石英晶体谐振器和石英晶体振荡器

石英晶体谐振器和石英晶体振荡器
石英晶体谐振器和石英晶体振荡器

石英晶体谐振器

一、术语解释

1、标称频率:晶体技术条件中规定的频率,通常标识在产品外壳上。

2、工作频率:晶体与工作电路共同产生的频率。

3、调整频差:在规定条件下,基准温度(25±2℃)时工作频率相对于标称频率所允许的偏差。

4、温度频差:在规定条件下,在工作温度范围内相对于基准温度

(25±2℃)时工作频率的允许偏差。

5、老化率:在规定条件下,晶体工作频率随时间而允许的相对变化。以年为时间单位衡量时称为年老化率。

6、静电容:等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。

7、负载电容:与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。负载电容系列是:8PF、12PF、15PF、20PF、30PF、50PF、100PF。只要可能就应选推荐值:10PF、20PF、30PF、50PF、100PF。

8、负载谐振频率(fL):在规定条件下,晶体与一负载电容相串联或相并联,其组合阻抗呈现为电阻性时的两个频率中的一个频率。在串联负载电容时,负载谐振频率是两个频率中较低的一个,在并联负载电容时,则是两个频率中较高的一个。

9、动态电阻:串联谐振频率下的等效电阻。用R1表示。

10、负载谐振电阻:在负载谐振频率时呈现的等效电阻。用RL表示。

RL=R1(1+C0/CL)2

11、激励电平:晶体工作时所消耗功率的表征值。激励电平可选值有:2mW、1mW、、、、50μW、20μW、10μW、1μW、μW等

12、基频:在振动模式最低阶次的振动频率。

13、泛音:晶体振动的机械谐波。泛音频率与基频频率之比接近整数倍但不是整数倍,这是它与电气谐波的主要区别。泛音振动有3次泛音,5次泛音,7次泛音,9次泛音等。

二、应用指南

石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、

HC-49U/S?SMD、UM-

1、UM-5及柱状晶体等。

HC-49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。

HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。

HC-49U/S?SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。

柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。

UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。

石英晶体谐振器主要用于频率控制和频率选择电路。本指南有助于确保

不出现性能不满意、成本不合适及可用性不良等现象。

1、振动模式与频率关系:

基频1~35MHz

3次泛音10~75MHz

5次泛音50~150MHz

7次泛音100~200MHz

9次泛音150~250MHz

2、晶体电阻:对于同一频率,当工作在高次泛音振动时其电阻值将比工作在低次振动时大。

"信号源+电平表"功能由网络分析仪完成

Ri、R0:仪器内阻:一般为50Ω

R1--滤波器输入端外接阻抗,阻抗值为匹配阻抗减去50Ω。

R2--滤波器输出端外接阻抗,阻抗值为匹配阻抗减去50Ω。

在滤波器条件的匹配阻抗中有时有并接电容要求,应按上图连接。

3、工作温度范围与温度频差:在提出温度频差时,应考虑设备工作引起的温升容限。当对温度频差要求很高,同时空间和功率都允许的情况下,应考虑恒温工作,恒温晶体振荡器就是为此而设计的。

4、负载电容与频率牵引:在许多应用中,都有用一负载电抗元件来牵引晶体频率的要求,这在锁相环回路及调频应用中非常必要,大多数情况下,这个负载电抗呈容性,当该电容值为CL时,则相对负载谐振频率偏移量为:DL=C1/[2(C0+CL)]。而以CL作为可调元件由DL1调

至DL2时,相对频率牵引为DL1,L2= C1(CL1-CL2)/[2(C0+CL1)(C0+CL2)]。

5、负载电容的选择:晶体工作在基频时,其负载电容的标准值为20PF、

30PF、50PF、100PF。而泛音晶体经常工作在串联谐振,在使用负载

电容的地方,其负载电容值应从下列标准值中选择:8PF、12PF、15PF、20PF、30PF。

6、激励电平的影响:一般来讲,AT切晶体激励电平的增大,其频率变

化是正的。激励电平过高会引起非线性效应,导致可能出现寄生振荡;

严重热频漂;过应力频漂及电阻突变。当激励电平过低时则会造成起振

阻力不易克服、工作不良及指标的不稳定。

7、滤波电路中的应用:应用于滤波电路中时,除通常的规定外,更应

注意其等效电路元件的数值和误差以及寄生响应的位置和幅度,由于滤

波晶体设计的特殊性,所以用户选购时应特别说明。

石英晶体谐振器的振动实质上是一种机械振动实际上石英晶体谐振器可以被一个具有电子转换性能的两端网络测出

这个回路包括L1 C1 同时C0 作为一个石英晶体的绝缘体的电容被并入回路与弹性振动有关的阻抗R1 是在谐振频

率时石英晶体谐振器的谐振阻抗(见图1)

石英晶体作为谐振器在使用时要求其谐振频率在温度发生变化时保持稳定温频特性与切割角有关每个石英晶体具

有结晶轴晶体切割是按其振动模式沿垂直于结晶轴的角度切割的典型的晶体切割和温频特性(见图2)

AT 型石英晶体谐振器的温度特性目前大多用三次曲线表示(见图3) 一个石英晶片在所需要的频率范围已满足的情况下在某一角度被切割以达到要求的工作温度范围当然实际上即使在成功的操作中也会有一些由于切割和磨光精确性不够而造成的角度散布由此操作的精确度需要提高在图4 中可以看到频率公差和生产难度等级的关系

负载电容CL 是组成振荡电路时的必备条件在通常的振荡电路中石英晶体谐振器作为感抗而振荡电路作为一个容抗被使用也就是说当晶体两端均接入谐振回路中振荡电路的负阻抗-R 和电容CL 即被测出这时这一电容称为负载电容负载电容和谐振频率之间的关系不是线性的负载电容小时频率偏差量大当负载电容提高时频率偏差量减小当振荡电路中的负载电容减少时谐振频率发生较大的偏差甚至当电路中发生一个小变化时频率的稳定性

就受到巨大影响负载电容可以是任意值但10-30PF 会更佳Equivalent Circuit of Crystal Oscillation Circuit (晶体振荡电路中的等效电路)

在振荡电路中石英晶体谐振器作为感抗被使用石英晶体谐振器和振荡电路的关系如图5 所示为提高振荡电路中的

起振条件须提高振荡电路中的负阻抗而电路中没有足够的负阻抗偏差则较难起振在振荡电路中负阻抗的值应达

到谐振阻抗的5-10 倍在振荡电路中负载电容的中心值其决定谐振频

率的绝对值和其变化范围谐振频率的良好

调整范围应保持在最佳值

Oscillation Circuit (振荡电路)一个由石英晶体谐振器组成的典型振荡电路如图7 所示

Frequency (MHZ) Cg, Cd (PF) Rd (V) CL (PF)

3-4 27 16

4-5 27 16

5-6 27 16

6-8 18 12

8-12 18 12

12-15 18 12

15-20 15 12

20-25 12 660 10

Spurious Resonances (寄生响应)所有石英谐振器均有寄生在主频率之外的不期望出现的振荡响应他们在等效电路图中表现为附加的以R1 L1

C1 形成的响应回路

寄生响应的阻抗RNW 与主谐振波的阻抗Rr 的比例通常以衰减常数dB 来表示,并被定义为寄生衰减aNW=-20 · lg

对于振荡用晶体,3 至6dB 是完全足够的.对于滤波用晶体,通常的要求是超过40dB. 这一规格要求只有通过特殊设计工艺

并使用数值非常小的动态电容方能达到.

可达到的衰减随着频率的上升和泛音次数的增加而减小. 通常的平面石英晶片谐振器比平凸或双面凸晶片谐振器的

寄生衰减要良好. 在确定寄生响应参数时,应同时确定一个可接受的寄生衰减水平以及寄生频率与主振频率的相对关系.

在AT 切型中,对于平面晶片,"不和谐的响应"只存在于主响应的+40 至+150KHZ 之间,对于平凸或双面凸的晶片,寄生

则在+200 至+400KHZ 之间.

