人教版八年级数学 全等三角形的五种判定方法同步练习(无答案)
人教版八年级上册数学角形全等的判定(AASASA)同步训练

人教版八年级上册数学12.2 三角形全等的判定(AAS ASA )同步训练一、单选题1.如图,在△ABC 中,AD 平分∠BAC ,AD ∠BD 于点D ,DE ∥AC 交AB 于点E ,若AB =8,则DE 的长度是( )A .6B .2C .3D .4 2.如图,AD BC ⊥,垂足为D ,BF AC ⊥,垂足为F ,AD 与BF 交于点E ,52AD BD DC ===,,则AE 的长为( )A .2B .3C .4D .7 3.如图,AB CD =,AB CD ∥,BAE DCF ∠=∠,8BD =,4EF =,则BE =( )A .4B .8C .2D .12 4.如图所示,∠EBC ∠∠DCB ,BE 的延长线与CD 的延长线交于点A ,CE 与BD 相交于点O .则下列结论:∠∠OEB ∠∠ODC ;∠AE =AD ;∠BD 平分∠ABC ,CE 平分∠ACB ;∠OB =OC ,其中正确的有( )A .4个B .3个C .2个D .1个 5.如图,已知OF 平分AOB ∠,PD OA ⊥于D 点,PE OB ⊥于E 点,F 是OF 上的另一点,连接DF 、EF .判断图中有几对全等三角形( )A .1B .2C .3D .4 6.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE FC AB =,∥,若74AB CF ==,,则BD 的长是( )A .5B .4C .3D .2 7.如图,ABC CED △≌△,点D 在BC 边上,90AE ∠+∠=︒,EC 、ED 与AB 交于点F 、G ,则下列结论不正确的是( )A .AC CD =B .90ACB ∠=︒C .AB CED .EG BG = 8.如图,在ABC 中,AD BC ⊥于点D ,CE AB ⊥于点E ,AD 、CE 交于点F ,已知6EF EB ==,24AEF S =△,则CF 的长为( )A .1B .2C .52D .3二、填空题9.如图,已知∠CDE =90°,∠CAD =90°,BE ∠AD 于B ,且DC =DE ,若BE =7,AB =4,则BD 的长为 _____.10.如图,AB ∠CD ,且AB =CD ,CE ∠AD ,BF ∠AD ,垂足分别为E ,F ,若CE =4,BF =3,EF =2,则AD 的长为________.11.如图,在ABC 中,CD AB ⊥,AE BC ⊥,垂足分别为点D ,E ,CD 与AE 交于点F ,若3BD DF ==,6ADF S =△,则CF 的长是________.12.如图,∠ABC 与∠DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC ,若∠AEB =50°,求∠EBC 的度数是____.13.如图,∠ACB =90°,AC =BC ,BE ∠CE ,AD ∠CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =_____.14.如图,在ABC 中,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .若12AD =,5BE =,则DE 的长为______.15.如图,点D 是△ABC 的边AB 上一点,FC ∠AB ,连接DF 交AC 于点E ,若CE =AE ,AB =7,CF =4,则BD 的长为________.16.如图,90ACB ∠=︒,AC BC =,F 为AB 上一点,连接CF ,AE CF ⊥,BD CF ⊥,垂足分别是点E ,D .若5cm AE =,2cm BD =,则DE 的长为______cm .三、解答题17.如图,AB ∥CD ,BN ∥MD ,点M 、N 在AC 上,且AM =CN ,求证:BN =DM .18.如图,将ABC 沿射线BC 方向平移得到DCE ,连接BD 交AC 于点F .(1)求证:AFB ≌CFD △;(2)若9AB =,7BC =,求BF 的取值范围.19.如图,Rt∠ACB中,∠ACB=90°,AC=BC,E点为线段CB一动点,连接AE,过点A作AF∠AE且AF=AE,过点F作FD∠AC于点D,如图∠所示.(1)求证:FD=AC.(2)若点E为BC中点,连BF交AC于点G,如图∠,已知CG=1,求BC的长.20.如图,在∠ABC中,CD∠BD,垂足为D,且CD=B D.BE平分∠ABC,且BE∠AC,垂足为E,交CD于点F.(1)求证:AE=CE;(2)求证:BF=2CE.。
判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。
判定两个三角形是否全等是数学中的一个重要问题。
下面将介绍判定全等三角形的五种方法。
方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。
如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。
方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。
如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。
方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。
如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。
方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。
如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。
方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。
如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。
通过以上五种方法,我们可以准确地判定两个三角形是否全等。
这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。
需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。
如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。
判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。
通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。
总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。
