热力系统的热平衡分析法循环函数法
初中化学知识点归纳热化学计算

初中化学知识点归纳热化学计算初中化学知识点归纳——热化学计算热化学计算是热化学的重要内容之一,它通过计算反应焓变、热量转化等参数,来研究化学反应的热力学性质。
在初中化学中,我们主要掌握了热化学计算的基本方法和相关的计算公式。
本文将对初中化学中的热化学知识点进行归纳总结,帮助大家更好地掌握这一部分内容。
一、反应焓变的计算反应焓变是指化学反应过程中系统的焓变化量。
在热化学计算中,常用的计算方法有两种:利用热量平衡计算法和利用物质的焓变计算法。
1. 利用热量平衡计算法:化学反应在恒压下进行,根据热量平衡可得到反应物和生成物的热量关系式,使用以下公式进行计算:反应物A + 反应物B → 生成物C + 生成物D反应焓变ΔH = Σ(生成物的热量) - Σ(反应物的热量)2. 利用物质的焓变计算法:根据物质的焓变数据表,直接从中查找反应物和生成物的焓变值,使用以下公式进行计算:反应焓变ΔH = Σ(生成物的焓变) - Σ(反应物的焓变)二、热量转化的计算在热化学计算中,我们经常需要计算热量转化的问题,包括:1. 燃烧热:燃烧热是燃料完全燃烧生成单位质量水的热量,通常以单位质量(克或千克)的燃料燃烧时释放的热量来表示。
计算方法为:燃烧热 = 释放的热量 / 燃料质量2. 溶解热:溶解热是溶剂与溶质在溶液形成过程中释放或吸收的热量,计算方法为:溶解热 = 溶解过程中释放或吸收的热量 / 溶质质量三、热化学方程式的计算在热化学方程式的计算中,我们需要根据已知条件和公式,计算未知物质的相关参数,如反应物物质的质量、反应焓变等。
1. 反应物质的质量计算:根据已知物质比例和反应物质量关系,可以通过以下公式计算反应物质的质量:反应物质质量 = 已知物质质量 * (未知物质的摩尔质量 / 已知物质的摩尔质量)2. 反应焓变的计算:根据已知条件和反应焓变的公式,可以计算反应焓变的值:反应焓变ΔH = Σ(生成物的焓变) - Σ(反应物的焓变)四、热化学计算的应用热化学计算在实际应用中有着广泛的用途,比如:1. 燃料的选择:通过计算不同燃料的燃烧热,可以选择能量释放量大的燃料。
工程热力学知识点总结

工程热力学知识点总结1. 热力学基本概念热力学是研究能量转化与传递规律的一门科学。
在工程领域中,热力学是非常重要的基础学科。
以下我们将总结一些工程热力学的基本概念。
1.1 系统与界面热力学中的系统是指被研究的对象,可以是一个物体、一组物体或者是一个区域。
系统的边界叫做界面,界面可以是真实的物理界面,也可以是我们人为规定的虚拟界面。
1.2 态函数热力学中用态函数描述系统的状态,态函数不仅仅与系统的当前状态有关,还与系统的历史路径无关。
常见的态函数有温度、压力、体积等。
1.3 热平衡和热平衡态当一个系统与外界没有能量交换和物质交换时,即系统处于热平衡态。
在热平衡态下,系统的各个部分之间没有温度、压力等的差异。
1.4 热力学第一定律热力学第一定律是能量守恒定律在热力学中的表达形式。
它表明能量不会凭空产生,也不会凭空消失,只会在不同形态之间转化。
2. 理想气体的热力学性质理想气体是工程热力学中经常用到的模型之一,下面我们将总结一些理想气体的热力学性质。
2.1 理想气体定律理想气体定律是描述理想气体性质的基本关系式,通常表示为PV = nRT,其中P为气体压力,V为气体体积,n为气体物质的物质量,R为气体常数,T为气体温度。
2.2 理想气体的内能与焓理想气体的内能只与温度有关,与体积和压力无关。
而理想气体的焓等于内能加上压力乘以体积。
2.3 理想气体的热容理想气体的热容表示单位物质量气体温度变化一个单位时吸收或释放的热量。
常用的有定压热容和定容热容两种。
3. 热力学循环热力学循环是工程热力学中常用的分析工具,下面我们将介绍一些常见的热力学循环。
3.1 卡诺循环卡诺循环是一个理想的热力学循环,它采用两个等温过程和两个绝热过程,能够以最高效率转化热量为功的循环。