在以上的测量方法中,寄生响应衰减至20 至30dB 时是可以测量的,对于再高一些的衰减.C0 的补偿是必需的.

Drive Level (DLD) (激励功率依赖性)

石英振荡器的机械振动的振幅会随着电流的振幅成正比例地上升. 功率与响应阻抗的关系为Pc=12

qR1, 高激励功率会

导致共振的破坏或蒸镀电极的蒸发,最高允许的功率不应超过10mV. 由于L1 和C1 电抗性的功率振荡,存在Qc=Q x Pc. 若Pc=1mV, Q=, Qc 则相当于100W. 由于低的Pc 功率会

导致振荡幅度的超过,最终导致晶体的频率上移.

随着晶体泛音次数的增加, 对于激励功率的依赖性更加显著.上图显示了典型的结果, 但是精确的预期结果还是要

受到包括晶体设计和加工,机械性晶片参数,电极大小,点胶情况等的影响.

可以看出, 激励功率必须被谨慎地确定,以使晶体在生产中和使用中

保持良好的关系.

当今,一个半导体振荡回路的激励功率一般为,故在生产晶体时也一般按进行.

一个品质良好的晶体可以容易地起振,其频率在自1nW 逐步增加时均能保持稳定.现在, 晶体两端的功率很低的半导

体回路也可以在很低的功率的情况下工作良好.

上图显示了一个对激励功率有或无依赖性的晶体的工作曲线的比较. 晶体存在蒸镀电极不良,晶片表面洁净度不足, 都会存在如图所示的在低功率时出现高阻抗的情况, 这一影响称为

激励功率依赖性(DLD). 通常生产中测试DLD 是用1~10mV 测试后再用1mV 测试, 发生的阻抗变化可作为测试的标准. 很

显然, 在增加测试内容会相当大的提高晶体生产的成本.

利用适当的测试仪器可以很快地进行DLD 极限值的测定,但是只能进行合格/不合格的测试.IEC 草案248 覆盖了根据

(DIV)IEC444-6 制定的激励功率的依赖性的测量方法.

提供具有充分的反馈和良好脉冲的最优化的振荡回路,可以极大的消除振荡的内部问题.

Notes for Crystal Unit Applications(石英晶体谐振器使用的注意点) (1)与HC-49/U 相比,小的石英晶体谐振器(如HC-49U/S,

HC-49USM, UM-1, 49T) 都是低激励功率(100um 或以下). 在使

用之前,须在一个实际的安装电路中检验晶体电流(见图5).

深圳市格利特电子有限公司

TEL:+86- FAX:+86-

(2)须检查电路的负阻抗,负阻抗的认可见图8.

负阻抗应是谐振阻抗的5 倍左右.

(3)当使用C-MOS 振荡器时(见图7)线路图中的Rd 是必要的. 如果Rd 达到要求, 激励功率会保持在规定值内,那么

谐振频率也就稳定了.

(4)在10-30PF 内,可以用Cg 和Cd, 如果Cg 和Cd<10PF 或>30PF, 振荡会被电路现象轻易的影响, 激励功率会升高,

或负阻抗会减小, 最终导致振荡的不稳定.

(5)晶体振荡电路的设计应尽量简短.

(6)电路和线路板间的杂散电容应尽量被减少.

(7)尽量避免晶体振荡电路穿过其他电路.

(8)如果电路用IC 方式,而且IC 制造各不相同,那么频率, 激励功率, 负阻抗须被确认.

(9)泛音振荡电路还需要附加的参考.

摘要:石英晶体振荡器在无线系统等应用领域中提供频率基准,是目前其它类型的振荡器尚不能替代的。本文介绍了TCXO、VCXO和

OCXO等几类晶体振荡器的结构、特点、发展现状及其在移动通信等领域的应用。

关键词:石英晶体振荡器

一、引言

尽管石英晶体振荡器的应用已有几十年的历史,但因其具有频率稳定度高这一特点,故在电子技术领域中一直占有重要的地位。尤其是信息技术(IT)产业的高速发展,更使这种晶体振荡器焕发出勃勃生机。石英晶体振荡器在远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、高速计算机、精密计测仪器及消费类民用电子产品中,作为标准频率源或脉冲信号源,提供频率基准,是目前其它类型的振荡器所不能替代的。小型化、片式化、低噪声化、频率高精度化与高稳定度及高频化,是移动电话和天线寻呼机为代表的便携式产品对石英晶体振荡器提出的要求。事实上石英晶体振荡器在发展过程中,也面临像频率发生器这类电路的潜在威胁和挑战。此类振荡器只有在技术上不断创新,才能延长其寿命周期,在竞争中占有优势。

二、石英晶体振荡器基本结构及工作原理

石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/μp补偿式晶体振荡器(DCXO/MCXO)等几种类型。其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。现以SPXO 为例,简要介绍一下石英晶体振荡器的结构与工作原理。

石英晶体,有天然的也有人造的,是一种重要的压电晶体材料。石英晶体本身并非振荡器,它只有借助于有源激励和无源电抗网络方可产生振荡。SPXO主要是由品质因数(Q)很高的晶体谐振器(即晶体振子)与反馈式振荡电路组成的。石英晶体振子是振荡器中的重要元件,晶体的频率(基频或n次谐波频率)及其温度特性在很大程度上取决于其切割取向。石英晶体谐振器的基本结构、(金属壳)封装及其等效电路如图1所示。

只要在晶体振子板极上施加交变电压,就会使晶片产生机械变形振动,此现象即所谓逆压电效应。当外加电压频率等于晶体谐振器的固有频率时,就会发生压电谐振,从而导致机械变形的振幅突然增大。在图1(c)所示的晶体谐振器的等效电路中,Co为晶片

(a)石英晶体振于的结构

(b)金属壳封装示图(c)等效电路

与金属板之间的静电电容;L、C为压电谐振的等效参量;R为振动磨擦损耗的等效电阻。石英晶体谐振器存在一个串联谐振频率fos (1/2π),同时也存在一个并联谐振频率fop(1/2π)。由于Co C,fop与fos之间之差值很小,并且RωOL,R1/ωOC,所以谐振电路的品质因数Q非常高(可达数百万),从而使石英晶体谐振器组成的振荡器频率稳定度十分高,可达10-12/日。石英晶体振荡器的振荡频率既可近似工作于fos处,也可工作在fop附近,因此石英晶体振荡器可分串联型和并联型两种。用石英晶体谐振器及其等效电路,取代LC振荡器中构成谐振回路的电感(L)和电容(C)元件,则很容易理解晶体振荡器的工作原理。

SPXO的总精度(包括起始精度和随温度、电压及负载产生的变化)可以达到±25ppm。SPXO既无温度补偿也无温度控制措施,其频率温度特性几乎完全由石英晶体振子的频率温度特性所决定。在0~70℃范围内,SPXO的频率稳定度通常为20~1000ppm,SPXO可以用作钟频振荡器。

三、温度补偿晶体振荡器(TCXO)

TCXO是通过附加的温度补偿电路使由周围温度变化产生的振荡频

率变化量削减的一种石英晶体振荡器。

1TCXO的温度补偿方式

目前在TCXO中,对石英晶体振子频率温度漂移的补偿方法主要有直接补偿和间接补偿两种类型:

(1)直接补偿型

直接补偿型TCXO是由热敏电阻和阻容元件组成的温度补偿电路,在振荡器中与石英晶体振子串联而成的。在温度变化时,热敏电阻的阻值和晶体等效串联电容容值相应变化,从而抵消或削减振荡频率的温度漂移。该补偿方式电路简单,成本较低,节省印制电路板(PCB)尺寸和空间,适用于小型和低压小电流场合。但当要求晶体振荡器精度小于±1pmm时,直接补偿方式并不适宜。