这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。
全等三角形的判定-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

第二课时——全等三角形的判定知识点一:全等三角形的判定:判定方法内容数学语言 图形表示 注意点边边边(SSS )三边分别相等的两个三角形全等。
可简写为“边边边”或“SSS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF边角边(SAS )两边及其夹角分别对应相等的两个三角形全等。
可简写为“边角边”或“SAS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧=∠=∠=DF AC D A DEAB ∴△ABC ≌△DEF用“边角边(SAS )判定全等时,角一定是两边的夹角,否则不能判定全等。
在写条件的时候角必须写在中间。
角边角(ASA )两角及其夹边分别对应相等的两个三角形全等。
可简写为“角边角”或“ASA ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB DA ∴△ABC ≌△DEF用“角边角(ASA )判定全等时,边是两角的夹边,在书写的过程中需把边写在中间特别提示:在写全等三角形的数学语言时,等号左边写“≌”左边三角形的条件,等号右边写“≌”右边三角形的条件。
并且条件的顺序必须和判定条件顺序一致。
方法总结:【类型一:补充证全等条件】1.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DBC.∠A=∠DEF D.∠ABC=∠D2.如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()第2题第3题A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D3.如图,BC=BD,添加下列一个条件后,仍无法判定△ABC≌△ABD的是()A.AC=AD B.∠ABC=∠ABD C.∠CAB=∠DAB D.∠C=∠D=90°4.如图,已知点A,D,C,F在同一条直线上,AB=DE,AD=CF,要使△ABC≌△DEF,则下列条件可以添加的是()第4题第5题第7题A.∠B=∠E B.∠A=∠EDF C.AC=DF D.BC∥EF5.如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C6.下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等7.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,添加一个条件,不能使得Rt△ABC≌Rt△DCB 的是()A.AB=DC B.AC=DB C.∠ABC=∠DCB D.BC=BD8.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DB D.AB=CD【类型二:证明三角形全等】9.请将以下推导过程补充完整.如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF平分∠DCE.求证:△DCF ≌△ECF 证明:∵AD ∥BE ∴∠A =∠B在△ACD 和△BEC 中()⎪⎩⎪⎨⎧=∠=∠BC AD B A ∴△ACD ≌△BEC ( )∴CD =CE ( ) ∵CF 平分∠DCE ∴ 在△DCF 和△ECF 中()⎪⎩⎪⎨⎧==CE CD CF CF ∴△DCF ≌△ECF (SAS )10.如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD .求证:△ABC ≌△CDE .11.如图,点A、D、B、E在一条直线上,AD=BE,AC=DF,AC∥DF,求证:△ABC≌△DEF.12.如图,点D在线段BC上,AB=AD,∠1=∠2,DA平分∠BDE:求证:△ABC≌△ADE.13.天使是美好的象征,她的翅膀就像一对全等三角形.如图AD与BC相交于点O,且AB=CD,AD=BC.求证:△ABO≌△CDO.14.如图,在△ABC中,点D在BC的延长线上,DE∥AC,且DE=BC,AC=BD.求证:△ABC≌△BED.15.如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.16.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.18.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE =BF.19.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.【类型三:全等三角形的判定与性质】20.如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,∠F AC =40°,则∠BFE=()第20题第21题A.35°B.40°C.45°D.50°21.如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为()A.21B.24C.27D.3022.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()第22题第23题A.3B.5C.6D.723.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.424.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.25.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.【类型四:全等三角形的应用】27.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是()第27题第28题A.SSS B.SAS C.ASA D.AAS28.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去29.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.第29题第30题30.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB =OC,测得AB=a,EF=b,圆形容器的壁厚是()A .aB .bC .b ﹣aD .21(b ﹣a )一、选择题(10题)1.如图为正方形网格,则∠1+∠2+∠3=( )第1题 第2题 第3题A .105°B .120°C .115°D .135°2.