yx2=2x2y 3a+2b=5ab6.如图是一个正方体的展开图,则“数”字的对面的字是()A.核B. D.心 C. 素养7.某商品标价 x 元,进价为 400 元,在商场开展的促销活动中,该商品按 8 折销售获 利()A. C. (8x−400)元 (0.8x −400)元B. D. (400×8−x)元 (400×0.8−x)元8. 如果代数式 4y -2y +5 的值为 1,那么代数式 2y -y +1 的值为()A. −1B. 2C. 3D. 49.下列解方程去分母正确的是()A.B. C. D.由 x3−1=1−x2,得 2x −1=3−3x 由 x−22−x4=−1,得 2x−2−x=−4 由 y3−1=y5,得 2 y −15=3y 由 y+12=y3+1,得 3( y+1)=2 y+610. 如果∠α 和∠β 互补,且∠α>∠β,则下列表示∠β 的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).正确的有( )A. 4 个B. 3 个C. 2 个D. 1 个二、填空题(本大题共 6 小题,共 18.0 分)11. 若 x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于 2,则(x+y2) -(-ab ) +c =______.12. 已知-5a b和 3a b 是同类项,则 12m -n 的值是______. 13. 某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠 5000 册,实际捐赠 时学生比原计划多赠了 15%,教师比原计划多赠了 20%,实际共捐赠 5825 册,则 原计划学生捐赠图书______册.3 3 2 2 2 2018 2018 2 2m4 3-n14. 如图,我们可以把弯曲的河道改直,这样做的数学依据是______.改直后.A 、B 丙地间的河道长度会______.(填“变 短”,“变长”或“不变”),其原因是______.15. 如图,点 C 是线段 AB 上一点,点 M 、N 、P 分别是线段 AC ,BC ,AB 的中点.AC =3cm ,CP =1cm ,线段 PN =______cm .16. 大于 1 的正整数 m 的三次幂可“分裂”成若干个连续奇数的和.如2 =3+5,3=7+9+11,4 3 =13+15+17+19,…,若 m “分裂”后,其中有一个奇数是 347,则 m 的值是______. 三、计算题(本大题共 4 小题,共 24.0 分)17. 计算:-4 ÷(-2) −49×(-32)18. 解方程:2x+13-x −16=1.19. 请观察下列定义新运算的各式:1⊙3=1×4+3=7;3⊙(-1)=3×4-1=11; 5⊙4=5×4+4=24;4⊙(-3)=4×4-3=13.(1)请你归纳:a ⊙b =______;(2)若 a ≠b ,那么 a ⊙b ______b ⊙a (填“=”或“≠”);(3)先化简,再求值:(a-b )⊙(2a +b ),其中 a 是最大的负整数,b 是绝对值 最小的整数.20. 先化简,再求值:5x -2(3y +6xy )+(2y -5x ),其中 x =13,y =−12. 3 3 3 2 3 2 2 2 2 2四、解答题(本大题共3小题,共28.0分)21. 阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC 的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是-2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是______;②若E是线段AC的中点,求点E表示的数.(2)在数轴上,若点M表示的数是m点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是______(填写符合要求的序号);(i)m=0,n=2;(ii)m=-5,n=7;(iii)m=0.5,n=1.5;(iv)m=-1,n=2②直接用含m、n的代数式表示点P表示的数.22. 为迎接南陵县足球联赛,某足球学校组织八年级5个班进行足球比赛,规定每两个班级之间均要比赛两场.(1)该校八年级每一个班要赛几场?若有n个班比赛,则每一个班要赛几场?(2)规则为每班胜一场得3分,平一场得1分,负一场得0分,到目前为止,若八(1)班球队已经踢完所有比赛,其中平的场数是负的场数的2倍,已得17分,该球队胜了几场球?23. 已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.答案和解析1.【答案】A【解析】解:根据题意得,如果收入 1000 元记作+1000 元,那么-800 表示支出 800 元. 故选:A .首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一 个为正,则另一个就用负表示.2.【答案】A【解析】解:22000=2.2×10 .故选:A .科学记数法的表示形式为 a×10 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10 的形式,其 中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3.【答案】C【解析】解:(-2) =-8,-2 =-8,-(-2)=2,-|-2|=-2,(-2) =4,则负数有 3 个.故选:C .直接利用相反数以及绝对值和有理数的乘方运算法则计算得出答案.此题主要考查了相反数以及绝对值和有理数的乘方运算,正确掌握相关运算 法则是解题关键.4.