(2)间接补偿型

间接补偿型又分模拟式和数字式两种类型。模拟式间接温度补偿是利用热敏电阻等温度传感元件组成温度-电压变换电路,并将该电压施加到一支与晶体振子相串接的变容二极管上,通过晶体振子串联电容量的变化,对晶体振子的非线性频率漂移进行补偿。该补偿方式能实现±的高精度,但在3V以下的低电压情况下受到限制。数字化间接温度补偿是在模拟式补偿电路中的温度—电压变换电路之后再加一

级模/数(A/D)变换器,将模拟量转换成数字量。该法可实现自动温度补偿,使晶体振荡器频率稳定度非常高,但具体的补偿电路比较复杂,成本也较高,只适用于基地站和广播电台等要求高精度化的情况。

发展现状

TCXO在近十几年中得到长足发展,其中在精密TCXO的研究开发与生产方面,日本居领先和主宰地位。在70年代末汽车电话用TCXO 的体积达20以上,目前的主流产品降至,超小型化的TCXO器件体积仅为。在30年中,TCXO的体积缩小了50余倍乃至100倍。日本京陶瓷公司采用回流焊接方法生产的表面贴装TCXO厚度由4mm降至2mm,在振荡启动4ms后即可达到额定振荡幅度的90%。金石(KSS)集团生产的TCXO频率范围为2~80MHz,温度从-10℃到60℃变化时的稳定度为±1ppm或±2ppm;数字式TCXO的频率覆盖范围为~90MHz,频率稳定度为±(-30℃~+85℃)。日本东泽通信机生产的TCO-935/937型片式直接温补型TCXO,频率温度特性(点频)为±1ppm/-20~+70℃,在5V±5%的电源电压下的频率电压特性为±,输出正弦波波形(幅值为1VPP),电流损耗不足2mA,体积1,重量仅为1g。PiezoTechnology生产的X3080型TCXO采用表面贴装和穿孔两种封装,正弦波或逻辑输出,在-55℃~85℃范围内能达到±~±1ppm的精度。国内的产品水平也较高,如北京瑞华欣科技开发有限公司推出的TCXO(32~40MHz)在室温下精度优于±1ppm,第一年的频率老化率为±1ppm,频率(机械)微调≥±3ppm,电源功耗≤120mw。目前高稳定度的TCXO 器件,精度可达±。

高精度、低功耗和小型化,仍然是TCXO的研究课题。在小型化与片式化方面,面临不少困难,其中主要的有两点:一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;二是片式封装后在其回流焊接作业中,由于焊接温度远高于TCXO的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将TCXO的频率变化量控制在±×10-6以下。但是,TCXO的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。

的应用

石英晶体振荡器的发展及其在无线系统中的应用

(a)

(b)

图2移动通信机电路框图及其TCXO外观

由于TCXO具有较高的频率稳定度,而且体积小,在小电流下能够快速启动,其应用领域重点扩展到移动通信系统。

图2(a)为移动通信机射频(RF)电路框图。TCXO作为基准振荡器为发送信道提供频率基准,同时作为接收通道的第一级本机振荡

器;另一只TCXO作为第2级本机振荡器,将其振荡信号输入到第2变频器。目前移动电话要求的频率稳定度为~(-30~+75℃),但出于成本上的考虑,通常选用的规格为~。移动电话用12~20MHz 的TCXO代表性产品之一是VC-TCXO-201C1,采用直接补偿方式,外观如图2(b)所示,由日本金石(KSS)公司生产。

四、电压控制晶体振荡器(VCXO)

电压控制晶体振荡器(VCXO),是通过施加外部

控制电压使振荡频率可变或是可以调制的石英晶体振荡器。在典型的VCXO中,通常是通过调谐电压改变变容二极管的电容量来“牵引”石英晶体振子频率的。VCXO允许频率控制范围比较宽,实际的牵引度范围约为±200ppm甚至更大。

如果要求VCXO的输出频率比石英晶体振子所能实现的频率还要高,可采用倍频方案。扩展调谐范围的另一个方法是将晶体振荡器的输出信号与VCXO的输出信号混频。与单一的振荡器相比,这种外差式的两个振荡器信号调谐范围有明显扩展。

在移动通信基地站中作为高精度基准信号源使用的VCXO代表性产品是日本精工·爱普生公司生产的VG-2320SC。这种采用与IC同样塑封的4引脚器件,内装单独开发的专用IC,器件尺寸为

12.6mm×7.6mm×1.9mm,体积为。其标准频率为12~20MHz,电源电压为±,工作电流不大于2mA,在-20~+75℃范围内的频率

稳定度≤±,频率可变范围是±20~±35ppm,启动振荡时间小于4ms。金石集团生产的VCXO,频率覆盖范围为10~360MHz,频率牵引度从±60ppm到±100ppm。VCXO封装发展趋势是朝SMD方向发展,并且在电源电压方面尽可能采用。日本东洋通信机生产的TCO-947系列片式VCXO,早在90年代中期前就应用于汽车电话系统。该系列VCXO的工作频率点是、13MHz、和,频率温度特性±-30~+75℃,频率电压特性±5V±5%,老化特性±1ppm/年,内部采用

SMD/SMC,并采用激光束和汽相点焊方式封装,高度为4mm。日本富士电气化学公司开发的个人手持电话系统(PHS)等移动通信用VCXO,共有两大类六个系列,为适应SMT要求,全部采用SMD

封装。Saronix的S1318型、Vectron国际公司的J型、Champion 技术公司的K1526型和Fordahi公司的DFVS1-KH/LH等VCXO,均是表面贴装器件,电源电压为或5V,可覆盖的频率范围或最高频率分别为32~120MHz、155MHz、2~40MHz和1-50MHz,牵引度从±25ppm到±150ppm不等。MF电子公司生产的T-VCXO系列产品尺寸为5mm×7mm,曾被业内认为是外形尺寸最小的产品,但这个小型化的记录很快被打破。目前新推出的双频终端机用VCXO 尺寸仅为5.8mm×4.8mm,并且有的内装2只VCXO。Raltron电子公司生产的VX-8000系

图3压控SAW振荡器内部结构

图4OCXO内部结构示图

列表面贴装VCXO,采用引线封装时高度为0.185英寸,采用扁平封装时仅为0.15英寸,工作频率可在1~160MHz内选择,标准频率调整范围为±100ppm,线性度优于±10%,稳定度优于±25ppm/0~70℃,老化率为±2ppm/年,输出负载达10个LSTTL(单价达10美元以上)。

于1998年7月上市的单价2000日元的UCV4系列压控振荡器(VCO),面向全球移动通信系统(GSM)和个人数字蜂窝电话(PDC),可用频率范围为650~1700MHz,电源电压为~,尺寸仅为4.8mm×5.5mm×1.9mm,体积为,重量0.12g。

日本精工·爱普生公司利用ST切型晶片制作的声表面波(SAW)谐振器(Q≌2000),型号为FS-555,用4.8mm×5.2mm×1.5mm陶瓷容器包封,振荡频率范围达250~500MHz,频率初始偏差为±25~100ppm,在-20~60℃范围内的频率稳定度是±27ppm,老化率为±10ppm/年。利用FS-555组成的压控SAW振荡器内部结构如图3所示。欲扩大频率调节范围,可加大串联电感Lo的电感量。由于SAW 谐振器的频率可达2GHz以上,为压控SAW振荡器(VCSO)的高频化提供了一条重要途径。

五、恒温控制晶体振荡器(OCXO)

CXO是利用恒温槽使晶体振荡器或石英晶体振子的温度保持恒定,将由周围温度变化引起的振荡器输出频率变化量削减到最小的晶体振荡器,其内部结构如图4所示。在OCXO中,有的只将石英晶体振子置于恒温槽中,有的是将石英晶体振子和有关重要元器件置于恒温槽中,还有的将石英晶体振子置于内部的恒温槽中,而将振荡电路置于外部的恒温槽中进行温度补偿,实行双重恒温槽控制法。利用比例控制的恒温槽能把晶体的温度稳定度提高到5000倍以上,使振荡器频率稳定度至少保持在1×10-9。OCXO主要用于移动通信基地站、国防、导航、频率计数器、频谱和网络分析仪等设备、仪表中。OCXO是由恒温槽控制电路和振荡器电路构成的。通常人们是利用热敏电阻“电桥”构成的差动串联放大器,来实现温度控制的。具有自动增益控制(AGC)的(C1app)振荡电路,是目前获得振荡频率高稳定度的比较理想的技术方案。

