初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

合集下载

初中数学竞赛辅导讲义及习题解答 第30讲 从创新构造入手

初中数学竞赛辅导讲义及习题解答 第30讲 从创新构造入手

第三十讲 从创新构造入手有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:1.构造方程;2.构造函数;3.构造图形;4.对于存在性问题,构造实例;5.对于错误的命题,构造反例;6.构造等价命题等.【例题求解】【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a .思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.【例2】 求代数式1342222+-+++x x x x 的最小值.思路点拨 用一般求最值的方法很难求出此代数式的最小值.222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E ,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.思路点拨 假设在AB 边上存在点E ,使Rt △ADE ∽Rt △BEC ∽Rt △ECD ,又设AE=x ,则BC BE AE AD =,即ax b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:(1)几何问题代数化;(2)利用图形图表解代数问题;(3)构造函数,借用函数图象探讨方程的解.利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握.对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”.学历训练1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围是 .2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .3.代数式9)12(422+-++x x 的最小值为 .4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 .5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求ts st 14++的值.7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.9.求所有的实数x ,使得xx x x 111-+-= .10.若是不全为零且绝对值都小于106的整数.求证:2110132>++c b a .11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.12.设10<<z y x ,,0,求证1)1()1()1(<-+-+-x z z y y x .13.从自然数l ,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.15.如图,已知一等腰梯形,其底为a 和b ,高为h .(1)在梯形的对称轴上求作点P ,使从点P 看两腰的视角为直角;(2)求点P 到两底边的距离;(3)在什么条件下可作出P 点?参考答案。

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解.
【例5】已知实数 、 、 、 互不相等,且 ,试求 的值.思路点拨:运用连等式,通过迭代把 、 、 用 的代数式表示,由解方程求得 的值.
注:一元二次方程常见的变形形式有:
(1)把方程 ( )直接作零值多项式代换;
(2)把方程 ( )变形为 ,代换后降次;
11、已知 、 是有理数,方程 有一个根是 ,则 的值为.
12、已知 是方程 的一个正根.则代数式 的值为.
13、对于方程 ,如果方程实根的个数恰为3个,则m值等于()
A、1B、2 C、 D、2.5
14、自然数 满足 ,这样的 的个数是()
A、2 B、1 C、3 D、4
15、已知 、 都是负实数,且 ,那么 的值是()
20、如图,锐角△ABC中,PQRS是△ABC的内接矩形,且S△ABC= S矩形PQRS,其中 为不小于3的自然数.求证: 需为无理数.
参考答案
第二讲 判别式——二次方程根的检测器
为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性:如是否有实数根,有几个实数根,根的符号特点等.我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:
利用判别式,判定方程实根的个数、根的特性;
运用判别式,建立等式、不等式,求方程中参数或参数的取值范围;
通过判别式,证明与方程相关的代数问题;
借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题.
【例题求解】
【例1】 已知关于 的一元二次方程 有两个不相等的实数根,那么 的取值范围是.(广西中考题)

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国初中数学竟赛辅导讲义修订(2)三角形的边角性质内容提要三角形边角性质主要的有:1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其他两边和。

用式子表示如下:a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-⇔⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>+>+>+⇔<推广到任意多边形:任意一边都小于其他各边的和2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个内角和。

推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180六边形内角和=4×180 n 边形内角和=(n -2) 1803. 边与角的关系① 在一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。

② 在直角三角形中,△ABC 中∠C=Rt ∠222c b a =+⇔(勾股定理及逆定理) △ABC 中⇔⎭⎬⎫=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中⇔⎭⎬⎫=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。