3.2 朗肯循环朗肯循环是内燃机中常用的循环,由一个等容过程和两个绝热过程组成。
朗肯循环可以描述内燃机的工作原理和性能。
3.3 布雷顿循环布雷顿循环是蒸汽机中常用的循环,由一个等压过程和两个等熵过程组成。
火电厂能耗诊断技术及节能评估

大唐华中电力试验研究院 中国大唐集团科学技术研究院有限公司华中电力试验研究院
1.3 能耗诊断内容
汽轮机技术研究所
运行控制管理是运行管理内容之一,通过运行优化控制,使基本运行参数与目 标值保持最小的差距,是节能降耗的最经济途径。其包括燃烧优化调整,汽机 进汽端和冷端运行优化,脱硫系统运行优化、除灰、除尘系统优化等。
1.3 能耗诊断内容
汽轮机技术研究所
能耗诊断围绕影响机组供电煤耗的因素开展。这些因素一般包括:客观环境因 素、管理因素、设备因素、运行控制因素等。
客观环境因素可控性较差,或基本不可控;其包括机组负荷率、机组调峰启停、 供热比、环境温度、燃料特性等。它们是由市场或自然环境决定,人为干预难 度较大。
4
一段抽汽温度(℃)
5
一段抽汽压损(%)
6
二段抽汽压力(MPa)
7
二段抽汽温度(℃)
8
二段抽汽压损(%)
9
三段抽汽压力(MPa)
10 三段抽汽温度(℃)
目标值的确定
取对应负荷设计值,并考虑背压、过热器减温水及供热 的修正。 根据主汽流量通过制造厂提供的图(表)查取,或通过 内插法计算 根据主汽流量通过制造厂提供的图(表)查取,或通过 弗留格尔公式计算 取滑压优化试验值,通过内插计算;定压运行取设计值 设计值 根据主汽流量通过制造厂提供的图(表)查取,或通过 弗留格尔公式计算 取滑压优化试验值,通过内插计算;定压运行取设计值 设计值 根据主汽流量通过制造厂提供的图(表)查取,或通过 弗留格尔公式计算 取滑压优化试验值,通过内插计算;定压运行取设计值
大唐华中电力试验研究院 中国大唐集团科学技术研究院有限公司华中电力试验研究院
1.2 能耗诊断所需准备资料和数据
热力学系统的稳定性了解热力学系统中的热平衡与热不平衡

热力学系统的稳定性了解热力学系统中的热平衡与热不平衡热力学系统的稳定性:了解热力学系统中的热平衡与热不平衡热力学是研究能量转移和宏观系统状态变化的物理学分支,在热力学系统中,稳定性是一个重要的概念。
稳定性描述了系统在受到扰动后能否返回到原来的状态,并确定系统是否处于热平衡状态。
本文将介绍热平衡和热不平衡的概念,以及热力学系统的稳定性与稳定性判据。
一、热平衡与热不平衡1. 热平衡热平衡是指在没有能量交换的情况下,系统中各部分之间不存在温度差异。
换句话说,热平衡意味着系统内各个部分具有相同的温度。
当系统达到热平衡时,不再发生任何的宏观变化。
2. 热不平衡热不平衡是指系统中存在温度差异,使得能量在系统的不同部分之间传递。
在热不平衡状态下,系统会发生宏观的变化,例如温度梯度的形成、热量传导等。
二、热力学系统的稳定性热力学系统的稳定性描述了系统在受到微小扰动后是否能恢复到原来的状态。
稳定性是判断系统是否能够达到热平衡的重要条件。
下面将介绍两种经典的稳定性判据。
1. 热力学平衡态的稳定性判据热力学平衡态的稳定性判据是通过判断系统的焓、熵和自由能的变化来确定。
对于一个孤立系统,焓H和熵S的变化量可以用下式表示:△H = △U + P△V△S = △S系统 + △S周围其中,△U表示内能的变化量,P表示系统的压力,△V表示体积的变化量,△S系统和△S周围分别表示系统和周围环境的熵变。
根据稳定性判据,当焓和熵的变化满足以下条件时,系统处于热力学平衡态且稳定:若焓的变化量△H小于零,熵的变化量△S大于零,则系统是稳定的。
若焓的变化量△H大于零,熵的变化量△S小于零,则系统是不稳定的。
2. 热力学系统的平衡态与稳定性根据热力学第一定律,内能U是系统的一个状态函数,而熵S是一个过程函数。
在稳定的热力学平衡态中,体系的内能和熵都达到了一个极小值或极大值。