在近几年中,OCXO的技术水平有了很大的提高。日本电波工业公司开发的新器件功耗仅为老产品的1/10。在克服OCXO功耗较大这一缺点方面取得了重大突破。该公司使用应力补偿切割(SCCut)石英晶体振子制作的OCXO,与使用AT切形石英晶体振子的OCXO 比较,具有高得多的频率稳定度和非常低的相位噪声。相位噪声是指信号功率与噪声功率的比率(C/N),是表征频率颤抖的技术指标。在对预期信号既定补偿处,以1Hz带宽为单位来测量相位噪声。Bliley 公司用AT切形晶体制作的NV45A在补偿点10Hz、100Hz、1kHz

和10kHz处的相位噪声分别为100、135、140和145dBc/Hz,而用SC切割晶体制成的同样OCXO,则在所有补偿点上的噪声性能都优于5dBc/Hz。

金石集团生产的OCXO,频率范围为5~120MHz,在-10~+60℃的温度范围内,频率稳定度有±、±和±,老化指标为±年和±年。Oak 频率控制公司的4895型~45MHz双恒温箱控制OCXO,温度稳定度仅为(2×10-10)/0~75℃;4895型OCXO的尺寸是

50.8mm×50.8mm×38.3mm,老化率为±年。如果体积缩小一点,在性能指标上则会有所牺牲。Oak公司生产的10~25MHz表面贴装OCXO,频率稳定度为±0~70℃。PiezoCrystal的275型用于全球定位系统(GPS)的OCXO采用SC切形石英晶体振子,在0~75℃范围内总频偏小于±,最大老化率为±年。Vectron国际公司的CO-760型OCXO,尺寸为25.4mm见方,高12.7mm,在OCXO产品中,体积算是较小的。随着移动通信产品的迅猛增长,对OCXO的市场需求量会逐年增加。OCXO的发展方向是顺应高频化、高频率稳定度和低相位噪声的要求,但在尺寸上的缩小余地非常有限。

日本金石、始建于1948年的NibonDempaKogyo公司和美国摩托罗位、韩国的Sunny-Emi等公司,都是生产石英晶体器件较大的厂商。国内生产石英晶体振荡器等元器件的单位有原电子工业部第十研究所、北京707厂、国营第875厂和一些合资企业等。我国对人造石英晶体及其元器件的研究开发起步较早,目前拥有的生产能力也较

石英晶体谐振器和石英晶体振荡器

石英晶体谐振器 一、术语解释 1、标称频率:晶体技术条件中规定的频率,通常标识在产品外壳上。 2、工作频率:晶体与工作电路共同产生的频率。 3、调整频差:在规定条件下,基准温度(25±2℃)时工作频率相对于标称频率所允许的偏差。 4、温度频差:在规定条件下,在工作温度范围内相对于基准温度 (25±2℃)时工作频率的允许偏差。 5、老化率:在规定条件下,晶体工作频率随时间而允许的相对变化。以年为时间单位衡量时称为年老化率。 6、静电容:等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。 7、负载电容:与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。负载电容系列是:8PF、12PF、15PF、20PF、30PF、50PF、100PF。只要可能就应选推荐值:10PF、20PF、30PF、50PF、100PF。 8、负载谐振频率(fL):在规定条件下,晶体与一负载电容相串联或相并联,其组合阻抗呈现为电阻性时的两个频率中的一个频率。在串联负载电容时,负载谐振频率是两个频率中较低的一个,在并联负载电容时,则是两个频率中较高的一个。 9、动态电阻:串联谐振频率下的等效电阻。用R1表示。 10、负载谐振电阻:在负载谐振频率时呈现的等效电阻。用RL表示。

RL=R1(1+C0/CL)2 11、激励电平:晶体工作时所消耗功率的表征值。激励电平可选值有:2mW、1mW、、、、50μW、20μW、10μW、1μW、μW等 12、基频:在振动模式最低阶次的振动频率。 13、泛音:晶体振动的机械谐波。泛音频率与基频频率之比接近整数倍但不是整数倍,这是它与电气谐波的主要区别。泛音振动有3次泛音,5次泛音,7次泛音,9次泛音等。 二、应用指南 石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、 HC-49U/S?SMD、UM- 1、UM-5及柱状晶体等。 HC-49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。 HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。 HC-49U/S?SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。 柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。 UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。 石英晶体谐振器主要用于频率控制和频率选择电路。本指南有助于确保

高频石英晶体振荡器仿真报告

燕山大学石英晶体振荡器设计报告 题目: 专业:电子信息工程 姓名:李飞虎 指导教师:李英伟 院系站点:信息科学与工程学院 2014年11 月17 日 高频石英晶体振荡器仿真报告

1.振荡器电路属于一种信号发生器类型,即表现为没有外加信号的情况下能自动生成具有一定频率、一定波形、一定振幅的周期性交变振荡信号的电子线路。振荡器起振时是将电路自身噪声或电源跳变中频谱很广的信号进行放大选频。此时振荡器的输出幅值是不断增长的,随着振幅的增大,放大器逐渐由放大区进入饱和区或者截止区,其增益逐渐下降,当放大器增益下降而导致环路增益下降到1时,振幅的增长过程将停止,振荡器达到平衡,进入等幅振荡状态。振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。 2,串联晶体振荡器 在串联型晶体振荡器中,晶体接在振荡器要求低阻抗的两点之间,通常接在反馈电路中。图1-1和图1-2显示出了一串联型振荡器的实际路线和等效电路。可以看出,如果将石英晶体短路,该电路即为电容反馈的振荡器。电路的实际工作原理为:当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路满足相位条件和振幅条件,故能正常工作;当回路的谐振频率距串联谐振频率较远时,晶体阻抗增大,是反馈减弱,从而使电路不能满足振幅条件,电路不能正常工作。串联型晶体振荡器只能适应高

次泛音工作,这是由于晶体只起到控制频率的作用,对回路没有影响,只要电路能正常工作,输出幅度就不受晶体控制。 图1-1 图1-2 设计参数在仿真图上,首先进行静态分析,根据仿真,各元件参数符合要求。对于振荡器,当该电路接为串联型振荡器时,晶体起到选频短路线的作用,(与三端电容振荡器相同)输出频率应为3MHZ. L1,C1,C2组成谐振回路,参数符合要求,即f0=3MHZ。 3.并联晶体振荡器 并联振荡器分为c-b型和b-e型。前者相对稳定。所以我设计的是c-b型。 参数分析与前者类似。交流参数确定时,并联振荡电路中晶振接在谐振回

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

实验四 石英晶体振荡器

实验四石英晶体振荡器 一、实验目的 1、熟悉石英晶体振荡器的基本工作原理; 2、掌握静态工作点对晶体振荡器工作的影响。 3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的 方法。 二、实验原理 1、电路与工作原理 一种晶体振荡器的交流通路如图4-1所示。若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。图中,C4是微调电容,用来微调振荡频率 C5是耦合电容,R5是负载电阻。很显然,R5越小,负载越重,输出振荡幅度将越小。 图4-1 晶体振荡器交流通路 2、实验电路

如图4-2所示。1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。1W01用以调整振荡器的静态工作点(主要影响起振条件)。1C05为输出耦合电容。1Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。 三、实验内容 1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。 2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。 四、实验步骤 (一)模块上电 将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。 (二)测量晶体振荡器的振荡频率 把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。 (三)观察静态工作点变化对振荡器工作的影响 把示波器接到1P01端,观察顺时针调整电位器1W01是晶体振荡器振荡频

石英晶体谐振器应用

石英晶体谐振器应用 石英晶体谐振器的应用利用电信号频率等于石英晶片(或棒)固有频率时晶片因压电效应而产生谐振现象的原理制成的器件。它由石英晶片(或棒)、电极、支架和外壳等构成,在稳频、选频和精密计时等方面有突出的优点,是晶体振荡器和窄带滤波器等的关键元件。 石英晶体谐振器根据其外型结构不同可分为49U、49U/S、49U/S、1、5及柱状晶体等。 49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。 49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。 49U/S·SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。 柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。 UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。 石英晶体谐振器应用于频率控制和频率选择电路。本指南有助于确保不出现性能不满意、成本不合适及可用性不良等现象。 1、振动模式与频率关系:

基频1~35MHz 3次泛音10~75MHz 5次泛音50~150MHz 7次泛音100~200MHz 9次泛音150~250MHz 2、晶体电阻:对于同一频率,当工作在高次泛音振动时其电阻值将比工作在低次振动时大。 "信号源+电平表"功能由网络分析仪完成 Ri、R0:仪器内阻:一般为50Ω R1--滤波器输入端外接阻抗,阻抗值为匹配阻抗减去50Ω。 R2--滤波器输出端外接阻抗,阻抗值为匹配阻抗减去50Ω。 在滤波器条件的匹配阻抗中有时有并接电容要求,应按上图连接。 3、工作温度范围与温度频差:在提出温度频差时,应考虑设备工作引起的温升容限。当对温度频差要求很高,同时空间和功率都允许的情况下,应考虑恒温工作,恒温晶体振荡器就是为此而设计的。 4、负载电容与频率牵引:在许多应用中,都有用一负载电抗元件来牵引晶体频率的要求,这在锁相环回路及调频应用中非常必要,大多数情况下,这个负

石英晶体振荡器设计报告

石英晶体振荡器设计报告 张炳炎 09微电03 目录 1 设计要求 2 设计方案论证 a.电路形式的选取 b.参数的设计、估算 c. 设计内容的实现 3 电路的工作原理 4 晶体振荡器的特点 5 电路设计制作过程中遇到的主要 问题及解决方法、心得和建议 6 参考文献 7 附录

1设计要求 (1)晶体振荡器的工作频率在100MHZ以下 (2)振荡器工作可调,反馈元件可更换 (3)具有三组不同的负载阻抗 (4)电源电压为12V (5)在10K负载上输出目测不失真电压波形Vopp>=4V,振荡器频率读出5为有效数字 2设计方案论证 a.电路形式的选取: 串联型石英晶体振荡器 串联型石英晶体振荡器交流等效电路 石英晶体的物理和化学性能都十分稳定,等效谐振回路具有很高的标准性,Q值很高,对频率变化具有极灵敏的补偿能力具有.利用石英晶体作为串联谐振元件,在谐振时阻抗接近于零,此时正反馈最强,满足振荡条件.因此,电路的振荡频率和频率稳定度都取决于石英晶体的串联谐振频率.

b.参数的设计、估算 选用石英晶体(6M)作为串联谐振元件,提高振荡器的标准性,三极管为高频中常用的小功率管9018,作为放大电路的主要器件,选用阻值较大的可调电阻Rp(50k)来调节电路的静态工作点,使输出幅值达到最大而不失真,在LC 组成的谐振回路加可变电容(100p)调节谐振频率。三组负载分别为1k、10k、110k,用来比较对振荡器频率及幅值的影响。 c. 设计内容的实现 ○1输入电源电压12V,测试电路的静态工作点, 三极管 Vbe>,Vc>Vb>Ve,三极管工作在放大区。 ○2输出端接上示波器,观察到正弦波,通过改电位器、可变电容使输出的幅值达到最大。 ○3改变负载值,测量不同负载下电路输出的频率及幅值大小。可知,负载几乎对频率没有影响,因为输出的频 率主要由石英晶体决定,而幅值随着负载的减小而略 微下降,当空载时幅值最大。

晶体振荡原理

石英晶体、晶振介绍 文摘2010-10-25 23:36:39 阅读50 评论0 字号:大中小订阅 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器、手机等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。可以说只要需要稳定时钟的地方,就必需要有晶体振荡器。一:认识晶体、晶振 常见晶体振荡器有两类,一类是无源晶体,也叫无源晶振,另一类是有源晶振,也叫钟振。 无源晶体外形如下图: (HC-49S 插脚) (HC-49S/SMD 贴片) 无源晶体以以上两种封装的晶体最为常用,广泛应用于普通设备上,尤其是嵌入式设备,若对体积大小有要求,可以选择更小的贴片封装,如下图: (XG5032 贴片)(XS3225 贴片1,3脚有效,2,4脚为空脚) 当前消费类电子如手机,MP4,笔记本等,XS3225封装最为常用。具体关于晶体的封装及参数信息,请参考国内最大的高端晶体晶振厂家:浙江省东晶电子股份有限公司网站提供的信息:https://www.360docs.net/doc/038977093.html,/product.aspx/23 无源晶体说穿了就是封装了一下晶体,在晶体两面镀上电极引出两根线即可,那么有源晶振就是在无源晶体的基础上加了一个晶体振

荡电路,,比如采用一个74HC04或者54HC04之类的非门与晶体勾通三点式电容振荡电路,所以它具有电源,地,时钟输出三个脚,有些还会增加一个脚,就是晶振工作控制脚,当不需要工作的时候,可以关掉晶振降低功耗。如下图: (OS3225 与XS3225外形一样,只是脚位定义不同1:EN控制脚,2:GND地,3:OUT信号输出,4:VCC电源,一般为3.3V 或者5V)。 晶振内部振荡电路等效图如下: 非门5404的输出脚2就是信号输出脚。 二:晶体振荡电路原理分析(本篇由东晶电子网上独家代理创易电子提供技术文档https://www.360docs.net/doc/038977093.html,) 我们以最常见得MCU振荡电路为例,参考电路如下:

石英晶体振荡器电路设计

辽宁工业大学 高频电子线路课程设计(论文)题目:石英晶体振荡器电路设计 院(系):电子与信息工程学院 专业班级: 学号: 学生姓名: 指导教师: 起止时间: 2014.6.16-2014.6.27

课程设计(论文)任务及评语 院(系):电子与信息工程学院 教研室: 电子信息工程 注:成绩:平时20% 论文质量50% 答辩30% 以百分制计算 学 号 学生姓名 专业班级 课程设计(论文)题目 石英晶体振荡器电路设计 课 程设计(论文)任务 要求:1.设计一个石英晶体振荡器 2.能够观察输入输出波形。 3.观察振荡频率。 参数:振荡频率10000HZ 左右。 设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4 .组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 指导教师评语及成绩 平时成绩(20%): 论文成绩(50%): 答辩成绩(30%): 总成绩: 学生签字: 年 月 日

目录 第1章绪论 (1) 1.1石英晶体振荡器 (1) 1.2设计要求 (1) 第2章石英晶体振荡器设计电路 (2) 2.1石英晶体振荡器总体设计方案 (2) 2.2具体电路设计 (2) 2.2.1串联型晶体振荡器 (2) 2.2.2并联型晶体振荡器 (4) 2.2.3输出缓冲级设计 (5) 2.3元件参数的计算 (5) 2.4Multisim软件仿真 (6) 2.4.1串联型振荡器输出测试 (6) 2.4.2并联型振荡器输出测试 (7) 第3章课程设计总结 (9) 参考文献 (10) 附录Ⅰ总体电路图 (11) 附录Ⅱ元器件清单 (12)

石英晶体谐振器基本知识介绍

石英晶体谐振器基本知识介绍 1、石英晶体谐振器简介 石英晶体谐振器是一种用于稳定频率和选择频率的重要电子元件。在有线通讯、无线通讯、广播电视、卫星通讯、电子测量仪器、微机处理、数字仪表、钟表等各种军用和民用产品中得到了日益广泛的应用。我公司的石英晶体谐振器不仅广泛应用于国家重点军事及航天工程中,也为“神舟”系列飞船及其运载火箭进行了多次成功配套。 2、石英晶体谐振器名词术语 1) 标称频率:晶体元件技术规范中规定的频率,通常标识在产品外壳上,它与晶体元件的实际工作频率有一定的差值。 2) 工作频率:晶体元件与其电路一起产生的振荡频率。 3) 调整频差:在规定条件下,基准温度(25℃±2℃)时工作频率相对于标称频率所允许的最大偏差。 4) 温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃±2℃)时工作频率的允许最大偏差。 5) 温度总频差:在规定条件下,在工作温度范围内相对于标称频率的允许最大偏差。 6) 等效电阻(ESR,Rr,R1):又称谐振电阻。在规定条件下,石英晶体谐振器不串联负载电容在谐振频率时的电阻。 7) 负载谐振电阻(RL):在规定条件下,石英晶体谐振器和负载电容串联后在谐振频率时的电阻。 8) 静电容(C0):等效电路中与串联臂并接的电容,也叫并电容。 9) 负载电容(C L):从石英晶体谐振器插脚两端向振荡电路方向看进去的全部有效电容为该振荡器加给石英晶体谐振器的负载电容。负载电容系列是:8pF、12pF、15pF、20pF、30pF、50pF、100pF。负载电容与石英谐振器一起决定振荡器的工作频率,通过调整负载电容,一般可以将振荡器的工作频率调到标称值。产品说明书中规定的负载电容既是一个测试条件,也是一个使用条件,这个值可以根据具体情况作适当调整,负载电容太大时杂散电容影响减少,但微调率下降;负载电容小时、微调率增加,但杂散电容影响增加,负载电阻增加,甚至起振困难。负载电容标为∞即为串联谐振。10) 频率牵引灵敏度(Ts):为相对频率牵引范围对负载电容的变化率,即负载电容变化1pF时频率的相对变化值,它反映改变负载电容时引起频率变化的灵敏度,也称频率可调性。 11) 激励电平:为石英晶体谐振器工作时消耗的有效功率。常用标准有0.1、0.3、0.5、1、2mW,产品说明书中每种产品规定的激励电平值是一个测试条件,也是一个使用条件,实际使用中激励电平可以适当调整。激励强,容易起振,但频率老化加大。激励太强甚至使石英片破裂,降低激励,频率老化可以改善,但激励太弱时频率瞬间变差,甚至不易起振。

石英谐振器的原理与应用

目录 一、石英谐振器概述 二、石英谐振器的工作原理 2、1石英晶体材料 2、2 石英晶体的压电效应 2、3 石英晶体的切型 2、4 石英片的基本振动模式(常见) 2、5 各种切型的频率温度特性 2、6 石英谐振器的组成和特性 2、7 石英谐振器的稳频条件及应用须知 2、8 石英谐振器的常用电参数的符号和意义 2.9 石英谐振器的常用测量方法 2.10 石英晶片的制造流程 2.11 石英晶体谐振器的制造流程 三、选择石英谐振器应考虑的问题 3、1 频率的选择 3、2 使用环境条件的考虑 3、3 根据用途合理选用石英谐振器 3、4 正确选择负载电容 3、5 激励电平的选择和控制 3、6 使用石英谐振器应注意的事项 四、石英振荡电路的应用 4、1 石英振荡电路的组成 4、2 振荡电路的Cg/Cd的选择要点和相关外围元件的注意事项4、3 根据选定的Cg/Cd 值计算XTAL的负载电容CL值。4、4 Rf 值选取 4、5 Rd的选取 4、6 其它注意事项 五、石英产品的性赖性试验 六、失效原因分析 七、今后发展方向

一、概述: 压电效应是一八八零年由法国物理学家居里兄弟(皮埃尔居里和杰克居里)发现的。早期一战利用石英的压力效应制成强力超声波辐射器。二战时期利用石英晶体具有稳定的物理和化学性能,制成的元器件在稳频方面比其它元件显出突出的优越性,而广泛使用于通讯领域。 石英谐振器的稳频特性也不断提高,二战时可在10-6/周,19世纪50年代初10-8 /周,19世纪50年代末已可达10-9/周~10-10/周。 随着通信发展和制造技术的发展,石英谐振器的频率范围也逐渐向上发展从100KHZ ~10MHZ ,以后发展到数百MHz ,3RD 发展到1G 以上,5th 发展到2GHz 以上。 石英谐振器的使用范围也从军事领域发展民用各使用频标或时标领域如:电子表,电子玩具,彩电,收发讯机,家用电器,PC 机等各领域。 石英谐振器的产品体积也不断地缩小,从传统的大尺寸发展到J1,49U ,49S ;直到近年来发展SMD 表面贴装,尺寸进一步缩小,从7050,6035,5032,发展到4025,3225,2520,2016,已能够适应安装于更小型、微型的产品中去。 二、石英谐振器的工作原理: 2.1 石英晶体材料 石英是人造的二氧化硅(SiO 2 )结晶体,因其形态晶莹透明如水,所以也称“水晶”。由 于天然水晶矿藏稀少,且常见的疵病较多,如:裂痕,气泡,包裹体,蓝针,双晶等。而制造石英谐振器的材料必须保证内部没有缺陷,否则会严重影响石英谐振器的性能。在人工合成水晶工业生产成功后,大部分石英谐振器都用人造水晶制造,从而降低成本,满足电子发展的需要。 (A ) 石英晶体的晶面和轴向 一个理想的石英晶体的外形,中间是个六面棱柱体,二端为两个六面棱锥体。石英晶体有六个柱面(M 面),六个大柱面(R 面),六个小棱面(r 面),六个X 面和六个S 面,总共有30个晶面。 石英晶体分左旋和右旋, 互称镜面对称,左右旋石英在物理上也呈镜象对称关系。 晶体按其结构对称,可分为七大晶系和32种对称类型(也称晶群),其中有十二类因其对称程度太高而无压电效应,另外二十类具有压电效应。石英晶体属于三角晶系32点群。 石英晶体的轴向,按其物理特性把X 轴称为电轴,因为该方向具有压电效应;把Y 轴称为机械轴,因为在Y 轴方向只产生形变而无压电效应;把Z 轴称为光轴,因为光线沿Z 轴方向不产生双折射现象。 (B ) 石英晶体的物理化学特性 石英晶体是各向异性结构晶体,轴向不同,物理化学性质也不同。石英晶体的主要物理特性,当温度为20℃时,它的密度为2.65g/cm 3,一级密度温度系数为-36.4×10-6/℃,硬度 是

石英晶体振荡器的主要参数

石英晶体振荡器的主要参数 标称频率fo:存规定的负载电容下,晶振元件的振荡频率即为标称频率矗。标称频率足晶体技术条件中规定的频率,通常标识在产品外壳上。需要注意的是,晶体外壳所标注的频率,既不是串联谐振频率也不足并联谐振频率,而足在外接负载电容时测定的频率,数值介于串联谐振频率与并联谐振频率之间。所以即使两个晶体外壳所标注的频率是一样的,其实际频率也会有些小的偏差(1.艺引起的离散性)。 常用普通晶振标称频率有48kHz、500kHz、503.5kHz、l -40.50MHz等,对于特殊要求的晶振频率可达到IOOOMHz以上。 负载电容:品振元件相当于电感,组成振荡电路时需配接外部电容,此电容目U负载电容。负载电容是与晶体一起决定负载谐振频率f的有效外界电容,通常用CL表示。设计电路时必须按产品手册巾规定的CL值,才能使振荡频率符合晶振的fL。在应用晶体时,负载电容(C。)的值是卣接由厂家所提供的,无需冉去计算。常见的负载电容为8pF、12pF、15pF、20pF、30pF、50pF、lOOpF。』I要可能就应选lOpF、20pF、30pF、50pF、lOOpF 这样的推荐值。 负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英品体振荡器有两个谐振频率:一个是串联谐振品振的低负载电容晶振:另一个为并联谐振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求贞载电容一致,不能冒然互换,否则会造成电器工作不止常。 调整频差:在规定条件下,基准温度(25℃±2℃)时工作频率相对于标称频率所允许的偏若。 温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃t2℃)时工作频率的允许偏差。 老化率:在规定条件下,晶体T作频率随时间向允许的相对变化。以年为时间单位衡量时称为年老化率。

石英晶体振荡器

石英晶体振荡器 石英晶体振荡器是一种用于频率稳定和选择频率的电子器件,它的主要作用是提供频率基准,由于它具有高稳定的物理化学性能、极小的弹性震动损耗以及频率稳定度高的特点,因此被广泛用于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、高速计算机、精密计测仪器及消费类民用电子产品中,是目前其它类型的振荡器所不能替代的. 一、石英晶体谐振器的结构、振荡原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。下图是一种金属外壳封装的石英晶体结构示意图。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象

十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 二、石英晶体振荡器的等效电路与谐振频率 1、等效电路 石英晶体谐振器的等效电路如下图所示。当晶体不振动时,可把它看成一个平板电容器称为静电电容Co,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L1来等效。一般L1的值为几十mH 到几百mH。晶片的弹性可用电容C1来等效,C1的值很小,一般只有0.2fF~100fF(1PF=1000fF)。晶片振动时因摩擦而造成的损耗用R1来等效,它的数值约为10-100Ω。由于晶片的等效电感很大,而C1很小,R1也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 其中 C o :静电容,包括晶体两电极之间的电容和引线及基座带来的电容,它的单位是PF。 L 1 :等效动电感,即通常说的动态电感; C 1 :等效动电容,即通常说的动态电容。晶振的动态电容由晶体的切割型式,大小尺寸决定。 R 1 :等效电阻,一般叫谐振电阻或者动态电阻。 总之:等效电路由动态参数L 1、C 1、 R 1 和静电容C 组成。这些参数之间都是有联系 的,一个参数变化时可能会引起其他参数变化。而这些等效电路的参数值跟晶体的切型、振动模式、工作频率及制造商实施的具体设计方案关系极大。 2、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即: (1)当L1、C1、R1支路发生串联谐振时,它的等效阻抗最小(等于R1)。 串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性;

石英晶体振荡器

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 一、石英晶体振荡器的基本原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。下图是一种金属外壳封装的石英晶体结构示意图。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 3、符号和等效电路 石英晶体谐振器的符号和等效电路如图2所示。当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R 也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 4、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。 根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线如图2e所示。可见当频率低于串联谐振频率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd 极窄的范围内,石英晶体呈感性。 二、石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。目前发展中的还有数字补偿式晶体损振荡(DCXO)等。 普通晶体振荡器(SPXO)可产生10^(-5)~10^(-4)量级的频率精度,标准频率1—100MHZ,频率稳定度是±100ppm。SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。封装尺寸范围从21×14×6mm及5×3.2×1.5mm。

石英晶体谐振器参数

石英晶体谐振器的振动实质上是一种机械振动。实际上,石英晶体谐振器可以被一个具有电子转换性能的两端网络测出。这个回路包括L1、C1,同时C0作为一个石英晶体的绝缘体的电容被并入回路,与弹性振动有关的阻抗R1是在谐振频率时石英晶体谐振器的谐振阻抗。(见图1) 石英晶体作为谐振器在使用时,要求其谐振频率在温度发生变化时保持稳定。温频特性与切割角有关,每个石英晶体具有结晶轴,晶体切割是按其振动模式沿垂直于结晶轴的角度切割的。典型的晶体切割和温频特性。(见图2)

AT型石英晶体谐振器的温度特性目前大多用三次曲线表示(见图3)。一个石英晶片在所需要的频率范围已满足的情况下在某一角度被切割,以达到要求的工作温度范围。当然,实际上,即使在成功的操作中,也会有一些由于切割和磨光精确性不够而造成的角度散布,由此,操作的精确度需要提高。在图4中可以看到频率公差和生产难度等级的关系。 所有石英谐振器均有寄生(在主频率之外的不期望出现的)振荡响应。他们在等效电路图中表现为附加的以R1、L1、C1形成的响应回路。 寄生响应的阻抗R NW与主谐振波的阻抗Rr的比例通常以衰减常数dB来表示,并被定义为寄

生衰减a NW=-20 · lg 对于振荡用晶体,3至6dB是完全足够的.对于滤波用晶体,通常的要求是超过40dB. 这一规格要求只有通过特殊设计工艺并使用数值非常小的动态电容方能达到. 可达到的衰减随着频率的上升和泛音次数的增加而减小. 通常的平面石英晶片谐振器比平凸或双面凸晶片谐振器的寄生衰减要良好. 在确定寄生响应参数时,应同时确定一个可接受的寄生衰减水平以及寄生频率与主振频率的相对关系. 在AT切型中,对于平面晶片,"不和谐的响应"只存在于主响应的+40至+150KHZ之间,对于平凸或双面凸的晶片,寄生则在+200至+400KHZ之间. 在以上的测量方法中,寄生响应衰减至20至30dB时是可以测量的,对于再高一些的衰减.C0的补偿是必需的. 石英振荡器的机械振动的振幅会随着电流的振幅成正比例地上升. 功率与响应阻抗的关系为Pc=12q R1, 高激励功率会导致共振的破坏或蒸镀电极的蒸发,最高允许的功率不应超过10mV. 由于L1和C1电抗性的功率振荡,存在Q c=Q x P c. 若P c=1mV, Q=100.000, Q c则相当于100W. 由于低的Pc功率会导致振荡幅度的超过,最终导致晶体的频率上移. 随着晶体泛音次数的增加, 对于激励功率的依赖性更加显著.上图显示了典型的结果, 但是精确的预期结果还是要受到包括晶体设计和加工,机械性晶片参数,电极大小,点胶情况等的影响. 可以看出, 激励功率必须被谨慎地确定,以使晶体在生产中和使用中保持良好的关系. 当今,一个半导体振荡回路的激励功率一般为0.1mV,故在生产晶体时也一般按0.1mV进行. 一个品质良好的晶体可以容易地起振,其频率在自1nW逐步增加时均能保持稳定.现在, 晶体两端的功率很低的半导体回路也可以在很低的功率的情况下工作良好. 上图显示了一个对激励功率有或无依赖性的晶体的工作曲线的比较. 晶体存在蒸镀电极不良,晶片表面洁净度不足, 都会存在如图所示的在低功率时出现高阻抗的情况, 这一影响称为激励功率依赖性(DLD). 通常生产中测试DLD是用1~10mV测试后再用1mV 测试, 发生的阻抗变化可作为测试的标准. 很显然, 在增加测试内容会相当大的提高晶体生产的成本. 利用适当的测试仪器可以很快地进行DLD极限值的测定,但是只能进行合格/不合格的测试.IEC草案248覆盖了根

晶体振荡器工作原理

晶体振荡器工作原理 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 石英晶体振荡器的基本原理 石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。 压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 符号和等效电路 当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线。可见当频率低于串联谐振频率fs 或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd极窄的范围内,石英晶体呈感性。 石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式