【答案】B【解析】4nn3 3 2解:由数轴可知:b<0<a,∴ab<0,故选:B.根据数轴上的两数位置即可求出答案.本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.5.【答案】B【解析】解:A、3a+a=4a,此选项计算错误;222B、4x y-2yx =2x y,此选项计算正确;C、4y-3y=y,此选项计算错误;D、3a与2b不是同类项,不能合并,此选项计算错误;故选:B.根据合并同类项法则逐一计算即可得.本题主要考查合并同类项,解题的关键是掌握“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.6.【答案】D【解析】解:这是一个正方体的平面展开图,共有六个面,其中“数”字的对面的字是养.故选:D.利用正方体及其表面展开图的特点求解即可.本题考查了正方体相对两个面上文字的知识,解答本题的关键是从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念.7.【答案】C【解析】解:由题意可得,该商品按 8 折销售获利为:(0.8x-400)元,故选:C .根据题意,可以用代数式表示出该商品按 8 折销售所获利润,本题得以解决.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 8.【答案】A【解析】解:根据题意知 4y -2y+5=1,则 4y-2y=-4,∴2y -y=-2,∴2y -y+1=-2+1=-1,故选:A .由代数式 4y -2y+5 的值为 1,可得到 4y -2y=-4,两边除以 2 得到 2y -y=-2,然后把 2y -y=-2 代入 2y -y+1 即可得到答案.本题考查了代数式求值:先把代数式变形,然后利用整体代入的方法求代数 式的值.9.【答案】D【解析】解:A 、由B 、由C 、由D 、由,得 2x-6=3-3x ,此选项错误;,得 2x-4-x=-4,此选项错误; ,得 5y-15=3y ,此选项错误;,得 3( y+1)=2y+6,此选项正确;故选:D .根据等式的性质 2,A 方程的两边都乘以 6,B 方程的两边都乘以 4,C 方程的 两边都乘以 15,D 方程的两边都乘以 6,去分母后判断即可.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的22 22 2 2 22 2最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式) 作为一个整体加上括号.10.【答案】B【解析】解:∵∠α 和∠β 互补,∴∠α+∠β=180°.因为 90°-∠β+∠β=90°,所以①正确;又∠α-90°+∠β=∠α+∠β-90°=180°-90°=90°,②也正确;(∠α+∠β)+∠β= ×180°+∠β=90°+∠β≠90°,所以③错误;(∠α-∠β)+∠β= (∠α+∠β)= ×180°=90°,所以④正确.综上可知,①②④均正确.故选:B .根据角的性质,互补两角之和为 180°,互余两角之和为 90°,可将,①②③④中的式子化为含有∠α+∠β 的式子,再将∠α+∠β=180°代入即可解出 此题.本题考查了角之间互补与互余的关系,互补两角之和为 180°,互余两角之和 为 90°.11.【答案】3【解析】解:由题意知 x+y=0,ab=1,c=2 或 c=-2,则 c =4,所以原式=0-(-1) +4=0-1+4=3,故答案为:3.先根据相反数的性质、倒数的定义及绝对值的性质得出 x+y=0,ab=1,c =4, 再代入计算可得.2 2018 20182本题主要考查有理数的混合运算,解题的关键是熟练掌握相反数的性质、倒数的定义及绝对值的性质,有理数的混合运算顺序与运算法则.12.【答案】-1【解析】2m43-n解:∵-5a b和3a b是同类项,∴,解得:m=2、n=2,∴m-n=×2-2=1-2=-1,故答案为:-1.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出关于m,n的方程,求出m,n的值,继而可求解.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.13.【答案】3500【解析】解:原计划学生捐赠图书x册,则教师捐书(5000-x)册,依题意得:15%x+(5000-x)×20%=5825-5000,解得x=3500.故答案是:3500.设原计划学生捐赠图书x册,则教师捐书(5000-x)册,根据“实际捐赠时学生比原计划多赠了15%,教师比原计划多赠了20%,实际共捐赠5825”列出方程并解答即可.此题主要考查了一元一次方程的应用,为了少出差错,减少运算量,最好根据增加的书数来列等量关系.14.【答案】两点确定一条直线变短两点之间线段最短【解析】解:我们可以把弯曲的河道改直,这样做的数学依据是两点确定一条直线,改直后.A、B丙地间的河道长度会变短.其原因是两点之间线段最短.故答案为:两点确定一条直线,变短,两点之间线段最短.根据两点确定一条直线和两点之间线段最短解答.本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.15.【答案】32【解析】解:∵AP=AC+CP,CP=1cm,∴AP=3+1=4cm,∵P为AB的中点,∴AB=2AP=8cm,∵CB=AB-AC,AC=3cm,∴CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN-CP=cm.故答案为:.根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.16.