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是( )A .∠ABC =∠ABDB .∠BAC =∠BAD C .AC =AD D .AC =BC3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②4.根据下列已知条件,能唯一画出△ABC 的是( )A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=45.如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B的距离,判定△EDC≌△ABC的依据是()A.ASA B.SSS C.AAS D.SAS6.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD与CD的距离间的关系是()第7题第8题A.BD>CD B.BD<CD C.BD=CD D.不能确定8.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从B向A运动,每分钟走1m,点Q从B向D运动,每分钟走2m,P、Q两点同时出发,运动()分钟后,△CAP与△PQB全等.A.2B.3C.4D.89.把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为()第9题第10题A.4cm B.6cm C.8cm D.求不出来10.如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD 交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB=α,④OM平分∠BOC,其中正确结论的个数是()A.4B.3C.2D.1二、填空题(6题)11.如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件的是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第12题第14题13.在△ABC中,AB=3cm,AC=4cm,则BC边上的中线AD的取值范围是.14.在直角三角形中,存在斜边的平方等于两条直角边的平方的和。
初二数学上册全等三角形五大判定方法

全等三角形5大判定一、边边边(SSS)学习全等三角形判定法则时,第一条就是边边边。
内容:它们的夹角分别相等的两个三角形全等。
理解:若给出三条线段的长度(满足三角形三边关系),即可确定出的三角形形状,大小。
若给出三条线段长度 AB=c, BC=a, AC=b,确定过程如下:①先确定一边AB;②分别以AB为圆心,分别做半径为b,a长的圆,交于C点;③最后连接AC,BC。
这样三角形的大小,形状就都被确定出来了。
二、边角边(SAS)内容:两边和它们的夹角分别相等的两个三角形全等。
理解:若确定两条公共端点线段的长度,及它们的夹角,即可确定出的三角形形状,大小。
若给出AB=c BC=a ∠B=α,确定过程如下:①画∠EAD=α;②在射线AE上截取AC=c,在射线AD上截取AB=c;③连接BC。
这样,三角形的.大小形状同样被确定了。
三、角边角(ASA)内容:两角和他们的夹边分别相等的两个三角形全等。
理解:若给出三角形的两个角的大小和它们的夹边的长度了,即可确定出的三角形形状,大小。
若有AB=c,∠CAB=α,∠CBA=β,确定过程如下:①先确定一边AB=c;②在AB同旁画∠DAB=α,∠EBA=β,AD,BE交于点C。
这样,三角形的大小形状同样被确定了。
四、角角边(AAS)内容:两边分别相等且其中一组等角的对边相等的两个三角形全等。
理解:若给出三角形的两个角的大小和其中一个角对边的长度了,即可确定出的三角形形状,大小。
若有AB=c,∠CAB=α,∠ACB=β,确定过程如下:由三角形的内角和为180度可得出剩下一角∠CBA的度数,这样,利用角边角的思路即可确定三角形形状大小。
相关定理:三角形内角和为180度五、斜边,直角边(HL)内容:斜边和一条直角边分别相等的两个直角三角形全等。
(HL)理解:若确定一个三角形为直角三角形,同时得到其一个直角边和斜边的长度,即可确定出三角形的形状大小。
若确定三角形为直角三角形,还得到其一直角边和斜边,则可勾股定理得出剩下一边,再通过SSS或SAS即可确定三角形形状大小。
三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
人教版八年级上册数学12.2 三角形全等的判定 知识点和对应练习(无答案)

12.2 三角形全等的判定第1课时 “边边边”一、课堂导入问题提出:一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.学生活动:观察,思考,回答教师的问题.方法如下:可以将图①的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图②,剪下模板就可去割玻璃了.如果△ABC ≌△A ′B ′C ′,那么它们的对应边相等,对应角相等.反之,如果△ABC 与△A ′B ′C ′满足三条边对应相等,三个角对应相等,即AB =A ′B ′,BC =B ′C ′,CA =C ′A ′,∠A =∠A ′,∠B =∠B ′,∠C =∠C ′这六个条件,就能保证△ABC ≌△A ′B ′C ′.从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.这种说法对吗?二、知识点梳理边边边1.三边分别相等的两个三角形全等.简记为“边边边”或“SSS ”. 2.“边边边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,∴△ABC ≌△A 1B 1C 1(SSS).三、考点分类考点一: 利用“SSS ”判定两个三角形全等【例1】 如图,AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .解析:已知△ABC 与△DEF 有两边对应相等,通过BE =CF 可得BC =EF ,即可判定△ABC ≌△DEF .证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (SSS).方法总结:判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二: “SSS ”与全等三角形的性质结合进行证明或计算【例2】 如图所示,△ABC 是一个风筝架,AB =AC ,AD 是连接点A 与BC 中点D 的支架,求证:AD ⊥BC .解析:要证AD ⊥BC ,根据垂直定义,需证∠1=∠2,∠1=∠2可由△ABD ≌△ACD 证得.证明:∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD ⊥BC (垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.考点三:利用“边边边”进行尺规作图【例3】已知:如图,线段a、b、c.求作:△ABC,使得BC=a,AC=b,AB=c.(保留作图痕迹,不写作法)解析:首先画AB=c,再以B为圆心,a为半径画弧,以A为圆心,b为半径画弧,两弧交于一点C,连接BC,AC,即可得到△ABC.解:如图所示,△ABC就是所求的三角形.方法总结:关键是掌握基本作图的方法,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考点四:利用“SSS”解决探究性问题【例4】如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若E、F运动至图①所示的位置,且有AF=CE,求证:△ADE≌△CBF.(2)若E、F运动至图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E、F不重合,AD和CB平行吗?说明理由.解析:(1)因为AF=CE,可推出AE=CF,所以可利用SSS来证明三角形全等;(2)同样利用三边来证明三角形全等;(3)因为全等,所以对应角相等,可推出AD∥CB.解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(3)平行.∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决本题要明确无论E 、F 如何运动,总有两个三角形全等,这个在图形中要分清.【课堂练习】1、找第三边(减公共部分)如图,已知点 B ,C ,D ,E 在同一直线上,且 A B=AE ,AC=AD ,BD=CE . 求证:△ABC ≌△AED .2、找第三边(加公共部分) 如图,点 B ,E ,C ,F 在同一条直线上,AB=DE ,AC=DF ,BF=CE ,求证:△ABC ≌△DEF ;3、找第三边(公共边)如图,AD=CB,AB=CD,求证:△ACB≌△CAD.第2课时“边角边”一、课堂导入小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?让我们一起来探索三角形全等的条件吧!二、知识点梳理边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS”.2.“边角边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,∠B =∠B 1,BC =B 1C 1,∴△ABC ≌△A 1B 1C 1(SAS).3.“SSA ”不能判定两个三角形全等. 三、考点分类考点一: 利用“SAS ”判定三角形全等【例1】 如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .解析:由AE ∥BC ,根据平行线的性质,可得∠A =∠B ,由AD =BF 可得AF =BD ,又AE =BC ,根据SAS ,即可证得△AEF ≌△BCD .证明:∵AE ∥BC ,∴∠A =∠B .∵AD =BF ,∴AF =BD .在△AEF 和△BCD 中,∵⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,∴△AEF ≌△BCD (SAS).方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.考点二: “边边角”不能证明三角形全等【例2】 下列条件中,不能证明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DFC .BC =EF ,∠B =∠E ,AC =DFD .BC =EF ,∠C =∠F ,AC =DF解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的条件不符合,故选C.方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.考点三:利用全等三角形进行证明或计算【例3】 已知:如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=45°,求∠C 的度数.解析:利用已知条件易证∠ABC =∠FBE ,再根据全等三角形的判定方法可证明△ABC ≌△FBE ,由全等三角形的性质即可得到∠C =∠BEF .再根据平行,可得出∠BEF 的度数,从而可知∠C 的度数.解:∵∠1=∠2,∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,∴△ABC≌△FBE (SAS),∴∠C =∠BEF .又∵BC ∥EF ,∴∠C =∠BEF =∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具.考点四: 全等三角形与其他图形的综合【例4】 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .解析:(1)因为已知条件中有两个正方形,所以AD =CD ,DE =DG ,它们的夹角都是∠ADG加上直角,可得夹角相等,所以△ADE 和△CDG 全等;(2)再利用互余关系可以证明AE ⊥CG .证明:(1)∵四边形ABCD 、DEFG 都是正方形,∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDG ,DE =GD ,∴△ADE≌△CDG (SAS),∴AE =CG ;(2)设AE 与DG 相交于M ,AE 与CG 相交于N ,在△GMN 和△DME 中,由(1)得∠CGD =∠AED ,又∵∠GMN =∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .【课堂练习】1、找角(加公共部分) 如图所示,CD=CA ,∠1=∠2,EC=BC ,求证:△ABC ≌△DEC .2、找边(加公共部分) 如图,点 E ,F 在 A B 上,AD=BC ,∠A=∠B ,AE=BF .求证:△ADF ≌△BCE .3、角转换,边转换如图,点E、F 在A C 上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE.第2课时“角边角”“角角边”一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、知识点梳理“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”. 2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法. 