MATLAB实验二

合集下载

实验二-MATLAB-图形系统

实验二-MATLAB-图形系统

实验二 MATLAB 图形系统一、实验目的和要求Matlab 提供了强大的图形处理功能,本次实验旨在使学生熟悉和掌握应用Matlab 实现二维图形和三维图形的绘制和控制与表现方法。

二、实验内容1,画出对数和指数函数曲线,并分别加上标题、轴标记和曲线说明。

x=::5;y1=log(x);y2=exp(x);plot(x,y1,x,y2)grid onlegend('\ity=lnx','\ity=e^x')title('y=lnx和y=e^x曲线')xlabel('x');ylabel('y')2,将图形窗口分为两格,分别绘制正割和余割函数曲线,并加上适当的标注。

x=0:pi/50:2*pi;k=[1 26 51 76 101];x(k)=[];subplot(1,2,1)plot(x,sec(x)),grid onlegend('\itsec(x)')title('sec(x)曲线')subplot(1,2,2),plot(x,csc(x)),grid ontitle('csc(x)曲线')legend('\itcsc(x)')3,根据教材节内容,循序渐进的绘制对数和极坐标系图形。

x=:.01:100;y=log10(x);subplot(2,1,1)semilogx(x,y)title(‘\ity=log-{10}(x)inSemi-logcoord inates’)xlabel(‘x’),ylabel(‘y’)num=[1 ];den=[1 2 5 7 4];[z,p,k]=tf2zp(num,den);c1=abs(z);c2=angle(z);c3=abs(p);c4=angle(p);xyy=lnx和y=e x曲线sec(x)曲线csc(x)曲线101010101010y=log-10(x)in Semi-log coordinatesxypolar(c4,c3,'bx')hold on,polar(c2,c1,'ro')gtext('极坐标系中的零极点表示')4,根据教材 节内容,绘制多峰函数和三角函数的多条曲线。

实验二 MATLAB的数据类型与基本运算

实验二  MATLAB的数据类型与基本运算

实验二MATLAB的数据类型与基本运算一、实验目的掌握MATLAB中编程语言的表示和运算,了解常用基本数据类型,了解结构、元胞和表等复杂数据类型的基本概念;熟悉矩阵运算,掌握用矩阵求逆法解线性方程组的方法,熟悉多项式运算。

二、实验内容1、一维数组在命令窗口执行下面指令,观察输出结果,体味数组创建和寻访方法,%号后面的为注释,不用输入。

rand('state',0) % 把均匀分布伪随机发生器置为0 状态x=rand(1,5) % 产生(1*5)的均布随机数组x(3) % 寻访数组x 的第三个元素。

x([1 2 5]) % 寻访数组x 的第一、二、五个元素组成的子数组。

x(1:3) % 寻访前三个元素组成的子数组x(3:end) % 寻访除前2 个元素外的全部其他元素。

end 是最后一个元素的下标。

x(3:-1:1) % 由前三个元素倒排构成的子数组x(find(x>0.5)) % 由大于0.5 的元素构成的子数组x([1 2 3 4 4 3 2 1]) % 对元素可以重复寻访,使所得数组长度允许大于原数组。

x(3) = 0 % 把上例中的第三个元素重新赋值为0。

x[3]=[] % 空数组的赋值操作x([1 4])=[1 1] % 把当前x 数组的第一、四个元素都赋值为1。

2、在命令窗口执行下面指令,观察输出结果a=2.7358; b=33/79; % 这两条指令分别给变量 a , b 赋值。

C=[1,2*a+i*b,b*sqrt(a);sin(pi/4),a+5*b,3.5+i] % 这指令用于创建二维组C M_r=[1,2,3;4,5,6],M_i=[11,12,13;14,15,16] % 创建复数数组的另一种方法CN=M_r+i*M_i % 由实部、虚部数组构成复数数组3. 记录下面题目的程序和运行后的结果。

1⎥⎦⎤⎢⎣⎡=654321a ⎥⎦⎤⎢⎣⎡-=531142b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=201c ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=063258741d下列运算是否合法,为什么?如合法,结果是多少?(1) result1 = a'=[1 4;2 5;3 6] (2) result2 = a * b 不合法(3) result3 = a + b=[3 6 2;5 8 11](4) result4 = b * d=[31 22 22;40 49 13](5) result5 = [b ; c' ] * d=[31 22 22;40 49 13;-5 -8 7] (6) result6 = a . * b=[2 8 -3;4 15 30](7) result7 = a . / b=[0.5000 0.5000 -3.0000;4.000 1.667 1.2000](8) result8 = a . * c 不合法(9) result9 = a . \ b=[2.0000 2.0000 -0.3333;0.2500 0.6000 0.8333] (10) result10 = a . ^2=[1 4 9;16 25 36] (11) result11 = a ^2不合法(12) result11 = 2 . ^ a=[2 4 8;16 32 64]4、设矩阵A =[311212123],B =[11−12−101−11]求(1)2A+B(2)4A 2-3B 2 (3)AB (4)BA (5)AB-BA5、设三阶矩阵A、B满足A-1BA=6A+BA,其中A=[13000140017],求矩阵B。

