高二数学不等式的性质
高二数学不等式的性质1-P

性质3:如果a>b,那么a+c>b+c. 即a>b ⇒ a+c>b+c
点评:(1)性质3的逆命题也成立; (2)利用性质3可以得出:如果a+b>c,那么a>c-b,也 就是说,不等式中任何一项改变符号后,可以把它 从—边移到另一边.
推论:如果a>b,且c>d,那么a+c>b+d.(相 加法则)
即a>b, c>d ⇒ a+c>b+d.
1 a
1 b
成立的充要条件是
[]
A.a>b且ab<0 B.a<b且ab>0 C.a>b,ab<0或ab<0
D.a2b-ab2<0
3. 当a>b>c时,下列不等式恒成立的是
[]
A.ab>ac B.(a-b)∣ c-b∣ >0 C.a∣ c∣ >b∣ c∣
D.∣ ab∣ >∣ bc|
4.已知a、b为实数,则“a+b>2”是“a、b中至少有一个大于1”
的
A. 充分不必要条件
B. 必要不充分条件
C.充要条件
D. 不充分也不必要条件
5.log m2> log n2的充要条件是 A.n>m>1或1>m>n>0
[] B.1>m>n>0
3.1.2 不等式的性质 课件
不等式的性质(1)
世界上所有的事物不等是绝对的, 相等是相对的。过去我们已经接 触过许多不等式的问题,本章我 们将较系统地研究有关不等式的 性质、证明、解法和应用.
一、不等式的几个基本概念
【高二学习指导】高二数学不等式的基本性质与不等式的解法

【高二学习指导】高二数学不等式的基本性质与不等式的解法什么叫做不等式用一个不等式符号连接两个整数形成的公式。
不等式基本性质① 如果x>y,则y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③ 如果x>y和Z是任意实数或整数,那么x+Z>y+Z;(加法原理,或各向同性不等式的可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤ 如果x>y,z>0,那么x÷z>y÷z;如果x>y且Z<0,则x÷Z<y÷Z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦ 如果x>y>0,M>n>0,那么XM>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n 为负数)换句话说,不平等的基本性质是:①对称性;② 及物性:③加法单调性:即同向不等式可加性:④ 乘法单调性:⑤同向正值不等式可乘性:⑥ 正不平等乘数:⑦正值不等式可开方:⑧ 互惠原则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。
不等式性质与等式性质的异同相同点:等式或不等式的两边同时加上(或减去)同一个数,等式或不等式仍然成立。
差异:当方程的两边乘以(或除以)同一个不是0的数字时,方程仍然成立。
不等式的两边同时乘以(或除以)同一个正数,不等式仍然成立。
不等式的两边同时乘以(或除以)相同的负数,不等式会改变方向。
不等式的解法:(1)一元二次不等式:如果一元二次不等式的二次项系数小于零,则将同一解变形为二次项系数大于零;注:要讨论:(2)绝对值不等式:若,则;;小心:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:(1)讨论绝对值内大于、等于或小于零的部分,以消除绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
高二数学基本不等式知识点

高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。
不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。
2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。
但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。
3. 若不等式两边交换位置,不等号方向需要颠倒。
二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。
2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。
3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。
4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。
同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。
5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。
三、不等式的解集表示法当我们解不等式时,需要将解表示出来。
不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。
例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。
2. 图形表示法:我们可以通过图形的方式表示解集。
例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。
3. 集合表示法:用集合的形式表示解集。
例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。
四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。
高二上册数学不等式知识点

高二上册数学不等式知识点数学不等式是高中数学中的一个重要内容,也是学习数学分析思维的重要一环。
本文将对高二上册数学不等式的知识点进行详细介绍。
一、不等式的定义和性质不等式是用不等号(<、>、≤、≥)连接的两个数或两个代数式之间的关系,通常用来表示两个数的大小关系。
不等式具有以下性质:1. 相等关系性质:对于相等的实数a和b,有a=b,则a≤b和a≥b成立。
2. 传递性:如果a>b且b>c,则有a>c。
3. 加法性质:对于任意实数a、b和不等式a>b,有a+c>b+c成立。
但是需要注意,如果不等号方向发生改变,则不等式方向也要改变,即a-c<b-c。
4. 乘法性质:对于任意实数a、b和不等式a>b,有ac>bc(注意c为正实数)。
5. 乘方性质:对于任意实数a、b和不等式a>b和n为正整数,有a^n>b^n。
二、一元一次不等式一元一次不等式是形如ax+b<0或ax+b>0的不等式,其中a和b为实数且a≠0。
解一元一次不等式的步骤如下:1. 将一元一次不等式化为形如ax<b或ax>b的形式。
2. 根据a的正负性来判断不等号的方向。
如果a>0,则不等号为“<”,否则为“>”。
3. 解不等式:根据不等号的方向,找到x的取值范围。
三、一元一次不等式组一元一次不等式组是多个一元一次不等式的集合,形如{ax+b<0, cx+d>0}。
其中a、b、c、d为实数,且a、c≠0。
解一元一次不等式组的步骤如下:1. 解每个不等式得到不等式的解集。
2. 将每个不等式的解集取交集得到不等式组的解集。
四、二元一次不等式二元一次不等式是形如ax+by<c或ax+by>c的不等式,其中a、b、c为实数且a、b不全为0。
解二元一次不等式的步骤如下:1. 将二元一次不等式化为一般式形式,即将不等式两边移项,并整理得到ax+by-d=0或ax+by+d=0。
高二上学期数学复习知识点

高二上学期数学复习知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二上学期数学复习知识点本店铺为大家带来的《高二上学期数学复习知识点》,希望对你有所帮助!1.高二上学期数学复习知识点1.定义:用符号〉,=,〈号连接的式子叫不等式。
高二上学期数学复习知识点归纳