三、考点分类考点一: 应用“ASA ”判定两个三角形全等【例1】 如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用ASA 可证明△ADF ≌△CBE .证明:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.考点二: 应用“AAS ”判定两个三角形全等【例2】 如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等.证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.考点三: 灵活选用不同的方法证明三角形全等【例3】 如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.考点四:运用全等三角形解决有关问题【例4】 已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.【课堂练习】1、角转换,边转换 如图,已知 A B ∥DE ,BC ∥EF ,D ,C 在 A F 上,且 A D=CF , 求证:△ABC ≌△DEF .2、隐含条件(对顶角) 已知:如图 A C ,BD 相交于点 O ,∠A=∠D ,AB=CD , 求证:△AOB ≌△DOC .3、利用外角找角相等1如图,∠A=∠B,AE=BE,点 D在AC 边上,∠1=∠2,AE 和BD 相交于点O.求证:△AEC≌△BED;4、利用外角找角相等2如图,在△ABC 中,AB=AC,点D、E、F 分别在边A B、BC、AC 上,且B D=CE,∠DEF=∠B.图中是否存在和△BDE 全等的三角形?说明理由.第4课时“斜边、直角边”一、课堂导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、知识点梳理“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL”,除此之外,还可以选用“SAS”“ASA”“AAS”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.三、考点分类考点一:应用“斜边、直角边”判定三角形全等【例1】如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD ,∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.考点二: 利用“HL ”判定线段相等【例2】 如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.考点三: 利用“HL ”判定角相等或线段平行【例3】 如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等. 证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt△ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.考点四: 利用“HL ”解决动点问题【例4】 如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.考点五: 综合运用全等三角形的判定方法判定直角三角形全等【例5】 如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.【课堂练习】如图,在△ABC 中,AB=AC ,DE 是过点 A 的直线,BD ⊥DE 于 D ,CE ⊥DE 于点 E ; (1)若 B 、C 在 D E 的同侧(如图所示)且 A D=CE .求证:AB ⊥AC ;(2)若。
人教版八年级上册数学 12.2 全等三角形全等判定知识点和对应练习(无答案)

全等三角形一、全等三角形的概念与性质1、概念:能够完全重合的两个三角形叫做全等三角形。
(1)表示方法:两个三角形全等用符号“≌”来表示,记作ABC∆≌DEF∆2、性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等1.下列各组的两个图形属于全等图形的是( )2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.二、全等三角形的判定1 全等三角形的判定方法:(SAS),(SSS), (ASA), (AAS),(HL)边边边(SSS)边角边(SAS)角边角(ASA) 角角边AAS 直角边和斜边(HL)三边对应相等的两三角形全等有两边和它们的夹角对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等.两角和及其中一个角所对的边对应相等的两个三角形全等.有一条斜边和一条直角边对应相等的两个直角三角形全等(HL)专题一:“边边边”全等三角形(SSS)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”,几何表示如图,在ABC∆和DEF∆中,ABCEFBCEBDEAB∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SASDEF∆【典型例题】AC=DF (SSS)例1找第三边(减公共部分)如图,已知点B,C,D,E 在同一直线上,且A B=AE,AC=AD,BD=CE.求证:△ABC≌△AED.例2找第三边(加公共部分)如图,点B,E,C,F 在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;例3找第三边(公共边)如图,AD=CB,AB=CD,求证:△ACB≌△CAD.巩固练习1.如图,下列三角形中,与△ABC全等的是( )A.① B.② C.③ D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是( ) A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB.4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.6.如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 求证:AM 是ABC ∆的角平分线7.如图:在△ABC 中,BA=BC ,D 是AC 的中点。
全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题摘要:1.全等三角形的判定方法概述2.边边边(SSS)判定法3.边角边(SAS)判定法4.角边角(ASA)判定法5.角角边(AAS)判定法6.斜边,直角边(HL)判定法7.经典题型一:已知三边长度,判断全等8.经典题型二:已知两边和夹角,判断全等9.经典题型三:已知两角和夹边,判断全等10.经典题型四:已知两边和等角对边相等,判断全等11.经典题型五:已知斜边和直角边,判断全等12.经典题型六:综合运用判定法,判断全等13.解题技巧与注意事项14.巩固练习:50道经典题解答与解析正文:全等三角形的判定方法是数学中非常重要的内容,掌握判定方法有助于解决许多实际问题。