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。

3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。

二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。

(5)写出实验报告。

三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。

(2)用龙贝格求积计算完成问题(1 )。

2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。

1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。

%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。

matlab实验二

matlab实验二

北京工业大学Matlab实验报告**: ***学号: ************: **实验二、Matlab 的基本计算(一)实验目的1.掌握建立矩阵的方法。

2.掌握Matlab 各种表达式的书写规则以及常用函数的使用。

3.能用Matlab 进行基本的数组、矩阵运算。

4.掌握矩阵分析的方法以及能用矩阵运算或求逆法解线性方程组。

5.掌握Matlab 中的关系运算与逻辑运算。

(二)实验环境1.计算机2.MATLAB7.0集成环境(三)实验内容及要求1、熟练操作MATLAB7.0运行环境;2、自主编写程序,必要时参考相关资料;3、实验前应写出程序大致框架或完整的程序代码;4、完成实验报告。

(四)实验程序设计1.利用diag 等函数产生下列矩阵。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032570800a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=804050702b2.利用reshape 函数将1题中的a 和b 变换成行向量。

3.产生一个均匀分布在(-5,5)之间的随机矩阵(10×2),要求精确到小数点后一位。

4.已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=76538773443412A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=731203321B求下列表达式的值:(1) B A K *611+=和I B A K +-=12(其中I 为单位矩阵)(2) B A K *21=和B A K *.22=(3) 331^A K =和3.32^A K =(4) B A K /41=和A B K \42=(5) ],[51B A K =和]2:);],3,1([[52^B A K = 5.下面是一个线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡52.067.095.03216/15/14/15/14/13/14/13/12/1x x x(1)求方程的解(矩阵除法和求逆法)(2)将方程右边向量元素3b 改为0.53,再求解,并比较3b 的变化和解的相对变化。

信号与系统MATLAB实验-实验二 Matlab中信号的运算

信号与系统MATLAB实验-实验二 Matlab中信号的运算

1、运用funtool对f(x)=sin(x)/x分别进行信号的尺度变换f(2x)、f(0.5x)和信号的移位运算f(x+1)、f(x-1)操作以及f(0.5x+1),分别记录相应波形。

f(x)=sin(x)/x f(x+1)f(2x) f(x-1)f(0.5x) f(0.5x+1)2、已知两连续时间信号如下图所示,1)写出信号的函数表达式,并计算f(t)=f1(t)* f2(t)的解析表达式; 2)用MATLAB 求f(t)=f1(t)* f2(t),并绘出f(t)的时域波形图。

(设定取样时间间隔为dt )【实验思考】:通过不断改变dt 的取值并对比所得到的实验效果,观察当取样时间dt 为多大时,函数conv_cs()的计算结果就是连续时间卷积f(t)=f1(t)* f2(t)的较好近似结果?3、已知两连续时间信号如下图所示,1)写出信号的函数表达式,并计算f(t)=f1(t)* f2(t)的解析表达式;2)用MATLAB 求f(t)=f1(t)* f2(t),并绘出f(t)的时域波形图。

(设定取样时间间隔为dt)【实验思考】:不断改变dt的取值并对比实验效果,当取样时间dt为多大时,函数conv_cs()的计算结果就是连续时间卷积f(t)=f1(t)* f2(t)的较好近似结果?clear alldt = 0.01;t1 = -3:dt:3;f1 = 2*(u(t1+1) - u(t1-1));figure;stairs(t1,f1);hold allgrid ont2 = -3:dt:3;f2 = u(t2+2)-u(t2-2);stairs(t2,f2)[fn, tn] = conv_cs(f1, t1, f2, t2, dt);plot(tn, fn)grid onlegend('f1', 'f2', 'f1*f2')。

MATLAB实验2 MATLAB的矩阵操作(1)

MATLAB实验2  MATLAB的矩阵操作(1)
5、产生均值为3,方差为1的500个正态分布的随机序列
6、求特征值的方法求解方程
4x4+6x+3=0
(对比eig和roots、分析它们的不同和各自的应用范围)
7、P55思考练习3 , 5
实验过程中,请结合MATLAB的帮助系统。
四、实验操作过程与结果(写明使用到的函数及结算结果即可)
五、学生收获
MATLAB实验2MATLAB的矩阵操作(1)
班级专业:姓名:学号:日期:
一、实验目的
ห้องสมุดไป่ตู้1.熟悉MATLAB基本命令与操作;
2.熟悉MATLAB的矩阵运算;
3.了解MATLAB的多项式运算;
二、实验准备
通读书本第二章---MATLAB矩阵及其运算
三、实验内容
1.在命令窗口中键入表达式 ,并求 时 的值。
2. P54二.1
3.已知 , ,在MATLAB命令窗口中建立A、B矩阵并对其进行以下操作:
(1)计算矩阵A的行列式的值
(2)分别计算下列各式:
、 和 、 、 、 、
4、产生3阶随机方阵,其元素为[10,60]区间的随机整数,然后判断A的元素是否能被5整除。(分析fix、rand、rem函数的使用方法)

实验二MATLAB的矩阵操作_参考答案

实验二MATLAB的矩阵操作_参考答案
k =
1
5
>> A(k)
ans =
23
10
(2)取出A前3行构成矩阵B,前两列构成矩阵C,右下角 子矩阵构成矩阵D,B与C的乘积构成矩阵E.
>> B=A([1,2,3],:)
B =
23.0000 10.0000 -0.7780 0
41.0000 -45.0000 65.0000 5.0000
32.0000 5.0000 0 32.0000
y =
-128.4271
2.已知 ,
求下列表达式的值:
(1) , (其中I为单位矩阵)
A=[-1,5,-4;0,7,8;3,61,7]
B=[8,3,-1;2,5,3;-3,2,0]
>> A+6*B
ans =
47 23 -10
12 37 26
-15 73 7
&
ans =
-1.2768 -0.4743 0.2411
2.1229 1.3173 -0.2924
3.已知
完成下列操作
(1)输出A在[10,25]范围内的全部元素
A=[23,10,-0.778,0;41,-45,65,5;32,5,0,32;6,-9.54,54,3.14]
>> k=find(A>=10&A<=25)
(2)
(3)
2.已知 ,
求下列表达式的值:
(1) , (其中I为单位矩阵)
(2)A*B、A.*B和B*A
(3)A/B及B/A
3.已知
完成下列操作
(1)输出A在[10,25]范围内的全部元素
(2)取出A前3行构成矩阵B,前两列构成矩阵C,右下角 子矩阵构成矩阵D,B与C的乘积构成矩阵E.

MATLAB实验报告

MATLAB实验报告

实验二MATLAB语言基础一、实验目的基本掌握MA TLAB向量、矩阵、数组的生成及其基本运算(区分数组运算和矩阵运算)、常用的数学函数。

了解字符串的操作。

二、实验内容1.向量的生成与运算;2.矩阵的创建、引用和运算;3.多维数组的创建及运算;4.字符串的操作。

三、实验步骤1.向量的生成与运算①向量的生成向量的生成有三种方法:直接输入法:生成行向量、列向量;冒号表达式法:变量=初值:间隔(可正可负):终值函数法:使用linspace线性等分函数,logspace对数等分函数。

格式为:linspace(初值,终值,个数)Logspace(初值,终值,个数), 初值及终值均为10的次幂。

②向量的运算A=[1 2 3 4 5],b=3:7,计算两行向量的转置,两行向量人加、减,两列向量的加、减;向量的点积与叉积。

a=[1 2 3 4 5];b=3:7;a =1 2 3 4 5b =3 4 5 6 7at=a',bt=b'at =12345bt =34567e1=a+b,e2=a-be1 =4 6 8 10 12 e2 =-2 -2 -2 -2 -2 f1=at+bt,f2=at-btf1 =4561012f2 =-2-2-2-2-2g1=dot(a,b),g2=a*bt>> g1=dot(a,b),g2=a*btg1 =85g2 =85g4=a.*b>> g4=a.*bg4 =3 8 15 24 35A=1:3;B=4:6;g3=cross(A,B)>> g3=cross(a,b)g3 =-3 6 -3注意:g1和g2的结果是否相同,为什么?g4的结果与g1和g2结果是否一样,为什么?g1和g2的结果相同,因为两者是同一种运算;g4与g1和g2不相同,因为两者一个是点乘一个是叉乘,运算不一样。