石英晶体谐振器频率的主要影响因素

石英晶体谐振器频率的主要影响因素 石英晶体谐振器是一种用于稳定频率和选择频率的重要电子元件.具有频率稳定度高、Q 值高、成本低的特点,广泛应用于时间频率基准和为时序逻辑电路提供同步脉冲.随着电子信息技术及产业的飞速发展,尤其是数字电子技术的广泛应用,石英晶体元器件的市场需求量快速增长,同时对其性能的要求向高频率和高精度.本文帝国科技给大家分析那些影响石英晶体谐振器频率稳定性的主要因素: 一、温度 环境温度是影响石英晶体谐振器频率变化的最主要因素,石英晶体谐振器谐振频率会随温度的改变而变化,这种性质称其频率温度特性:石英晶体谐振器的频率-温度特性除与其本身物理特性有关外,还与其切割角度(即切型)和加工流程有一定关系.恒温型和温度补偿型晶体振荡器这两类高稳定度晶体振荡器正是基于频率温度特性研制而成的. 二、老化 老化效应是石英晶体固有的物理现象,其谐振频率随时间推移缓慢减小或增加的变化过程,称为石英晶体的老化.AT切石英晶体谐振器的老化主要源于下述方面: 1、谐振器内部石英晶格的不完善导致晶体在工作时其结构发生变化,此是长期效应:另气体的分解和吸收导致极板质量的改变或迁移,影响会持续数周或数年; 2、由于温度梯度效应而产生的老化; 3、因压力释放效应而产生老化,此为温度梯度效应过程的函数,一般持续数月; 三、其它因素 除温度和老化两大主要因素之外,下述因素给谐振器的谐振频率也会带来一定的影响. 激励电平的变化:研究表明,激励电平对晶体振荡器谐振频率有明显的影响;激励电流的过大或者过小,都将影响石英晶体的老化性能和谐振频率的长期或者短期稳定度,从而激励电平的是否稳定直接影响到石英晶体谐振器的频率稳定度. 除此以外;负载的变化、电源电压的波动以及核辐射等也都会导致石英晶体谐振器的谐振频率发生变动.当石英晶体谐振器用于某些精度要求特别高的场合时,这些因素给谐振器谐振频率造成的影响也是不可忽视的.

石英晶体谐振器射频特性及模型推导

石英晶体谐振器射频特性及模型推导 石英晶体谐振器(英文:quartz crystal unit或quartz crystal resonator,常简写成Xtal),简称石英晶体或晶振,是利用石英晶体(又称水晶)的压电效应,用来产生高精度振荡频率的一种电子元件,属于被动元件。该元件主要由石英晶片、基座、外壳、银胶、银等成分组成。根据引线状况可分为直插(有引线)与表面贴装(无引线)两种类型。现在常见的主要封装型号有HC-49U、HC-49/S、UM-1、UM-4、UM-5与SMD。 历史 压电效应是由雅克·居里与皮埃尔·居里于1880年发现。保罗·朗之万在第一次世界大战期间首先探讨了石英谐振器在声纳上的应用。第一个由晶体控制的电子式振荡器,则是在1917年使用罗谢尔盐所作成,并于1918年由贝尔电话实验室的Alexander M. Nicholson取得专利[1],虽然与同时申请专利的Walter Guyton Cady 曾有过争议[2]。 Cady 于1921年制作了第一个石英晶体振荡器[3]。对于石英晶体振荡器的其他早期创新有贡献的还有皮尔斯(G. W. Pierce)与 Louis Essen。 工作原理 晶体是指其中的原子、分子、或离子以规则、重复的模式朝各方向延伸的一种固体。 晶体与几乎所有的弹性物质都具有自然共振频率,透过适当的传感器可加以利用。例如钢铁具有良好弹性、音速快,在石英晶体大量应用以前,钢铁被用作机械式滤波器(英语:Mechanical filter)。共振频率取决于晶体的尺寸、形状、弹性、与物质内的音速。高频用的晶体通常是切成简单的形状,如方形片状。典型的低频用晶体则常切成音叉形,例如手表用的那种。如不需要太高的精确度,则也可以使用陶瓷谐振器(英语:Ceramic Resonator)取代石英晶体谐振器。运用石英晶体上的电极对一颗被适当切割并安置的石英晶体施以电场时,晶体会产生变形。这就是压电效应。当外加电场移除时,石英晶体会恢复原状并发出电场,因而在电极上产生电压。这样的特性造成石英晶体在电路中的行为,类似于某种电感器、电容器、与电阻器所组合成的RLC电路。组合中的电感电容谐振频率则反映了石英晶体的实体共振频率。 石英晶体的优点是在温度变化时,影响震荡频率的弹性系数与尺寸变化轻微,因而在频率特性上表现稳定。共振的特性还取决于振动模式与石英的切割角度(相对于晶轴而言),目前常用的是 AT 切割,它的振荡是厚度剪切(thickness shear)振荡模式。此外,在需要高精密度与稳定性的严格场合,石英晶体会放置于恒温箱(Crystal oven)与吸振容器内,以防止外部温度与震动的干扰。

基于石英晶体的正弦波振荡器

晶体振荡器的基本知识 下图是石英晶体谐振器的等效电路。图中C0是晶体作为电介质的静电容,其数值一般为几个皮法到几十皮法。Lq、Cq、rq是对应于机械共振经压电转换而呈现的电参数。rq是机械摩擦和空气阻尼引起的损耗。由图3-1可以看出,晶体振荡器是一串并联的振荡回路,其串联谐振频率fq和并联谐振频率f0分别为 f q=1/2πLqCq,f0= f q Co 1 Cq/ 图1 晶体振荡器的等效电路 当W<Wq或W> Wo时,晶体谐振器显容性;当W在Wq和Wo之间,晶体谐振器等效为一电感,而且为一数值巨大的非线性电感。由于Lq很大,即使在Wq处其电抗变化率也很大。其电抗特性曲线如图所示。实际应用中晶体工作于Wq~Wo之间的频率,因而呈现感性。 图2 晶体的电抗特性曲线 设计内容及要求 一设计目的及主要任务 1设计目的 掌握高频电子电路的基本设计能力及基本调试能力,并在此基础上设计并联变换的晶体正弦波振荡器。 2 并联型晶体振荡器 图 3 c-b型并联晶体振荡器电路 图 4 皮尔斯原理电路图 5 交流等效电路 C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上,C1、C2、C3串联组成石英晶体谐振器的负载电容C L上,其值为 C L=C1C2C3/(C1C2+C2C3+C1C3) C q/ (C0+C L)<<1

二详细设计步骤 1、电路的选择 晶体振荡电路中,与一般LC振荡器的振荡原理相同,只是把晶体置于反馈网络的振荡电路之中,作为一感性元件,与其他回路元件一起按照三端电路的基本准则组成三端振荡器。根据实际常用的两种类型,电感三点式和电容三点式。由于石英晶体存在感性和容性之分,且在感性容性之间有一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。该电抗曲线对频率有极大的变化速度,亦即石英晶体在这频率范围内具有极陡峭的相频特性曲线。所以它具有很高的稳频能力,或者说具有很高的电感补偿能力。因此选用c-b型皮尔斯电路进行制作。 图 6 工作电路 2、选择晶体管和石英晶体 根据设计要求, =300MHz;≥40,取选择高频管2N3904型晶体管作为振荡管。查手册其参数如下: T =60;NPN型通用;额压:20V;Icm=20mA;Po= ;≈ / =5 MHz。 T 石英谐振器可选用HC-49S系列,其性能参数为: 标称频率。=6 MHz;工作温度:-40℃~+70℃;25℃时频率偏差:士3×10-6士30×10-6;串联谐振电阻:60 ;负载电容:C L=10PF,激励功率:~。 3、元器件参数的计算 a)、确定三极管静态工作点 正确的静态工作点是振荡器能够正常工作的关键因素,静态工作点主要影响晶体管的工作状态,若静态工作点的设置不当则晶体管无法进行正常的放大,振荡器在没有对反馈信号进行放大时是无法工作的。振荡器主电路的静态工作点主要由R b1、R b2、R e、R决定,将电感短路,电容断路,得到直流通路如图所示。 图7 直流通路等效电路 高频振荡器的工作点要合适,若偏低、偏高都会使振荡波形产生严重失真,甚至停振。取I CQ (.1) I b2=10 I BQ=,则取: Ω,以便工作点的调整。 b1b2 b)、交流参数的确定 对于振荡器,当电路接为并联型振荡器时,晶体起到等效电感的作用,输出频率应为6MHZ,则由晶振参数知负载电容C L=10pF,即C2,C3,C1串联后的总电容为10 pF 根据负载电容的定义,C L=1/[(1/C1,2)+1/C3] 由反馈系数F=C1/C2和C1,2=C1C2/C1-C2两式联立解,并取F=1/2 则C1=51pF,C2=100pF,C3=30pF

相关文档
最新文档