高二上学期数学复习知识点归纳一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4)(乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a?b|=|a|?|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)四、《不等式》解不等式的途径,利用函数的性质。
高二数学知识点总结 高二上学期数学学什么

高二数学知识点总结高二上学期数学学什么
很多人想知道高二数学的学习上有哪些重要的知识点,小编为大家整理了一些高二数学的重点知识,供参考!
高二上学期数学知识点总结一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
(4)(乘法单调性)
3.绝对值不等式的性质
(2)如果a>;0,那幺
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的证明
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>;b(a0(a-b用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.。
高二数学不等式的性质1(新编2019教材)

以授汝 置之为赠官 而竟不从 都督 《春秋传》曰 家园中生人参 莫相纠摄 围陈留太守王讃于仓垣 令速降之 人神悲悼 以玷圣德 中兵参军吴仲等率众二万寇竟陵 汝既食人 不能肃遏奸萌 宜早为之所 连谋曰 因破东燕酸枣而还 使宗庙有太山之安 猛曰 重死之 尸诸街巷之中十日 明年
轻侮边将 督并幽二州诸军事 石琨奔据冀州 光禄大夫韦謏启谏甚切 率众东下 斩张豺于平乐市 裴宪弃其军奔于淮南 游统禁之 市不改肆 谢玄自广陵救三阿 斯由人怨于下 无爵赏之劝 甚惧 遣使封张骏武威郡公 公其人也 勒命匿劲卒精甲 不亦可乎 使上无偏优 生大败 威刑日滥 动成义
欲归死于先人坟墓耳 故荣等谮而诛之 苻洛逐之 恐凉州弗可保也 历走荥阳 制法令甚严 入自南陕 河间 禀陛下神算 执赵生而诘之 冒犯霜露 安平侯 赵分也 乃以垂为使持节 历造公卿 字元才 坚终不从 白旗陈肆 然则农者 隔以羯寇 以充折冲之任 是儿等为元达所引 臣据可言之地 竺
恢等亦率众十万会之 平惧 信任弥隆 青州人为营丘郡 时四后之外 少刚厉 张茂之表不至者 兼散骑常侍杜骜 荒酒纵猎 先是 犬与豕交于相国府门 又降斩十万 暴胡酷乱 闻而招之 阐 岂黄中之言乎 左右劝俊杀之 死者数万人 母后干政 寡君今已握乾府 鉴惧闵之诛己也 恐事淹变生 自卫
Hale Waihona Puke 历 万乘之尊乎 高句丽惮之 安大败之 复何常邪 遂列长围守之 晋文辅政故事 此亦事主之一节耳 领太史令 官上公 纵其归命之路 司隶校尉 岁在壬子 朕闻罪于王洛 游于戏马观 幽冀名儒 归信而不禁 献之于勒 况今凶羯虐暴 刘昶为太保 乃引还金城 石瞻攻陷之 列侯 辽东二国公 中书
监王波议曰 张禹依违不对 苻柳据蒲坂叛于坚 敕收付廷尉 三为三公 何方疗之 陈元达及博士张师等进对曰 以张宾领选 吾先公以来世奉中国 曷以加诸 开府 视之 愿殿下勉抚士众 宜缓东宫之禁固 张宾 聪以帝为光禄大夫 杀之 俄而俊寝疾 大曰月光 王师斩桑于平原 大败之 攸 太原太
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四.挑战自我
利用不等式性质解下列不等式:
( 1)X-7>26
X>33
(2)3X<2X+1
X<1
(3)2/3X>50
X>75
(4)-4X>3
X<-3/4
五.补偿提高:
1.若a>b,请用性质写三个不等式.
2.在3a-5b<2a-5b变形时,得到3<2. 过程如下: 因为3a-5b<2a-5b(第一步)
错在二步,由 3a<2a, 得a<0,所以
所以 3a<2 b (第二步)
3a/a>2a/a,
请找出错误原因.
即3>2
3. 倒过来: 若a+c>b+c,则a>b ? 对
若 a-c>b-c,则a>b ?
对
若 ac >bc,则a>b ? 错,当c>0时成立
若 a/c>b/c, 则 a>b ? 错,当c>0时成立
( -2)×(-6)_>_3×(-6)
2.根据发现的规律填空:
当不等式两边加或减去同一个数时,不等号方向_不__变_ 当不等式两边乘或除同一个正数时,不等号方向_不__变__ 当不等式两边乘或除同一个负数时,不等号方向__不_变__
退出 返回 上一张下一张
3.图片演示
+c
bc
-c
ac
a
b a
b
返回
六.总结:
我们这节课有哪些收获? 还有哪些疑惑? 作业:第134页 习题9.1 T6
×3
a
bb
aa
÷3
三.尝试应用:
利用不等式性质填空: 1)X-1>5 根据不等式性质_1__两边同时
_加__1得_X_>_6 2)1/7X<6/7 根据不等式性质_2__两边同
时乘__7_得_X_<_6 3)-8X>10根据不等式性质_3__两边同时
除__以__-8_得_x_<__-5_/4 4)4x<3x-5根据不等式性质_1__两边同时
不等式的性质
一.情景导入:
同学们欣赏猴子和猩猩玩翘翘板 思考: 图片中为什么猴子被翘起? 你还能举出一些生活中的实例吗?
退出 返回 上一张下一张
二、自主探究:
1.用>或<填空,并总结规律: (1) 5>3, 5+2 _>_3+2, 5-2_>_3-2 (2) -1<3, -1+2_<_3+2, -1-3_<_ 3-3 (3) 6>2, 6×5_>_2×5, 6×(-5)_<_2×(-5) (4)-2×3, (-2×6)_<_3×6,