弗兰克赫兹实验数据处理
弗兰克-赫兹实验实验报告

课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。
位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。
对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。
同时,可以读出峰谷的横坐标值。
峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。
弗兰克赫兹实验 实验报告

电流/10 A 8 7.9 8.1 10 12 16 20 24 26 28 26 26 25 24 22 19 14 12 11.6 13.8 15 24 29 26 22 17 13.8 14 15 17.6 22 25 26 24 22.4 21 16
-8
较高激发电位测量
U/V 8.9 9.5 9.8 9.9 10 10.2 10.3 10.6 10.9 11.3 11.5 11.9 12 12.3 12.5 12.8 12.9 13.2 13.4 13.6 13.8 14 14.2 14.6 15.8
I/10 A 2 4 10 11 14 18 19 19 19.2 18.4 15 12 12.4 13.6 12.1 10.6 8.2 6.2 8 4 4 4.2 4 3.8 5
-8
电压/V 20.3 20.5 20.8 21 21.3 21.5 21.8 22.1 22.3 22.6 22.8 23 23.3 23.6 23.9 24.1 24.3 24.6 25.1 25.6 26.1 26.6 27 27.2 27.5 28 28.2 28.5 28.9 29.1 29.3 29.5 29.7 29.9 30.3 30.7 31.1 31.4 31.5 31.8
电流/10 A 3.2 5.9 9.8 11 12.2 16 21 20.2 20 17 12.1 9.6 5.9 1.2 1 0.5 0.4 1.4 5 11.7 22 26 29 29 22 14 10 6 2.1 1.9 1.5 1.9 2.8 4.4 11 16 24 26 25.7 26
-8
表 3 汞原子较高能级部分数据点 n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 电压/V 11.49274 12.52169 17.99697 18.97993 19.68123 20.71018 21.41148 22.11277 22.39444 24.17067 25.80895 26.74592 27.21154 27.77487 28.617 30.06558 等效电压/V 4.9 5.92895 11.40423 12.38719 13.08849 14.11744 14.81874 15.52003 15.8017 17.57793 19.21621 20.15318 20.6188 21.18213 22.02426 23.47284 电流/10nA 18.01903 19.96102 19.27623 13.61533 8.01061 7.15374 6.06511 7.89472 9.21162 14.92871 18.99178 11.04123 14.01566 12.12635 9.09573 17.04628 可能组合 f c+f c+d 2c 3f f+d+c f+d+b 3c -
弗兰克赫兹实验数据处理

数据处理(1) 计算第一激发电势和相对误差IA--UG2K 曲线数据2.8V2.6V3.0V电流/uA 电压/V 电流/uA 电压/V 电流/uA电压/V 峰1 32.6 124.9 32.6 35.7 33.0 251.4 谷1 36.9 71.4 37.1 19.6 36.9 151.5 峰2 43.0 308.7 43.2 91.0 43.4 657.7 谷2 48.1 103.5 48.3 26.8 48.0 220.5 峰3 54.6 560.3 54.6 169.5 54.7 1258.4 谷3 59.5 157.0 59.7 42.8 59.4 369.4 峰4 66.4 851.2 66.2 258.7 66.5 2004.2 谷471.5289.171.580.371.1742.70.0500.01000.01500.02000.030.035.040.045.050.055.060.065.070.075.02.8V 2.6V3.0VI A ~ U G2K 曲线I A /μAU G2K /V用逐差法求氩原子第一激发电势U=(66.4+54.6-43-32.6)/4=11.35V相对误差E R=(11.35-11.5)/11.5*100%=1.30% 误差在允许范围内通过比较有:①灯丝电压的变化对极板电流有比较大的影响;②在其他因素相同的情况下,灯丝电压越大,极板电流越大。
分析:灯丝电压变大导致灯丝的实际功率变大,灯丝的温度升高,在其他的因素相同的情况下,单位时间到达极板的电子数增加,从而极板电流增大。
(2)改变灯丝电压,研究其对实验的影响。
反向拒斥电压U G2A =8.5 V,,分别测量拒斥电压U=10.5 V.,U=6.5 V,情况下的实验数据。
IA--UG2K曲线数据8.5V 10.5V 6.5V电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 33.5 61.5 32.2 141.8 谷1 36.9 71.4 38.3 25.8 36.0 98.9 峰2 43.0 308.7 44.1 189.9 42.8 338.0 谷2 48.1 103.5 49.2 29.3 47.0 163.2 峰3 54.6 560.3 55.5 388.0 53.8 607.5 谷3 59.5 157.0 60.9 43.6 58.6 263.1 峰4 66.4 851.2 67.1 625.3 65.6 914.4 谷4 71.5 289.1 72.5 113.2 70.4 448.70.0100.0200.0300.0400.0500.0600.0700.0800.0900.01000.030.035.040.045.050.055.060.065.070.075.08.5V 10.5V 6.5V通过比较有:① 反向拒斥电压的变化对极板电流有一定的影响;② 在其他因素相同的情况下,拒斥电压增大时,极板电流减小。
弗兰克赫兹实验

2-2弗兰克—赫兹实验【实验简介】1913年丹麦物理学家玻尔在卢瑟福原子核模型的基础上,结合普朗克量子理论,提出了原子能级的概念并建立了原子模型理论,成功地解释了原子的稳定性和原子的线状光谱理论。
该理论指出,原子处于稳定状态时不辐射能量,当原子从高能态(能量E m)向低能态(能量E n)跃迁时才辐射。
辐射能量满足∆E = E m-E n 对于外界提供的能量,只有满足原子跃迁到高能级的能级差,原子才吸收并跃迁,否则不吸收。
1914年德国物理学家弗兰克和赫兹用慢电子穿过汞蒸气的实验,测定了汞原子的第一激发电位,从而证明了原子分立能态的存在。
后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔理论。
弗兰克—赫兹实验的结果为玻尔理论提供了直接证据。
玻尔因其原子模型理论获1922年诺贝尔物理学奖,而弗兰克与赫兹的实验也于1925年获诺贝尔物理学奖。
【实验目的】1、测量氩原子的第一激发电位;证实原子能级的存在,加深对原子结构的了解;2、了解在微观世界中,电子与原子的碰撞和能量交换过程几率及影响因素。
【预习思考题】1.理解电子与原子碰撞能量交换过程的微观图像。
2.熟悉玻尔理论物理模型。
【实验仪器】DH4507智能型弗兰克-赫兹实验仪,示波器DH4507智能型弗兰克-赫兹实验仪由四组程控直流稳压电源、微电流检测器和单片机控制器组成。
有手动和自动两种工作模式。
DH4507智能型实验仪可手动逐点测绘处爬坡曲线,也可在慢速自动扫描情况下在示波器上观察爬坡曲线。
DH4507智能型弗兰克-赫兹实验仪主要技术指标:①弗兰克-赫兹管:氩气;4电极;谱峰(谷)数量≥6;管子寿命≥3000小时;②四路程控电源(四位显示):灯丝电压 DC 0~5.9V ,1A ,最小步进电压值:0.1V ,最大步进电压值1V ;第一栅压:DC 0~7.9V ,10mA ,最小步进电压值0.1V ,最大步进电压值1V ;拒斥电压:DC 0~9.9V ,10mA ,最小步进电压值0.1V ,最大步进电压值1V ;第二栅压:DC 0~85.3V ,5mA ,最小步进电压值0.2V ,最大步进电压值10V 。
弗兰克—赫兹实验

弗兰克—赫兹实验弗兰克—赫兹实验信息安全07级姓名:马文博学号:PB07210411 实验名称:弗兰克—赫兹实验实验目的:利用电子碰撞原子的方法,观察并测量汞的激发电位和电离电位,从而证明原子能级的存在。
实验原理:1、电子与气态Hg 原子的碰撞为了实现原子从低能级到高能级的跃迁,可以使具有一定能量的电子和原子发生碰撞.这是最容易实现Franck-Hertz 实验的方法.若与之发生碰撞的电子是在电势V 的加速下,速度从零增加到v,则当电子的能量满足:221mveV E E E n m ==-=?时,电子将全部的能量交换给原子.由于两个能级之间的能量差是有确定的值,对应的电压就有确定的大小,当原子吸收电子的能量从基态跃迁到第一激发态时,相就的电压值称为原子的第一激发电位.实验中就是测量汞原子的第一电位差.2、Hg 原子能级下图是Hg 的谱图.其中61S 0(0ev )为基态,63P 1(4.9ev )为激发态,63P 0(4.7ev )、63P 2(5.47ev )为亚稳态.实验中用F-H管来测量汞原子的第一激发电位.原理图如下:F-H管内充汞,灯丝加热K使其发射电子,G1控制通过G1的电子数目,G2加速电子,G1、G2空间较大,提供足够的碰撞概率,A 接收电子,AG2加一扼止电压,使失去动能的电子不能到达,形成电流。
实验曲线:4.碰撞过程及能量交换此过程在G1G2空间发生,在加速场的作用下,电子获得动能,与原子的弹性碰撞中,电子总能量损失较小,在不断的加速场作用下,电子的能量逐渐增大,就有可能与原子发生非弹性碰撞,使原子激发到高能态,电子失去相对应的能量,使其不能到达A从而不能形成电流。
V GK2= 4.7V ,使原子激发到63P 0,此态较稳定,不容易再产生跃迁,故不容易观察到这个吸收。
V GK2= 4.9V ,使原子激发到63P 1,引起共振吸收,电子速度几乎为零,电子不能到达A ,形成第一个峰。
弗兰克赫兹实验实验报告

弗兰克赫兹实验实验报告弗兰克赫兹实验实验报告引言:弗兰克赫兹实验是物理学领域的一项重要实验,它的发现为我们理解原子结构和量子力学奠定了基础。
本实验通过对气体放电管中电子的运动进行观察和测量,揭示了原子的离散能级和电子的波粒二象性。
本报告将详细介绍弗兰克赫兹实验的原理、实验装置、实验过程以及实验结果的分析与讨论。
一、实验原理弗兰克赫兹实验基于气体放电现象,利用电子在气体原子中的碰撞过程来研究原子的能级结构。
当气体放电管中加入一定电压时,电子会加速运动并与气体原子碰撞,从而使原子电离或激发。
当电子经过加速后,其动能增加,能够克服原子的束缚力,使原子电离。
而当电子能量不够大时,电子与原子的碰撞只能使原子激发到较低能级。
通过测量电子在气体放电管中的运动特性,可以得到气体原子的能级结构。
二、实验装置弗兰克赫兹实验的装置主要包括气体放电管、电源、测量仪器等。
气体放电管是实验的关键部分,它通常由两个电极构成,其中一个是阴极,用于发射电子;另一个是阳极,用于收集电子。
气体放电管内充满了待测气体,如氩气、氖气等。
电源提供所需的电压,通常为几百伏至几千伏。
测量仪器包括电压表、电流表、光电子倍增管等,用于测量电压、电流以及光电子的能量。
三、实验过程1. 装置调试:首先进行装置的调试,确保电源和测量仪器正常工作。
调整电源的电压和电流,使其达到实验要求。
2. 观察放电现象:打开电源,观察气体放电管中的放电现象。
当电压升高时,放电管中会出现不同颜色的光芒,这是因为气体原子的激发和电离过程。
3. 测量电流:通过连接电流表,测量电流的大小。
随着电压的增加,电流也会相应增加。
当电压达到一定值时,电流会急剧增加,这是因为电子能量足够大,可以克服原子的束缚力,使原子电离。
4. 测量电压:使用电压表测量电源的输出电压,记录下不同电压下的电流值。
5. 测量光电子能量:通过连接光电子倍增管,测量光电子的能量。
光电子是由气体原子激发或电离后发射出来的电子,其能量可通过光电子倍增管进行测量。
弗兰克赫兹实验报告

一、实验名称:弗兰克-赫兹实验二、实验目的:(1) 用实验的方法测定汞或者氩原子的第一激发电位,从而证明原子分立态的存在; (2) 练习使用微机控制的实验数据采集系统。
三、实验原理:根据波尔的原子模型理论, 原子中一定轨道上的电子具有一定的能量。
当原子吸收或者放出电 磁辐射时或者当原子与其他粒子发生碰撞时, 原子状态会发生改变。
改变过程中原子的能量变 化不是任意的,而是受到波尔理论的两个基本假设的制约,即定态假设和频率定则。
由波尔理论可知, 处于基态的原子发生状态改变时, 其所需能量不能小于该原子从基态跃迁 到第一受激态时所需的能量, 这个能量称作临界能量。
当电子与原子碰撞时, 如果电子能量 小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。
这时,电 子赋予原子以临界能量,剩余能量仍由电子保留。
本仪器采用 1 只充氩气的四极管,其工作原理图如下:当灯丝(H)点燃后,阴极(K)被加热,阴极上的氧化层即有电子逾出(发射电子),为消 除空间电荷对阴极散射电子的影响, 要在第一栅极 (G ) 、阴极之间加之一电压 U (一栅、 阴电压) 。
如果此时在第二栅极 (G 2 ) 、阴极间也加之一电压 U G2K (二栅、 阴电压), 发射的电子在电场的作用下将被加速而取得越来越大的能量。
起始阶段,由于较低,电子的能量较小,即使在运动过程中与电子相碰撞(为弹性碰撞)只 有弱小的能量交换。
这样,穿过 2 栅的电子到达阳极(A) [也惯称板极]所形成的电流(I ) 板流(习惯叫法,即阳极电流)将随2 栅的电压 U 的增加而增大,当 U 达到氩原子的第 一激发电位(11.8V)时,电子在2 栅附近与氩原子相碰撞(此时产生非弹性碰撞)。
电子把 加速电场获得的全部能量传递给了氩原子, 使氩原子从基态激发到第一激发态, 而电子本身 由于把全部能量传递给了氩原子, 它即使穿过 2 栅极, 也不能克服反向拒斥电场而被折回 2 栅极。
弗兰克赫兹实验数据处理

数据处理(1) 计算第一激发电势和相对误差IA--UG2K 曲线数据2.8V2.6V3.0V电流/uA 电压/V 电流/uA 电压/V 电流/uA电压/V 峰1 32.6 124.9 32.6 35.7 33.0 251.4 谷1 36.9 71.4 37.1 19.6 36.9 151.5 峰2 43.0 308.7 43.2 91.0 43.4 657.7 谷2 48.1 103.5 48.3 26.8 48.0 220.5 峰3 54.6 560.3 54.6 169.5 54.7 1258.4 谷3 59.5 157.0 59.7 42.8 59.4 369.4 峰4 66.4 851.2 66.2 258.7 66.5 2004.2 谷471.5289.171.580.371.1742.70.0500.01000.01500.02000.030.035.040.045.050.055.060.065.070.075.02.8V 2.6V3.0VI A ~ U G2K 曲线I A /μAU G2K /V用逐差法求氩原子第一激发电势U=(66.4+54.6-43-32.6)/4=11.35V相对误差E R=(11.35-11.5)/11.5*100%=1.30% 误差在允许范围内通过比较有:①灯丝电压的变化对极板电流有比较大的影响;②在其他因素相同的情况下,灯丝电压越大,极板电流越大。
分析:灯丝电压变大导致灯丝的实际功率变大,灯丝的温度升高,在其他的因素相同的情况下,单位时间到达极板的电子数增加,从而极板电流增大。
(2)改变灯丝电压,研究其对实验的影响。
反向拒斥电压U G2A =8.5 V,,分别测量拒斥电压U=10.5 V.,U=6.5 V,情况下的实验数据。
IA--UG2K曲线数据8.5V 10.5V 6.5V电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 33.5 61.5 32.2 141.8 谷1 36.9 71.4 38.3 25.8 36.0 98.9 峰2 43.0 308.7 44.1 189.9 42.8 338.0 谷2 48.1 103.5 49.2 29.3 47.0 163.2 峰3 54.6 560.3 55.5 388.0 53.8 607.5 谷3 59.5 157.0 60.9 43.6 58.6 263.1 峰4 66.4 851.2 67.1 625.3 65.6 914.4 谷4 71.5 289.1 72.5 113.2 70.4 448.70.0100.0200.0300.0400.0500.0600.0700.0800.0900.01000.030.035.040.045.050.055.060.065.070.075.08.5V 10.5V 6.5V通过比较有:① 反向拒斥电压的变化对极板电流有一定的影响;② 在其他因素相同的情况下,拒斥电压增大时,极板电流减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据处理