(1988年泉州市初二数学双基赛题)解:根据三角形任意两边和大于第三边,得不等式组 ⎪⎩⎪⎨⎧+>-+-->-++->++-141312131214121413a a a a a a a a a 解得⎪⎩⎪⎨⎧<->>51135.1a a ∴1.5<a<5答当1.5<a<5时,三条线段3a -1,4a+1,12-a 能组成一个三角形例2.如图A B C DAB=x ,AC=y, AD=z 若以AB 和CD 分别绕着点B 和点C 旋转,使点A 和D 重合组成三角形,下列不等式哪些必须满足?① x<2z , ②y<x+2z , ③y<2z 解由已知AB=x, BC=y -x, CD=z -x 要使AB ,BC ,CD 组成三角形,必须满足下列不等式组:⎪⎩⎪⎨⎧>-+-->-+->-+x y z x y x y y z x y z x y x 即⎪⎩⎪⎨⎧>>+>x z y z x z y 2222∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<>222z x z x y z y 答y<x+2z 和y<2z 必须满足。

初中数学竞赛讲义及习题解答含答案 二次函数 抛物线

初中数学竞赛讲义及习题解答含答案  二次函数  抛物线

初中奥数二次函数之抛物线一般地说来,我们称函数c bx ax y ++=2 (a 、b 、c 为常数,0≠a )为x 的二次函数,其图象为一条抛物线,与抛物线相关的知识有:1.a 、b 、c 的符号决定抛物线的大致位置;2.抛物线关于ab x 2-=对称,抛物线开口方向、开口大小仅与a 相关,抛物线在顶点(ab 2-,a b ac 442-)处取得最值; 3.抛物线的解析式有下列三种形式:①一般式:c bx ax y ++=2;②顶点式:k h x a y +-=2)(;③交点式:))((21x x x x a y --=,这里1x 、2x 是方程02=++c bx ax 的两个实根.确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键.注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉、创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:(1)从抛物线上两点的纵坐标相等获得对称信息;(2)从抛物线的对称轴方程与抛物线被x 轴所截得的弦长获得对称信息.【例题求解】【例1】 二次函数c bx x y ++=2的图象如图所示,则函数值0<y 时,对应x 的取值范围是 .思路点拨 由图象知抛物线顶点坐标为(一1,一4),可求出b ,c 值,先求出0=y 时,对应x 的值.【例2】 已知抛物线c bx x y ++=2(a <0)经过点(一1,0),且满足024>++c b a .以下结论:①0>+b a ;②0>+c a ;③0>++-c b a ;④2252a ac b >-.其中正确的个数有( )A .1个B .2个C .3个D .4个思路点拨 由条件大致确定抛物线的位置,进而判定a 、b 、c 的符号;由特殊点的坐标得等式或不等式;运用根的判别式、根与系数的关系.【例3】 如图,有一块铁皮,拱形边缘呈抛物线状,MN =4分米,抛物线顶点处到边MN 的距离是4分米,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?思路点拨 恰当建立直角坐标系,易得出M 、N 及抛物线顶点坐标,从而求出抛物线的解析式,设A(x ,y ),建立含x 的方程,矩形铁皮的周长能否等于8分米,取决于求出x 的值是否在已求得的抛物线解析式中自变量的取值范围内.注: 把一个生产、生活中的实际问题转化,成数学问题,需要观察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解.【例4】 二次函数223212-++-=m x x y 的图象与x 轴交于A 、两点(点A 在点B 左边),与y 轴交于C 点,且∠ACB =90°.(1)求这个二次函数的解析式;(2)设计两种方案:作一条与y 轴不重合,与△A BC 两边相交的直线,使截得的三角形与△ABC 相似,并且面积为△BOC 面积的41,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).思路点拨 (1)A 、B 、C 三点坐标可用m 的代数式表示,利用相似三角形性质建立含m 的方程;(2)通过特殊点,构造相似三角形基本图形,确定设计方案.注: 解函数与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.【例5】 已知函数1)1(2)2(22+--+=x a x a y ,其中自变量x 为正整数,a 也是正整数,求x 何值时,函数值最小.思路点拨 将函数解析式通过变形得配方式,其对称轴为23)2(212++-=+-=a a a a x ,因1230≤+<a ,12122-≤+-<-a a a a ,故函数的最小值只可能在x 取2-a ,2-a ,212+-a a 时达到.所以,解决本例的关键在于分类讨论.学历训练1.如图,若抛物线2ax y =与四条直线1=x 、2=x 、1=y 、2=y 所围成的正方形有公共点,则a 的取值范围是 .2.抛物线c bx ax y ++=2与x 轴的正半轴交于A ,B 两点,与y 轴交于C 点,且线段AB 的长为1,△ABC 的面积为1,则b 的值为 .3.如图,抛物线的对称轴是直线1=x ,它与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、C 的坐标分别为(-l ,0)、(0,23),则(1)抛物线对应的函数解析式为 ;(2)若点P 为此抛物线上位于x 轴上方的一个动点,则△ABP 面积的最大值为 .4.已知二次函数c bx ax y ++=2的图象如图所示,且OA =OC ,则由抛物线的特征写出如下含有a 、b 、c 三个字母的式子①1442-=-ab ac ,②01=++b ac ,③0>abc ,④0>+-c b a ,>0,其中正确结论的序号是 (把你认为正确的都填上).5.已知1-<a ,点(1-a ,1y ),(a ,2y ),(1+a ,3y )都在函数2x y =的图象上,则( )A .321y y y <<B .231y y y <<C .123y y y <<D .312y y y <<6.把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为532+-=x x y ,则有( )A .3=b ,7=cB .9-=b ,15-=cC .3=b ,c =3D .9-=b ,21=c7.二次函数c bx ax y ++=2的图象如图所示,则点(b a +,ac )所在的直角坐标系是( )A .第一象限B .第二象限C .第三象限D .第四象限8.周长是4m 的矩形,它的面积S(m 2)与一边长x (m)的函数图象大致是( )9.阅读下面的文字后,回答问题:“已知:二次函数c bx ax y ++=2的图象经过点A(0,a ),B(1,-2) ,求证:这个二次函数图象的对称轴是直线2=x .题目中的横线部分是一段被墨水污染了无法辨认的文字.(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由.(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整.10.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1. 8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?11.如图,抛物线和直线k kx y 4-= (0<k )与x 轴、y 轴都相交于A 、B 两点,已知抛物线的对称轴1-=x 与x 轴相交于C 点,且∠ABC =90°,求抛物线的解析式.12.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于点C ,若△ABC 是直角三角形,则=ac .13.如图,已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于 .14.已知二次函数c bx ax y ++=2,一次函数4)1(2k x k y --=.若它们的图象对于任意的实数是都只有一个公共点,则二次函数的解析式为 .15.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式中不能总成立的是( )A .b=0B .S △ADC =c 2 C .ac =一1D .a+c =016.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)…求证:这个二次函数的图象关于直线2=x 对称.根据现有信息,题中的二次函数不具有的性质是( )A .过点(3,0)B .顶点是(2,一2)C .在x 轴上截得的线段长为2D .与y 轴的交点是(0,3)17.已知A(x 1,2002),B(x 2,2002)是二次函数52++=bx ax y (0≠a )的图象上两21x x x += 时,二次函数的值是( )A .522+a bB .542+-ab C . 2002 D .518.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2所示).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润=销售额一费用).19.如图,已知二次函数222-=x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,直线:x =m(m>1)与x 轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在直线x =m (m>1)上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求P 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,试问:抛物线222-=x y 上是否存在一点Q ,使得四边形ABPQ 为平行四边形?如果存在这样的点Q ,请求出m 的值;如果不存在,请简要说明理由.20.已知二次函数22--=x x y 及实数2->a ,求(1)函数在一2<x ≤a 的最小值;(2)函数在a ≤x ≤a+2的最小值.21.如图,在直角坐标:x O y 中,二次函数图象的顶点坐标为C(4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法)使PA+PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出Q 点的坐标;如果不存在,请说明理由.22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a≠0),当实数a 变化时,它的顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3的顶点的横坐标减少a 1,纵坐标增加,得到A 点的坐标;若把顶点的横坐标增加a 1,纵坐标增加a1,得到B 点的坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3上.(1)请你协助探求出当实数a 变化时,抛物线y=ax 2+2x+3的顶点..所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;(3)在他们第二个发现的启发下,运用“一般——特殊—一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.参考答案。

七年级数学竞赛同步辅导讲义-下学期专用doc

七年级数学竞赛同步辅导讲义-下学期专用doc

七年级数学竞赛同步辅导讲义下册专用教育教材研发中心编第一讲整数的一种分类内容提要1.余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,r为小于m的非负整数,那么我们称r是A 除以m的余数。

即:在整数集合中被除数=除数×商+余数 (0≤余数<除数)例如:13,0,-1,-9除以5的余数分别是3,0,4,1(∵-1=5(-1)+4。

-9=5(-2)+1。

)2.显然,整数除以正整数m ,它的余数只有m种。

例如整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。

3.整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。

例如:m=2时,分为偶数、奇数两类,记作{2k},{2k-1}(k为整数)m=3时,分为三类,记作{3k},{3k+1},{3k+2}.或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。

m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}或{5k},{5k±1},{5k±2},其中5k-2表示除以5余3。

4.余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。

举例如下:①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3 (余数1×3=3)③(5k±2)2=25k2±20k+4=5(5k2±4k)+4 (余数22=4)以上等式可叙述为:①两个整数除以3都余1,则它们的和除以3必余2。

②两个整数除以4,分别余1和3,则它们的积除以4必余3。

③如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是4或9。

余数的乘方,包括一切正整数次幂。

如:∵17除以5余2 ∴176除以5的余数是4 (26=64)5.运用整数分类解题时,它的关鍵是正确选用模m。

(2021年整理)八年级数学竞赛辅导讲义

(2021年整理)八年级数学竞赛辅导讲义

(完整)八年级数学竞赛辅导讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)八年级数学竞赛辅导讲义)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)八年级数学竞赛辅导讲义的全部内容。

全国初中数学联赛一全国初中数学联赛简介中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

竞赛简介奖项名称:全国初中数学联合竞赛创办时间:1984年主办单位:由各省、市、自治区联合举办,轮流做庄竞赛介绍:同时,各地都提出了举行“全国初中数学联赛”的要求。

1984年,中国数学会普及工作委员会商定,委托天津市数学会举办一次初中数学邀请赛,有14个省、市、自治区参加,当时条件较简陋,准备时间也较仓促,天津数学会在南开大学数学系和天津师范大学数学系的大力支持下,极其认真负责地把这次活动搞得很成功,为后来举办“全国初中数学联赛"摸索了很多经验。

当年11月,在宁波召开的中国数学会第三次普及工作会议时,一致通过了举办“全国初中数学联赛”的决定,并详细商定了一些具体办法,规定每年四月的第一个星期天举行“全国初中数学联赛”。

会上湖北省数学会、山西省数学会、黑龙江省数学会分别主动承担了1985年、1986年、1987年的“全国初中数学联赛”承办单位,从此,“全国初中数学联赛”也形成了制度。

“全国初中数学联赛"原来不分一试、二试。

为了更好地贯彻“在普及的基础上不断提高”的方针,1989年7月,在济南召开的“数学竞赛命题研讨会”上,各地的代表商定,初中联赛也分两试进行,并对一、二试各种题型的数目,以及评分标准作出明确的规定,使初中联赛的试卷走向规范化.中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

超级资源:七年级数学竞赛讲义附练习及答案(12套)

超级资源:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套)初一数学竞赛讲座第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n 与n+1之间不再有其他整数。

因此,不等式x <y 与x ≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0;2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。

初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。

【例3】 解关于的方程。

思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。

【例4】 设方程,求满足该方程的所有根之和。

思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。

【例5】 已知实数、、、互不相等,且, 试求的值。

思路点拨:运用连等式,通过迭代把、、用的代数式表示,由解方程求得的值。

注:一元二次方程常见的变形形式有:(1)把方程()直接作零值多项式代换;(2)把方程()变形为,代换后降次;(3)把方程()变形为或,代换后使之转化关系或整体地消去。

