焊接残余应力与变形(II)
焊接技术培训中焊接变形与残余应力的数值模拟

焊接技术培训中焊接变形与残余应力的数值模拟焊接是一种常见的金属连接方法,广泛应用于各个行业。
然而,在焊接过程中,产生的焊接变形和残余应力往往会对工件的性能和质量造成一定影响。
因此,在焊接技术培训中,对焊接变形和残余应力进行数值模拟分析具有重要意义。
本文将探讨焊接技术培训中焊接变形与残余应力的数值模拟方法,并分析其应用前景。
一、焊接变形数值模拟焊接变形是指在焊接过程中,由于热引起的热应力和相变引起的力学应力而引起的构件变形现象。
为了准确预测焊接变形的情况,可以采用有限元数值模拟方法。
有限元数值模拟方法是一种将实际工程问题离散化为有限个简化的小单元进行计算的方法。
在焊接变形数值模拟中,首先需要建立焊接过程的热力耦合模型。
通过考虑焊接热源的热输入、热传导以及材料的相变特性等因素,可以准确地模拟焊接过程中的温度场变化。
然后,根据热力耦合模型,引入材料的本构关系和相变模型,可以计算得到焊接过程中的变形情况。
在数值模拟中,可以通过调整热源功率、焊缝几何形状以及材料的初始状态等参数,来对焊接变形进行优化。
此外,在数值模拟中还可以分析焊接变形对工件性能的影响,以指导焊接技术的改进和优化。
二、残余应力数值模拟焊接过程中产生的残余应力是指焊接完成后,由于焊缝区域的热胀冷缩差异而引起的应力。
残余应力的存在会降低工件的疲劳寿命和强度,甚至引发裂纹等问题。
因此,对焊接过程中的残余应力进行数值模拟分析是十分重要的。
在焊接残余应力数值模拟中,一般采用后处理方法来分析残余应力的分布和变化。
通过将焊接过程中的温度场和应力场输入到数值模拟软件中,可以得到焊接残余应力的分布情况。
同时,可以通过调整焊接参数和材料性质等因素,来研究焊接残余应力的变化规律。
在实际工程应用中,焊接残余应力数值模拟可以用于评估焊接工艺的可行性,为焊接工艺参数的选择提供依据。
此外,还可以通过优化焊接过程来减小残余应力的产生,提高工件的使用寿命和安全性。
三、数值模拟应用前景焊接技术培训中焊接变形与残余应力的数值模拟方法,在实际应用中具有广阔的前景。
浅析钢结构焊接变形与残余应力控制方法

浅析钢结构焊接变形与残余应力控制方法摘要:在国内建筑工程中,钢结构作为建筑结构主体结构框架,具有绿色环保、空间大和强度高等特点,在网架结构和塔桅建筑、超高层建筑以及大型工业厂房中等建筑工程中得到广泛应用。
随着建筑结构超高层化和大跨度化,高性能钢材应用增多,分析和讨论建筑钢结构焊接生产效率,对于提高建筑工程质量和效率具有重要意义。
关键词:钢结构; 焊接变形; 残余应力; 控制方法引言在钢结构工程的焊接施工中难免会出现焊接应力和焊接变形的情况,这对于焊接接头的强度以及焊接结构尺寸的精度都会产生一定的影响,严重的话会导致构件报废。
此外,钢结构在日后使用中的承载力也与焊接应力与焊接变形有着很大的关联。
因此相关施工人员要切实把握好焊接技术,加强对焊接重难点的技术控制,采取有效措施提高钢结构的质量。
1焊接变形和残余应力(1)焊接变形是焊接过程中不可避免的,施焊电弧高温引起钢构件在焊接处发生缩短、弯曲及角度等变化,即焊接变形。
焊接变形可分为两种形式,一种是因高温导致的变形,该变形在温度冷却后可恢复,为瞬时变形;第二种是因焊接作业产生的永久性变形。
焊接变形对结构安装的精确度影响较大,产生焊接变形极易导致结构无法安装。
(2)残余应力产生于钢构件的焊接及热影响区域,其对钢构件最直接的影响是降低构件的承载能力和增大开裂的可能性,钢构件的开裂大多发生在焊接区域。
在焊接区域,当构件的残余应力和荷载共同作用效果超过焊缝的承载力时,焊缝处就开始产生裂纹,并逐渐扩大成裂缝,构件也就易从裂缝处产生断裂,而此时构件承受的荷载并未达到其极限承载力,却因焊缝的断裂导致整个构件的失效。
2造成导致钢结构发生焊接变形的原因(1)焊接工艺。
即使是材料相同、设备相同,不同工人在焊接过程中,由于焊接工艺会造成焊接变形的出现。
比如焊接过程中,预热时应该结合当地的实际温度、光照亮度等多种因素进行确定等。
由此可见,钢结构的焊接变形受到焊接工艺的影响比较大。
焊接残余应力与变形