(1) 计算第一激发电势和相对误差
IA--UG2K 曲线数据
2.8V
2.6V
3.0V
电流/uA 电压/V 电流/uA 电压/V 电流/uA
电压/V 峰1 32.6 124.9 32.6 35.7 33.0 251.4 谷1 36.9 71.4 37.1 19.6 36.9 151.5 峰2 43.0 308.7 43.2 91.0 43.4 657.7 谷2 48.1 103.5 48.3 26.8 48.0 220.5 峰3 54.6 560.3 54.6 169.5 54.7 1258.4 谷3 59.5 157.0 59.7 42.8 59.4 369.4 峰4 66.4 851.2 66.2 258.7 66.5 2004.2 谷4
71.5
289.1
71.5
80.3
71.1
742.7
0.0500.0
1000.0
1500.0
2000.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
2.8V 2.6V
3.0V
I A ~ U G2K 曲线
I A /μA
U G2K /V
用逐差法求氩原子第一激发电势U=(66.4+54.6-43-32.6)/4=11.35V
相对误差E R=(11.35-11.5)/11.5*100%=1.30% 误差在允许范围内
通过比较有:
①灯丝电压的变化对极板电流有比较大的影响;
②在其他因素相同的情况下,灯丝电压越大,极板电流越大。
分析:灯丝电压变大导致灯丝的实际功率变大,灯丝的温度升高,在其他的因素相同的情况下,单位时间到达极板的电子数增加,从而极板电流增大。
(2)改变灯丝电压,研究其对实验的影响。
反向拒斥电压U G2A =8.5 V,,分别测量拒斥电压U=10.5 V.,U=6.5 V,情况下的实验数据。
IA--UG2K曲线数据
8.5V 10.5V 6.5V
电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 33.5 61.5 32.2 141.8 谷1 36.9 71.4 38.3 25.8 36.0 98.9 峰2 43.0 308.7 44.1 189.9 42.8 338.0 谷2 48.1 103.5 49.2 29.3 47.0 163.2 峰3 54.6 560.3 55.5 388.0 53.8 607.5 谷3 59.5 157.0 60.9 43.6 58.6 263.1 峰4 66.4 851.2 67.1 625.3 65.6 914.4 谷4 71.5 289.1 72.5 113.2 70.4 448.7
0.0100.0200.0300.0400.0500.0600.0700.0800.0900.01000.030.0
35.040.045.050.055.060.065.070.075.0
8.5V 10.5V 6.5V
通过比较有:
① 反向拒斥电压的变化对极板电流有一定的影响;
② 在其他因素相同的情况下,拒斥电压增大时,极板电流减小。
分析: 反向拒斥电压增大,在其他的因素相同的情况下,电子的能量大于eU G2A 的电子数减少,单位时间到达极板的电子数减少,从而极板电流减少。
思考与讨论
(1) 灯丝电压对F —H 实验的I A —U G2K 曲线形状有何影响?对第一激发电
势的测量有何影响?
答:灯丝电压不能过高或过低。
因为灯丝电压的高低,确定了阴极的工作电流。
灯丝电位低,阴极发射电子的能力减小,使得在碰撞区发生的碰撞减少,检测
I A ~ U G2K 曲线
U G2K /V
I A /μA
到的电流减小,给检测带来困难,从而使I A—U G2K曲线的分辨率下降;灯丝电压高阴极发射电子的能力增加,引起逃逸电子增多,相邻峰、谷值的差值减小。
(2)从I A—U G2K曲线上可以看出阳极电流并不是突然下降,有一个变化的过程(电流的峰有一定的宽度),而且出现峰值后电流不能降为零,这是为什么?
答:这是因为阳极发射的电子的初始速度不是完全相同的,服从一定的统计规律。
另外,由于电子与氩原子的碰撞有一定的几率,在大部分电子与氩原子碰撞而损失能量的时候,还会有一些电子没有发生碰撞而到达了阳极,所以阳极电流不会降为零。
实验总结:
通过本实验我们能熟练地用电脑绘制IA ~ UG2K曲线,并了解了弗兰克赫兹实验的原理和具体操作。