具体地说,对于准静态过程而言,在演化方向上,内能和熵都呈现一个最小值或最大值,这种平衡态被称为稳定平衡态。
热平衡方程

热平衡方程
热平衡方程是描述物体之间热量交换规律的数学表达式。
在热力学中,我们通
过热平衡方程来分析物体之间的热量转移情况,从而更好地理解热力学系统的性质。
理论基础
热平衡方程基于热动力学定律,即热量会从高温区传递到低温区,直至两者达
到热平衡。
热平衡方程通常用来描述热力学系统中各个部分之间的热量传递过程,以及系统整体的热平衡状态。
热平衡方程的一般形式
设两个物体之间的热传导面积为A,温度差为ΔT,热传导系数为k,则热平衡
方程可以表示为:
Q = k * A * ΔT
其中,Q表示单位时间内从一个物体传递到另一个物体的热量,k是热传导系数,A是热传导面积,ΔT是温度差。
实际应用
热平衡方程在工程领域有着广泛的应用。
例如,热平衡方程可用来计算建筑物
之间的热传导,帮助设计合理的供暖或制冷系统;还可以用于分析电子设备的散热效果,优化设备的工作性能。
结论
热平衡方程是热力学中一个重要的概念,它帮助我们理解热量在物体之间如何
传递,为解决工程和科学问题提供了有力的工具。
通过研究和应用热平衡方程,我们可以更好地控制和优化热力学系统,提高系统的效率和稳定性。
热力学与热平衡

热力学与热平衡热力学是研究物体热现象与能量转化规律的科学,它与自然界中的热平衡密切相关。
热平衡是指当物体间无能量交换或能量交换达到平衡时,物体间的温度保持恒定的状态。
本文将从热力学的概念、热力学定律以及热平衡的含义和应用等方面进行论述。
一、热力学概述热力学是研究热现象与能量转化规律的一门学科,它研究物质的热力现象、热力平衡以及能量转化等规律。
热力学是一门极其重要的学科,对于了解自然界中的能量变换和守恒至关重要。
二、热力学定律热力学定律是热力学研究中的基础定律,它们对于分析热平衡状态以及能量转化具有重要的指导意义。
热力学定律主要包括以下几条:1. 热力学第一定律:能量守恒定律热力学第一定律表明能量在物体间的转换是按照一定的规律进行的。
能量可以从一个物体转移到另一个物体,但总能量守恒。
这个定律在能量转移与热平衡中起着重要的作用。
2. 热力学第二定律:熵增定律热力学第二定律是热力学中一个重要的定律,也称为熵增定律。
它说明自然界中的某些现象是不可逆的,系统的熵会不断增加。
熵是系统无序程度的度量,热力学第二定律对于研究能量转化的方向和过程具有重要的指导作用。
三、热平衡的含义和应用热平衡是指物体间无能量交换或能量交换达到平衡时,物体间的温度保持恒定的状态。
热平衡是热力学的重要概念,它在科学研究和实际应用中有着广泛的应用。
热平衡的含义:在一个封闭系统中,当物体间无能量交换或能量交换达到平衡时,物体间的温度保持恒定,称为热平衡。
在热平衡状态下,物体内部的能量转换和交换均达到平衡状态。
热平衡的应用:1. 热力学实验设计在进行热力学实验时,热平衡是一个重要的考虑因素。
为了确保实验的准确性和可重复性,需要将系统中各个物体达到热平衡状态,以消除外界干扰和温度梯度对实验结果的影响。
2. 工业生产与能源利用在工业生产和能源利用过程中,热平衡的控制对于提高能量利用效率和降低能量损失具有重要意义。
通过优化热平衡状态,可以减少系统的能量损耗,提高生产效率。
第1章 热力学系统的平衡态及状态方程

对于 mol理想气体
pV RT
V Vmol
理想气体的状态方程
M
:摩尔质量,分子量
2015/3/4
37
p
V
RT
R N Ak B
p n
N A
V
k BT nk BT
气体的分子数密度
N A
V
p nk BT
理想气体的状态方程
R kB 1.380658 1023 J K NA
2015/3/4
稳定平衡
11
理解:
分子被假设为半径为r0的刚性小球 分子的大小:0.1 nm = 10-10 m = 105 fm 分子不接触时,r>>r0,其间无相互作用; 分子接触时,rr0,分子间碰撞为弹性碰撞。 (r ) 12 6 r r