焊接残余应力和焊接变形焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。
1、纵向焊接应力焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。
不均匀的温度场产生不均匀的膨胀。
温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。
焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。
在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。
焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力2、横向焊接应力横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。
二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。
当焊缝冷却时,后焊焊缝的收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。
焊缝的横向应力是上述两种应力合成的结果。
3、厚度方向的焊接应力在厚钢板的焊接连接中,焊缝需要多层施焊。
因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。
在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。
3.4.2 焊接应力和变形对结构工作性能的影响一、焊接应力的影响1、对结构静力强度的影响对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。
设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。
在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。
焊接残余应力与变形的成因及控制措施研究

獬 辫
张 军 元 郭 睿 涵
( 武威职 业学院 7 3 3 0 0 0 )
焊接残 余应力 与变形 的成 因及控制 措施研 究
摘 要: 在焊接 过程中 , 由于焊件 的局部加热 , 同时 随着热 源的移动 , 构件上各 处的温度是变化 的, 导致焊 件受热不均匀 、 焊缝金属 的收缩、 金相组 织 的变化及焊件 刚性拘 束等众多因素的影响, 致使影响焊接应力与变形 的因素, 使得焊后焊件 中存 在焊接残余应力和变 形。本文探 讨焊件残余应力 与变 形
区外 , 防止 应力叠加 , 影 响结构 的承载 能力。 四是采用 局部 降低 刚度的方 法, 使焊缝 能比较 自由的收缩 。 五是采用合理 的接头形式 , 尽量避免采用搭 接接头 。 ( 2 ) 工艺措施 。 一是合 理选择 装配顺 序和焊接顺序 , 以调整焊接残余应 力 的分布 。二是缩小焊接区与结构整体之间的温差。三是 降低接头的拘束 度 。四是 采 取 锤 击 法 减 小 焊 接 残 余 应 力 。除此 之 外 , 还 可 以采 取 热 处 理 法 、 机械拉伸法 、 温差拉伸法及振动法等 , 来消除焊接残余应力。 总之 , 在焊接 时, 一定要 了解结构 的焊接工 艺, 合 理的控制焊接残余应 力与变形 , 不断地提高焊接产 品质量和 生产率 。一 参 考文 献 :
件 刚性拘 束等因素。焊接残余应力不仅会直接导致各种 焊接残余变形 , 影 响到焊接结构 的形状尺寸精 度, 而且 还会降低焊接 结构 的抗 拉强度、 疲 劳 强 度、 刚度及 受压件的稳 定性等 , 严重 影响焊接 结构的力学性 能和安全 使 用 性能。而焊接 残余 变形与残余应力 同时残存于焊接结构中。焊接残余变 形会造成构件 形状和尺 寸的变化 , 还 会影响后续机 械加工 , 严 重的可 能会 影响其结构的承载能力 。由此 , 探讨焊接残余 应力与变形 的成 因及控制 措 施, 从而保证焊接产品的质量和生产率 的提高 。
35焊接残余应力和残余变形

§3.5 焊接残余应力和残余变形热变形和热应力——焊接构件在施焊过程中,由于受到不均匀的电弧高温作用,在焊件中将产生变形和应力(有约束)。
残余应力和残余变形——冷却后,焊件产生反向的应力和变形。
一.成因及特点1.基本假设1) 假定焊件由纤维组成,但各纤维之间相互约束(变形时保持平面)。
2) 当温度t≤500℃时,弹性模量E =const.t>600℃时,E →0;500℃<t <600℃时,E 按线性变化。
1. 残余应力1) 纵向焊接应力2) 横向焊接应力3) 厚度方向的焊接应力2. 成因:不均匀分布的温度场,同时存在局部高温,加上纤维间的相互约束,便产生了焊接残余应力。
由于约束程度不同,一部分残余应力会以残余变形的形式释放出来。
3. 特点:自相平衡力系。
二.焊接残余应力对构件工作的影响1.对强度无影响2.降低构件的刚度3.降低构件的稳定承载力由于刚度降低,有效截面减小,过早地进入弹塑性区,弹性模量降低,所以稳定承载力降低(因为22cr /πλσE =)fy 0.3yyyf yyf 0.54.降低构件的疲劳强度残余应力的存在,加快了疲劳裂纹的开展速度(双向或三向拉力场),因此,疲劳强度降低。
5.加剧低温冷脆材料在低温下呈脆性,焊接残余应力的同号拉力场会阻碍材料塑性的发展,加重了脆性因素。
三.焊接残余变形对构件工作的影响1.构件不平整,安装困难,且产生附加应力;2.变轴心受压构件为偏心受压构件。
四.保证焊接质量及减小焊接残余应力的措施1.设计方面(1)采用细长,不采用短粗的焊缝;(2)对称布置焊缝,减小变形;(3)不等高连接加不大于1:2.5(直接承受动力荷载且需验算疲劳的结构不大于1:4)的斜坡,减小应力集中;≤1:2.5≤1:2.5≤1:2.5≤1:2.5(4)尽量防止锐角连接;(5)焊缝不宜过于集中,不要出现三向交叉焊缝;(6)注意施焊方便,以保证焊接质量。
2.制造方面(1)焊件预热法;(2)锤击法;减小残余应力(3)退火法;(4)反变形法;(5)合理施焊次序;减小残余变形(6)局部加热法。
焊接残余变形和残余应力

一、现象和及其产生的原因
1、现象 焊件局部弯曲或翘曲。
a)
b)
c)
d)
e)
2、应力分布 焊接残余应力是一组自平衡应力。
3、产生原因 不均匀降温。
二、对结构的影响
1、降低结构刚度 压应力存在降低结构刚度、降低屈曲应力。
2、导致脆性破坏 发生三向应力。
3、发生焊接残余变形 引起附加内力,降低屈曲强度。
③ 式(3-37)、(3-38)说明
NVb
nv
d 2
4
f
b v
(3-37)
N
b c
d
t
f
b c
(3-38)
a) 螺栓承载力是Nvb和Ncb中之最小值,Nbmin 。 b) ∑t 取 a+b+c和d+e 之间的最小值。
N/3
a
N/3
b
N/3
c
d
N/2
e
N/2
c ) Nvb和Ncb计算式中的受剪面数nv ,上图中nv =4。
3.6 普通螺栓连接
一、普通螺栓连接的构造
1、螺栓的规格
(1)普通螺栓的形式为六角 头型。其代号用M和公称直 径数表示。如M16、M20等。
(2)常用螺栓直径为 d=16,20,24mm
(3)分为A级、B级和C级三种
(3)A级和B级为精制螺栓, 螺杆、螺孔加工精度高,制 作安装复杂,螺栓等级为8.8 级。很少用,已被高强度螺 栓代替。
N1xT N1Nx
2
N1yT N1yV
2
N
b m
in
例题3.10 试验算一受斜向拉力设计值F=120kN作用 的C级普通螺栓练的的强度。螺栓M20,钢材Q235。
浅谈钢结构焊接残余应力及焊接变形控制

浅谈钢结构焊接残余应力及焊接变形控制钢结构焊接在安装过程中较为常见,焊接连接在具有其独特的优点的同时,也存在着其不可避免的缺陷,即焊接残余应力及焊接变形。
本文就施工现场的工艺钢结构及炉壳焊接,结合连续退火炉结构安装工程实际,浅谈焊接的残余应力及焊接变形的原因,以及现场施工过程中如何控制及解决办法。
标签:钢结构;焊接;应力;变形;控制措施【Abstract】Steel structure welding is more common in the installation process,welding connection has its unique advantages,but at the same time it also has the inevitable defects,namely welding residual stress and deformation. This article is showing the reasons of residual stress of welding and welding deformation ,and also give methods to control and solve the problem what is said above in the process of the construction site ,according to the scene of the process steel structure and the furnace shell welding,combined with the engineering practice of the furnace structure installation of Continuous Annealing Line.【Key Words】steel structure,welding,stress,deformation ,control measures引言:焊接连接是钢结构主要的连接方法,其优点是构造简单、不削弱构件截面、节约钢材、加工方便、易于采用自动化操作、密封性好、刚度大等特性。
焊接残余应力与变形

焊接残余应力和焊接变形焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。
1、纵向焊接应力焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。
不均匀的温度场产生不均匀的膨胀。
温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。
焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。
在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。
焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力2、横向焊接应力横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。
二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。
当焊缝冷却时,后焊焊缝的收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。
焊缝的横向应力是上述两种应力合成的结果。
3、厚度方向的焊接应力在厚钢板的焊接连接中,焊缝需要多层施焊。
因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。
在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。
3.4.2 焊接应力和变形对结构工作性能的影响一、焊接应力的影响1、对结构静力强度的影响对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。
设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。
在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Distributions - sqrt(rt)
表面长尺度残余应力分布-sqrt(rt)
Longitudinal versus Transverse Residual Stresses
纵向与横向残余应力对比
Longitudinal component 纵向部分
various parameters:
横向部分:对各种变量非常敏感
Joint geometry and restraint
几何接头和约束
Welding procedures
焊接过程
Plate thicknesses and number of
passes
平板厚度和焊缝数量
In-Complete Measurements - A Carbon SteelPipe Girth
补焊后残余应力分布
A Thermal Stretching Technique for Mitigating Repair
Weld Residual Stresses
控制补焊后的残余应力的热拉伸技术
Residual Stress Effects on Strain Distributions under
图例—平板对接焊缝
Yield magnitude tension within or near weld
焊缝内或附近产生巨大拉力
Dying out rapidly and become compression
away from weld
在远离焊缝处迅速衰减且变成压力
Transverse component: very sensitive to
理解特殊应用需求的重要性
Cutting accuracy control
精确控制切割
Long range residual stress is of interest
注意大范围内的残余应力
Best described at the midsurface
中面的描述最有效
Plate element model is effective
Weld in an Earlier MPC Report
非完整测量—在早期MPC报告中的碳钢管环焊
Carbon Steel Lap Fillet Joint – An Example with Full Field Measurements
碳钢搭接角焊接头—全域测量的例子
Example: A VPPA Butt Weld in Al-Li Alloy(2195) Panel
欧洲TRAINSS的模拟焊接和测量数据
Prediction versus Measurements – TRAINSS
Mock Up Weld
预pass temp. = 25C ( assumed)
层间 温度=25C(假设)
Inter-pass temp. = 200C
壳单元模型是有效的
Challenges for measurements
检测的难题
Surface effects
表面效应
Through-thickness effects
厚度影响
Steel Mill B
钢厂B
Repair Welds
补焊
Highly restrained conditions
Tension: Initial Weld v.s. Repair
在拉力作用下残余应力对应变分布的影响初始焊接与补焊对比
预测
实测
Effects of Repair Weld Planishing on Strain
Distributions - Tension Loading
补焊碾压对应变分布的影响-拉伸载荷
Transverse Component in Repair Weld Strongly
Depends on Repair Dimensions
补焊的横向分量主要取决于修复尺寸
强约束条件
Strong 3D residual stress features
强3D残余应力特征
Often requiring a 3D model
通常需要3D模型
A Boiler Shell Temper Bead Repair Weld
炉壳回火焊道补焊
Measurements and Model Validations Transverse Residual Stresses 测量和模型验证-横向残余应力
3D残余应力特征和OD的发展
3D Residual Stress Characteristics in a Multi-Pass Girth Weld
多道环焊中3D残余应力的特征
Example: SS Pipe Girth Weld
举例:SS管环形焊
Understanding the Need in a Specific Application is Important
举例:铝锂合金板(2195)上的VPPA对接焊缝
Full Field Residual Stress Distributions are Required for Appropriate Interpretation
全域残余应力分布的适当解释
3D Residual Stress Features and Development -OD
Through Wall Distributions at Weld Center
焊缝中心处沿厚度方向的应力分布
Across the Weld at Weld Center
穿过焊缝中心的应力分布
Mock Up Weld and Measurement Data from European TRAINSS Project
层间 温度=200C
A Butt Joint in a Thin Sheet – FE Simulation Using
a Special Shell Model (2-Pass Weld)
薄板对接-使用特殊壳模型的有限元模拟(2道焊)
Residual Stress Distributions After Weld Repair