【答案】19【解析】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,3,所以,到m的奇数的个数为:2+3+4+…+m=∵2n+1=347,n=173,∴奇数347是从3开始的第173个奇数,∵=170,=189,∴第173个奇数是底数为19的数的立方分裂的奇数的其中一个,即m=19.故答案为:19.3观察可知,分裂成的奇数的个数与底数相同,然后求出到m的所有奇数的个数的表达式,再求出奇数347的是从3开始的第173个数,然后确定出173所在的范围即可得解.考查了有理数的乘方,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.17.【答案】解:原式=-16÷(-8)-49×94=2-1=1.【解析】先计算乘方,再计算乘除,最后计算加减可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.18.【答案】解:去分母,得:2(2x+1)-(x-1)=6,去括号,得:4x+2-x+1=6,移项,得:4x-x=6-2-1,合并同类项,得:3x=3,系数化为1,得:x=1.【解析】根据等式的基本性质依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程的能力,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.19.【答案】4a+b≠【解析】解:(1)由题意可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,a≠b,∴a⊙b≠b⊙a,故答案为:≠;(3)(a-b)⊙(2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b ,∵a 是最大的负整数,b 是绝对值最小的整数, ∴a=-1,b=0,∴原式=6×(-1)-3×0=-6.(1)根据题目中的例子,可以得到 a ⊙b 的结果;(2)根据(1)中的结果和题意,可以解答本题;(3)根据(1)中的结果可以化简题目中的式子,然后根据 a 是最大的负整数,b 是绝对值最小的整数,可以得到 a 、b 的值,从而可以解答本题本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算 方法.20.【答案】解:原式=5x -6y -12xy +2y -5x =-4y -12xy ,当 x =13,y =−12 时,原式=-4×(-12) -12×13×(-12)=-4×14+2=-1+2=1.【解析】先去括号,再合并同类项,最后代入计算即可得.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】-4(i )(ii )(iii )【解析】解:(1)①点 A 所表示的数是-2,点 B 所表示的数是 0,A 是线段 DB 的中点, ∴点 D 表示的数是-4,故答案为:-4;②点 A 所表示的数是-2,点 C 所表示的数是 3,E 是线段 AC 的中点, ∴点 E 表示的数为= .(2)①点 M 表示的数是 m ,点 N 所表示的数是 n ,点 P 是线段 MN 的中点,点 P 表示的数是 1,∴1= ,即 m+n=2,∴m 、n 可能的值是:(i )m=0,n=2;(ii )m=-5,n=7;(iii )m=0.5,n=1.5.2 2 2 2 2 2)(iii);故答案为:(i)(ii②点P表示的数为.(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC的中点,即可得到点E表示的数;(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.本题考查的是数轴,根据题意画出图形,利用数形结合求解是解答此题的关键.22.【答案】解:(1)∵每两个班级之间均要比赛两场,∴若有2个班比赛,则每一个班要赛2场;∵若有3个班比赛,则每一个班要赛4场;若有4个班比赛,则每一个班要赛6场;∴若有5个班比赛,则每一个班要赛8场;同理,若有n个班比赛,则每一个班要赛2(n-1)场;(2)设该球队负了x场,则平了2x场,则胜了(8-3x)场,根据题意得,3(8-3x)+2x=17,解得x=1,则8-3x=5.答:该球队胜了5场球.【解析】本题考查了一元一次方程的应用,理解足球比赛的赛制得出每一个班要赛的场数是解题的关键.(1)根据每两个班级之间均要比赛两场,分别求出有2、3、4个班比赛时,每一个班要赛的场数,进而求解即可;(2)设该球队负了x场,则平了2x场,则胜了(8-3x)场,根据已得17分列出方程,求解即可.第13 页,共14 页23.【答案】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=12∠AOB=12×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=12∠COD=12×80°=40°,∴∠MON=∠AOM-∠AON=65°-40°=25°;(2)①如图2中,∠MON=∠COM-∠NOC=65°+n°-40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM-∠CON=65°+m°-12(80°+m°)=12m°+25°.【解析】(1)根据角平分线的定义得:∠AOM= ∠AOB=65°,∠AON=40°,相减可得∠MON的度数;(2)①根据角的和差定义计算即可;②构建方程求出n即可;(3)根据角的和差定义计算即可;本题考查角的计算、角平分线的定义、旋转变换等知识,解题的关键是熟练掌握角的和差定义,属于中考常考题型.。

相关文档
最新文档