Lennard-Jones Potential Model
p p0 (1 a pT )
(4) 阿伏伽德罗定律 在相同的温度和压强下,摩尔数相同的 各种气体所占的体积相同。
T0 273.16 K, p0 1 atm V0 22.4144 L/mol
2015/3/4 34
标准状况下
3.理想气体的状态方程
由玻意耳定律
pV C(T )
由温度决定的常数
热 学
第1章 热力学系统的平衡态及状态方程 第2章 热平衡态的统计分布律 第3章 近平衡态中的输运过程
2015/3/4
1
绪言
热学:研究物质的热运动、热运动对物质 宏观性质的影响及其与物质的其他运动形 式之间转换规律的物理学分支。
▲ 研究对象: 宏观物体(大量分子原子系统) 或物体系 — 热力学系统 。 ▲ 研究内容:与热现象有关的性质和规律。
热力发电厂动力循环和热经济性分析

热力发电厂动力循环和热经济性分析作者:郭华波朱九喜来源:《城市建设理论研究》2013年第17期【摘要】在我国,伴随着能源的需求日益增长,开发新能源的可能性比较小,提升能源的利用率才是最根本的方式。
就此,通过在热力发电厂中采取先进的动力循环系统,可以很大程度的改善现阶段我国能源使用情况。
【关键词】热力系统;热经济性分析方法;发展方向中图分类号:O414文献标识码:A 文章编号:前言电厂热力系统热经济性分析是电厂节能降耗的理论分析基础,它既是热力系统设计、改造的理论依据,又是热力设备经济运行在线分析、监测的实用技术,其分析和研究具有十分重要的理论和现实意义。
我国科学技术人员在这方面做了大量工作,也取得了很大的成果。
二、热力发电厂动力循环系统热力发电厂动力循环系统是根据能源在燃烧使用时的梯级原理,首先将煤炭和天然气等在锅炉中充分燃烧,第一次产生热能进行发电,再将发电后产生的余热用于发电厂的动力循环装置中,再次发出相应的电能。
使用这种动力循环系统相比以往的发电系统有很大的优势。
主要表现在:能源使用上相比过去大大降低,而且可以将资源再次利用;增加了电力的供应,在原有的基础上电能的输出有了本质的提升;循环系统的建造可以节省发电厂的用地面积,在最小的范围内,完成发电的任务;集中收集尾气,将尾气的热量再次利用,有效地保护了环境,减少了有害气体的排放量;发电的效率和质量有所提高;有利于企业对发电厂的综合治理,在很大程度上减低了事故发生的概率,保障了生产的安全。
三、热力系统热经济性分析方法的概况电厂热力系统热经济性分析方法大都建立在热力学第一和第二定律的基础上,种类较多,见诸文献的有:常规热平衡法、循环函数法、等效热降法、常规热平衡简捷算法、热耗变换系数法、热量品位系统法、质量单元矩阵分析法、火用分析法及人工神经网络等,其中前三种分析方法较为成熟,广泛的应用于实际生产领域。
大体上述各分析方法可以分为以下两类:第一类分析方法是以手工计算为主,主要包括常规热平衡法、等效热降法、循环函数法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 抽气回热循环的排气系数与各个加热单元进水 系数之间的关系:
k gf,1gf,2gf,3
循环函数法
循环函数法
• 循环函数法将任一复杂的热力系统划分为 主循环和若干并列的辅助循环。主循环是 指不考虑任何附加成分(轴封、阀杆漏气、 抽气器用汽等)的回热系统,而将每一附 加成分以及对外供热、补充水、减压减温 器、蒸汽发生器排污、工质泄漏等逐一作 为辅助循环来处理,分别计算主、辅循环 的热经济指标,最后综合成实际的整个热 力循环热经济指标。
第一单元
g e ,1 1 g e ,2 2 g e ,3 3
g d ,1 0 g d ,2 g e ,1 g d ,3 g e ,1 g e ,2
g f ,3 f ,3
其 中 f ,3 1 1 2 3
第二单元
g e ,4
4 f ,3
g e ,5
5 f ,3