本文将详细介绍全等三角形的判定方法,并通过50道经典题进行巩固练习。
1.全等三角形的判定方法概述全等三角形判定方法有六种,分别为:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边,直角边(HL)。
2.边边边(SSS)判定法当两个三角形的三条边分别对应相等时,这两个三角形全等。
例如,若给出三条线段长度ABc,BCa,ACb,我们可以通过以下步骤确定全等三角形:步骤一:确定一边AB。
步骤二:分别以AB为圆心,做半径为b,a长的圆,交于点C。
步骤三:连接AC,BC。
这样,三角形的大小和形状就都被确定出来。
3.边角边(SAS)判定法当两个三角形的两边和它们的夹角分别相等时,这两个三角形全等。
例如,已知ABc,CAB,我们可以通过以下步骤确定全等三角形:步骤一:画射线AE,并在射线AE上截取ACc。
步骤二:在射线AD上截取ABc。
步骤三:连接BC。
这样,三角形的大小和形状就都被确定出来。
4.角边角(ASA)判定法当两个三角形的两个角和它们的夹边分别相等时,这两个三角形全等。
例如,已知ABc,CAB,我们可以通过以下步骤确定全等三角形:步骤一:先确定一边ABc。
步骤二:在AB同旁画DAB,EBA,AD,BE交于点C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDAD CBA 4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CDADCFO例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .AABD C EO12 3AFDOBEC3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
(注:将你认为正确的结论填上)ABC DO图2 图36.如图3所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为合适的条件).7. 如图,已知∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.BAE21F CD8.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。
BA EFCD9.如图,AB ,CD 相交于点O ,且AO=BO ,试添加一个条件,使△AOC ≌△BOD ,并说明添加的条件是正确的。
(不少于两种方法)M NCBO10.如图,已知:BE=CD ,∠B=∠C ,求证:∠1=∠2。
11.如图,在Rt △ABC 中,AB=AC ,∠BAC=90º,多点A 的任一直线AN ,BD ⊥AN 于D , CE ⊥AN 于E ,你能说说DE=BD-CE 的理由吗?直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等. 【典型例题】例1 如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系. 例2 已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.例3 公路上A 、B 两站(视为直线上的两点)相距26km ,C 、D 为两村庄(视为两个点),DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA=16km ,BC=10km ,现要在公路AB 上建一个土特产收购站E ,使CD 两村庄到E 站的距离相等,那么E 站应建在距A 站多远才合理? 例4 如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关系.A EDBCO1 2ABADBABCD┐┎ F ┐┘E ABCEF例5 如图,A 、E 、F 、B 四点共线,AC ⊥CE 、BD ⊥DF 、AE=BF 、AC=BD ,求证:△ACF ≌△BDE.【经典练习】1.在Rt △ABC 和Rt △DEF 中,∠ACB=∠DFE=︒90,AB=DE ,AC=DF ,那么Rt △ABC 与Rt △DEF (填全等或不全等)2.如图,点C 在∠DAB 的内部,CD ⊥AD 于D ,CB ⊥AB 于B ,CD=CB 那么Rt △ADC ≌Rt △ABC 的理由是( )A .SSS B. ASA C. SASD. HL 3.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理由是( ).A .SSSB. AASC. SASD. HL4.下列说法正确的个数有( ).①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个5.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 . 6.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )cm.7.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ). A .全等B. 不一定全等C. 不全等D. 面积相等,但不全等8.如图,∠B=∠D=︒90,要证明△ABC 与△ADC 全等,还需要补充的条件是 .9.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:DE=AD+BE.CBAADAB10.如图,已知AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,那么,CE=DF 吗?谈谈你的理由!11.如图,已知AB=AC ,AB ⊥BD ,AC ⊥CD ,AD ,BC 相交于点E ,求证:(1)CE=BE ;(2)CB ⊥AD.提高题型:1.如图,△ABC 中,D 是BC 上一点,DE ⊥AB ,DF ⊥AC ,E 、F 分别为垂足,且AE=AF ,试说明:DE=DF ,AD 平分∠BAC.2.如图,在ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,且DE=DF ,试说明AB=AC.3.如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE ,求证:AF=CE.ABCDEFAEDBC ADCBFE4.如图,△ABC中,∠C=90°,AB=2AC,M是AB的中点,点N在BC上,MN⊥AB。