2.矩阵的创建、引用和运算矩阵是由n×m元素构成的矩阵结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB 实验二
班级:电子信息工程
学号:20105042005
姓名:贾东升
一、实验目的
1. 掌握MATLAB 数据对象的特点以及数据的运算规则。

2. 掌握MATLAB 中建立矩阵的方法以及矩阵处理的方法。

3. 掌握MATLAB 分析的方法。

二、实验内容
1. 求下列表达式的值。

(2)x=a c b e abc c
b a ++-+++)tan(22
ππ,其中a=3.5, b=5, c=-9.8。

>> a=3.5;
>> b=5;
>> c=-9.8;
>> x=(2*pi*a+(b+c)/(pi+a*b*c)-exp(2))/(tan(b+c)+a)
x =
-0.9829
(4)z=21
e t 2ln(t+21t +),其中t=⎢⎣⎡52 ⎥⎦

--65.031i 。

>> t=[2,1-3i;5,-0.65];
>> z=(1/2)*exp(2*t)*log(t+sqrt(1+t*t))
z =
1.0e+004 *
0.0057 - 0.0007i 0.0049 - 0.0027i
1.9884 - 0.3696i 1.7706 - 1.0539i
2.已知A=⎢⎢⎢⎣⎡-301 6175⎥⎥⎥⎦⎤-784,B=⎢⎢
⎢⎣⎡-328
253 ⎥⎥⎥


-031,求下列表达式的值。

(2)A*B 、A.*B 和B*A 。

(4)[A,B]和[A([1,3],:);B^2]
>> A=[-1,5,4;0,7,8;3,61,7];
>> B=[8,3,-1;2,5,3;-3,2,0];
>> A*B
ans =
-10 30 16
-10 51 21
125 328 180
>> A.*B
ans =
-8 15 -4
0 35 24
-9 122 0
>> B*A
ans =
-11 0 49
7 228 69
3 -1 4
>> [A,B]
ans =
-1 5 4 8 3 -1 0 7 8 2 5 3 3 61 7 -3 2 0
>> [A([1,3],:);B^2]
ans =
-1 5 4
3 61 7
73 37 1
17 37 13
-20 1 9
3.已知A=⎢⎢⎢⎢⎣⎡6
324123 54.954510-- 54065778.0- ⎥⎥⎥⎥⎦⎤14.33250完成下列操作: (1)输入A 在[10,25]范围内的全部元素。

(2)取出A 前3行构成矩阵B ,前两列构成矩阵C ,右下角3*2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 。

(1)>> A=[23,10,-0.778,0;41,-45,65,5;32,5,0,32;6,-9.54,54,3.14]; >> k=find(A>=10&A<=25)
k =
1
5
>> A(k)
ans =
23
10
(2)>> A=[23,10,-0.778,0;41,-45,65,5;32,5,0,32;6,-9.54,54,3.14]; >> B=A(1:3,:)
B =
23.0000 10.0000 -0.7780 0
41.0000 -45.0000 65.0000 5.0000
32.0000 5.0000 0 32.0000
>> C=A(:,1:2)
C =
23.0000 10.0000
41.0000 -45.0000
32.0000 5.0000
6.0000 -9.5400
D=
-45.0000 65.0000 5.0000
5.0000 0 32.0000
-9.5400 54.0000 3.1400
>> E=B*C
E =
1.0e+003 *
0.9141 -0.2239
1.2080
2.7123
1.1330 -0.2103
4.产生5阶希尔伯特矩阵H和5阶帕斯卡矩阵P,切求其行列式的值Hh和Hp以及它们的条件数Th和Tp,判断哪个矩阵性能更好,为什么?
>> H=hilb(5)
H =
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
0.2000 0.1667 0.1429 0.1250 0.1111
>> Hh=det(H)
Hh =
3.7493e-012
>> Tp=cond(H)
Tp =
4.7661e+005
>>
>> P=pascal(5)
P =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70
>> Hp=det(P)
Hp =
1
>> Tp=cond(P)
Tp =
8.5175e+003
>>
5已知:A=⎢⎢⎢⎣⎡--82029 856 ⎥⎥⎥⎦

51218求A 的特征值及特征向量,并分析其数学意义。

>> A=[-29,6,18;20,5,12;-8,8,5]; >> [V,D]=eig(A)
V =
0.7130 0.2803 0.2733 -0.6084 -0.7867 0.8725 0.3487 0.5501 0.4050
D =
-25.3169 0 0 0 -10.5182 0 0 0 16.8351。

相关文档
最新文档