02=++c bx ax 0≠a aac b b x 2422,1-±-=1)1(22=--+n n n 1x 2x 032=-+x x 1942231+-x x 1x 2x 1213x x -=2223x x -=x 02)1(2=+--a ax x a 01=-a 01≠-a 04122=---x x a b c d x ad d c c b b a =+=+=+=+1111x b c d a x 02=++c bx ax 0≠a 02=++c bx ax 0≠a c bx ax --=202=++c bx ax 0≠a c bx ax -=+2bx c ax -=+2x解合字母系数方程时,在未指明方程类型时,应分及两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如。

02=++c bx ax 0=a 0≠a 222x x x ==走进追问求根公式学历训练1、已知、是实数,且,那么关于的方程的根为 。

2、已知,那么代数式的值是 。

3、若,,则的值为 。

4、若两个方程和只有一个公共根,则( )A 、B 、C 、D 、5、当分式有意义时,的取值范围是( )A 、B 、C 、D 、且6、方程的实根的个数是( ) A 、0 B 、1 C 、2 D 、37、解下列关于的方程:(1); (2); (3)。

8、已知,求代数式的值。

9、是否存在某个实数m ,使得方程和有且只有一个公共的实根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由。

注: 解公共根问题的基本策略是:当方程的根有简单形式表示时,利用公共根相等求解,当方程的根不便于求出时,可设出公共根,设而不求,通过消去二次项寻找解题突破口。

a b 0262=-++b a x 1)2(22-=++a x b x a 0232=--x x 11)1(23-+--x x x 142=++y xy x 282=++x xy y y x +02=++b ax x 02=++a bx x b a =0=+b a 1=+b a 1-=+b a 4312++-x x x 1-<x 4>x 41<<-x 1-≠x 4≠x 011)1(=+-++x x x x x 03)12()1(2=-+-+-m x m x m 012=--x x x x x 26542-=-+0222=--x x )1)(3()3)(3()1(2--+-++-x x x x x 022=++mx x 022=++m x x10、若,则= 。

11、已知、是有理数,方程有一个根是,则的值为 。

12、已知是方程的一个正根。

则代数式的值为 。

13、对于方程,如果方程实根的个数恰为3个,则m 值等于( )A 、1B 、2C 、D 、2.514、自然数满足,这样的的个数是( )A 、2B 、1C 、3D 、415、已知、都是负实数,且,那么的值是( ) A 、 B 、 C 、 D 、 16、已知,求的值。

17、已知m 、n 是一元二次方程的两个根,求的值。

18、在一个面积为l 的正方形中构造一个如下的小正方形:将正方形的各边等分,然后将每个顶点和它相对顶点最近的分点连结起来,如图所示,若小正方形面积为,求的值。

0152=+-x x 1539222+++-x x x m n 02=++n mx x 25-n m +a 020002=--x x a200012000120003+++m x x =+-2223n 16162472)22()22(2-+--=--n n n n n n n a b 0111=--+b a b a a b 215+251-251+-251--3819-=x 1582318262234+-++--x x x x x x 0720012=++x x )82002)(62000(22++++n m m m n 32811n19、已知方程的两根、也是方程的根,求、的值。

20、如图,锐角△ABC 中,PQRS 是△ABC 的内接矩形,且S △ABC =S 矩形PQRS ,其中为不小于3的自然数.求证:需为无理数。

0132=+-x x αβ024=+-q px x p q n n ABBS参考答案第二讲 判别式——二次方程根的检测器为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性:如是否有实数根,有几个实数根,根的符号特点等。

我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:利用判别式,判定方程实根的个数、根的特性;运用判别式,建立等式、不等式,求方程中参数或参数的取值范围;通过判别式,证明与方程相关的代数问题;借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题。

【例题求解】【例1】 已知关于的一元二次方程有两个不相等的实数根,那么的取值范围是 。

(广西中考题)思路点拨:利用判别式建立关于的不等式组,注意、的隐含制约。

注:运用判别式解题,需要注意的是:(1)解含参数的二次方程,必须注意二次项系数不为0的隐含制约;(2)在解涉及多个二次方程的问题时,需在整体方法、降次消元等方法思想的引导下,综合运用方程、不等式的知识。

【例2】 已知三个关于的方程:,和,若其中至少有两个方程有实根,则实数的取值范围是( ) (山东省竞赛题)A 、B 、或C 、D 、 思路点拨:“至少有两个方程有实根”有多种情形,从分类讨论人手,解关于的不等式组,综合判断选择。

【例3】 已知关于的方程,(1)求证:无论取任何实数值,方程总有实数根;(2)若等腰三角形△ABC 的一边长=1,另两边长、c 恰好是这个方程的两个根,求△ABC 的周长。

(湖北省荆门市中考题)思路点拨:对于(1)只需证明△≥0;对于(2)由于未指明底与腰,须分或、中有一个与c 相等两种情况讨论,运用判别式、根的定义求出、的值。

x 0112)21(2=-+--x k x k k k k 21-1+k y 02=+-a y y 012)1(2=++-y y a 012)2(2=-+-y y a a 2≤a 41≤a 21≤≤x 1≥a 141≤≤a a x 02)2(2=++-k x k x k a b c b =b c b c注:(1)涉及等腰三角形的考题,需要分类求解,这是命题设计的一个热点,但不一定每个这类题均有多解,还须结合三角形三边关系定理予以取舍。

(2)运用根的判别式讨论方程根的个数为人所熟悉,而组合多个判别式讨论方程多个根(三个以上)是近年中考,竞赛依托判别式的创新题型,解这类问题常用到换元、分类讨论等思想方法。

【例4】 设方程,只有3个不相等的实数根,求的值和相应的3个根。

(重庆市竞赛题)思路点拨:去掉绝对值符号,原方程可化为两个一元二次方程.原方程只有3个不相等的实数根,则其中一个判别式大于零,另一个判别式等于零。

【例5】已知:如图,矩形ABCD 中,AD =,DC =,在 AB 上找一点E ,使E 点与C 、D 的连线将此矩形分成的三个三角形相似,设AE =,问:这样的点E 是否存在?若存在,这样的点E 有几个?请说明理由。

(云南省中考题)思路点拨:要使Rt △ADE 、Rt △BEC 、Rt △ECD 彼此相似,点E 必须满足∠AED+∠BEC =90°,为此,可设在AE 上存在满足条件的点E 使得Rt △ADE ∽Rt △BEC ,建立一元二次方程的数学模型,通过判别式讨论点E 的存在与否及存在的个数。

注:有些与一元二次方程表面无关的问题,可通过构造方程为判别式的运用铺平道路,常见的构造方法有:(1)利用根的定义构造;(2)利用根与系数关系构造;(3)确定主元构造。

42=+ax x a a b x判别式——二次方程根的检测器学力训练1、已知,若方程有两个相等的实数根,则= 。

2、若关于的方程有两个不相等的实数根,则的取值范围是 。

(辽宁省中考题)3、已知关于方程有两个不相等的实数解,化简= 。

4、若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )A 、B 、C 、且D 、且 (山西省中考题) 5、已知一直角三角形的三边为、、,∠B =90°,那么关于的方程的根的情况为( ) A 、有两个相等的实数根 B 、没有实数根C 、有两个不相等的实数根D 、无法确定 (河南省中考题)6、如果关于的方程只有一个实数根,那么方程的根的情况是( )A 、没有实数根B 、有两个不相等的实数根C 、有两个相等的实数根D 、只有一个实数根 (2003年河南省中考题)7、在等腰三角形ABC 中,∠ A 、∠B 、∠C 的对边分别为、、,已知,和是 关于的方程的两个实数根,求△ABC 的周长。

相关文档
最新文档