加热单元划分原则2
• 混合式加热器或带疏水泵加热器,在没有 其他加热器向其放流疏水的情况下,独自 构成一个加热单元
• 由单独一级加热器组成加热单元,成为一 级单元;由两级加热器组成的加热单元称 为二级单元,以此类推。
第一单元
第二单元 第三单元
单元抽气系数、单元疏水系数、单 元进水系数
当一个加热单元的出水量为1kg时,该 加热单元各级的抽气量称为单元抽气系 数 g e , i ,汇集的疏水量称为单元疏水系数 , 进水g d 量, i 称为单元进水系数 。 g f , i
各级加热器的单元抽气系数为:
ge,4
4 f ,3
4
qh,4
ge,5
5 f ,3
f ,5 f ,3
5
qh,5
ge,4
5
qh,5
单元疏水系数为:
g d ,4 0
g d ,5
g e,4
4
qh,4
• 第二加热单元的进水系数为
gf
,5
qh,5
gd,5(qh,5
qh,55
5)
• 第三加热单元中各级加热 器的热平衡方程:
1
qh,1
gd ,3
g e ,1
ge,2
2
qh,2
ge,1 (1
2
qh,2
)
• 第一加热单元的进水系数为
gf,3 f,3qh,3q ghd,,33(qh3 ,33)
• 第二加热单元中各级加热 器的热平衡方程:
4 qh,4 f ,3 4 5qh,5 4 5 f ,5 5 f ,5 f ,3 ( 4 5 )
抽气回热循环的热效率
t
1q2 q1
1 kqc
h1hfw
q 1 工质从热源吸收的热量
q 2 排向冷源的热量
h 1 新蒸汽焓值
h f w 第w级加热器出口给水焓值 k 抽气回热循环的排气系数
加热单元
• 加热单元是抽气回热循环的基本组成部分。 • 给水回热系统中任何一个汇集疏水的加热器(混
合式加热器或带疏水泵的表面式加热器),连同 向其放流疏水的各级表面式加热器,组成一个加 热单元。
1qh,1 1 2qh,2 12 2 3qh,3 (1 2)3 f ,3 3
各级加热器的单元抽气系数为:
g e,1
1
1 q h ,1
g e,2
2
2 qh,2
g e,1
2 qh,2
g e,3
3
3 3 qh,3
( g e,1
ge,2 )
3 qh,3
单元疏水系数为:
gd ,1 0
gd ,2
g e ,1
f ,6 6 6qh,6 f ,6 f ,5 6
各级加热器的单元抽气系数为:
ge,6
6 f ,5
f ,6 6 qh,6 f ,5
单元疏水系数为:
g d ,6 0
• 第三加热单元的进水系数为
gf,6qh,q 6h ,6 6qh,6q gh d,,6 6( qh6 ,66)
由此可得混合式加热器组成单元的单元进水系数的通用式
gf ,i
qh,i
gd,i(qh,i
qh,i i
i)
单元抽气系数和单元疏水系数的通式为
m 1
ge,mqh m ,mgd,mqh m ,mqh m ,mqh m ,h m ,m 1 1 1 q h m ,m 1 1 g d ,m 1 q h m ,m 1 1 1 q h m ,m 1 1 i 1g e ,i
• 除了进入、离开加热单元的凝给水之外,加热单 元是封闭的,不向单元以外较低压力的加热单元 放流疏水,加热单元汇集的全部疏水与流进单元 的凝给水混合后由水泵送入较高压力的加热单元。
加热单元划分原则1
• 放流疏水的加热器,不论是单独一级还是 几级串联(逐级放流疏水),都不能构成 一个加热单元
• 向凝汽器放流疏水的加热器,不论是单独 一级还是几级串联,连同凝汽器组成一个 加热单元,放流到凝汽器的疏水与汽轮机 排气的凝结水混合在一起由凝水泵送进较 高压力的加热单元。
g d ,4 0 g d ,5 g e ,4
g
f ,5
f ,5 f ,3
其 中 f ,5 1 1 2 3 4 5
g e,6
6 f ,5
g d ,6 0
第三单元
g
f ,6
f ,6 f ,5
其 中 f ,6 1 1 2 3 4 5 6
第一加热单元中各级加热器的 热平衡方程: