中考数学重点难点剖析

合集下载

中考数学重点难点分析

中考数学重点难点分析

初中数学知识当中,学生掌握情况比较欠缺的主要是列方程组解应用题,函数特别是二次函数,四边形以及相似,还有圆。

这些知识点如果分块学习学生还易接受,关键在于知识的综合。

中考知识的综合主要有以下几种形式:1)线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

(2)图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

(3)动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

(4)一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难.几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求.中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合(5)多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

陕西省中考数学试题:重难点突出

陕西省中考数学试题:重难点突出

陕西省中考数学试题:重难点突出【重点题型分析】今年考题代数部分重点知识仍然以函数为主线,而几何部分主要围绕着全等以及位似变换,如下就几个重要题型进行简单的分析:1、第10题:作为选择题的压轴题,今年仍然选择了考查二次函数的平移,此类问题是第10题的常考考点,此题难度不大,能做对的学生比较多。

2、第16题:同样作为填空题的压轴,此题年年都是学生们的痛点,得分率不高,但今年梯形退出阵营后,改为利用相似解决的轴对称问题,较往年的梯形辅助线问题难度有所降低,但仍需要细心作答。

总体看来,往年的梯形问题,我们有梯形的辅助线模型,而今年的相似问题,可以利用十大相似模型仍能轻松解决。

3、第24题:今年考题总体难度的加大,第24题是功不可没的,此题虽然延续了二次函数与几何的综合题型,但考察到了等腰三角形、矩形多个几何图形的同时,还涉及到中心对称以及最值问题,考点众多,综合性较强,难度略为偏难,但对于基础扎实,思维灵活的学生来说,此题应不会有太大的困难。

4、第25题:每年的压轴题总是大家热议的话题,今年压轴题与我校模考班压轴题及其相似,均涉及到了有关三角形的内接正方形的问题。

前两问难度不太大,第一问利用位似变换画等边三角形的内接正方形,第二问求给定边长的等边三角形内接正方形的周长,正好可以利用我校模考班最后一题的解题方法,利用相似比与高之比相等解出;第三问需要利用函数思想去解决面积的最值问题,虽然考法比较常规,但由于需要拉开学生差距,故难度属于全卷最难。

此题计算量是比较大的。

从宏观上看,今年考题总体上较稳定,考点分布均匀,体现了陕西省中考试题的特点,但各题难度的调整及总体难度的变化仍然是值得大家关注的重点。

试题分析:周苗,西安新东方优能初中理科教研组长,中考骨干教师,负责初中理科项目教学产品研发。

长期从事中考数学教学工作,有多年的教学经验和严谨的数学逻辑思维,对新课标和中考数学有深入的研究,对中考考点有其独到见解。

沈阳中考数学难点归纳总结

沈阳中考数学难点归纳总结

沈阳中考数学难点归纳总结数学作为中考的一个重要科目,对于许多学生来说是一道难以逾越的难题。

而在沈阳的中考试卷中,也存在一些特定的数学难点。

本文将针对这些难点进行归纳总结,旨在帮助考生更好地备战沈阳中考数学科目。

一、代数运算难点代数运算作为数学中的基础部分,是许多复杂问题的起点,因此也造成了一些难点。

沈阳中考数学试卷中,常见的代数运算难点主要有以下几个方面。

1.1 分式的化简和运算分式是一个常见的代数表达式形式,求解分式问题需要对其进行化简和运算。

在综合应用类题目中,常常涉及到乘除、相加相减以及合并同类项等步骤,考生需要充分理解相关规则,并正确运用。

1.2 方程和不等式的求解方程和不等式的求解也是数学中的难点,需要考生对方程和不等式的性质有较为深入的理解。

常见的难点有一次方程和二次方程的解法,包括完全平方公式、配方法、因式分解法等。

在解不等式过程中,不等式的取值范围和符号性质也是考生们容易出错的地方。

二、几何难点几何部分是中考数学试卷中另一个重要考点,常见的难点主要集中在以下几个方面。

2.1 图形的性质和关系在沈阳中考试卷的几何题中,涉及到图形的各种性质和关系的题目较多。

比如平行线的性质、垂直线段的性质、相似三角形的性质等,考生需要深入理解这些性质,并能够正确应用到解题过程中。

2.2 圆的相关题型圆是几何题中的一个常见难点,需要考生掌握相关的圆的性质和定理。

常见的难点包括弧长、弦长、切线、追求圆心角和半径的关系等题型。

解这类题目的关键在于准确理解圆相关定理,并能够运用到具体问题中。

三、概率与统计难点概率与统计是数学中的重要部分,也是中考试卷中的重要考点。

在沈阳中考的数学试卷中,概率与统计的难点主要有以下几个方面。

3.1 排列组合在概率类的题目中,常常涉及到排列组合的计算。

考生需要掌握排列组合的基本计算方法,包括阶乘、C(n,m)等,同时也需要理解应用到具体题目中的思路。

3.2 统计图表的分析在统计类的题目中,常常需要对图表进行分析和解读。

中考数学要点难点分析

中考数学要点难点分析

中考数学要点难点分析初一上册有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础初一下册相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

数学中考重点难点总结之数列与函数进阶

数学中考重点难点总结之数列与函数进阶

数学中考重点难点总结之数列与函数进阶数列与函数是数学中的重要概念和工具,也是中考中经常涉及的题型。

进一步深入学习数列与函数的进阶知识,对于更好地应对中考是非常重要的。

本文将对数列与函数进阶相关知识进行总结与分析。

一、数列进阶1. 递推公式与通项公式数列常常可以通过递推公式定义。

递推公式是指通过前一项或前几项来定义后一项的公式。

譬如斐波那契数列的递推公式为:An = An-1+ An-2。

一些题目需要我们根据递推公式推导数列的通项公式,以便求解数列的特定项。

通项公式是能够计算数列各项值的公式,通常会用到数学归纳法来证明。

2. 等差数列与等比数列的性质等差数列与等比数列是最为常见的数列类型。

等差数列的性质包括公差、前n项和公式等,通过这些性质可以求解等差数列中任意一项的值以及前n项的和。

等比数列的性质则包括公比、前n项和公式等,同样可以用来求解等比数列的各项值和前n项的和。

理解并熟练掌握这些性质对于解决数列题是至关重要的。

3. 数列的求和公式对于数列的求和问题,有时候直接计算每一项再相加会非常繁琐。

此时,我们可以利用数列的求和公式来简化计算。

等差数列的求和公式为Sn = (a1 + an) * n / 2,其中a1是首项,an是末项,n是项数。

对于等比数列,求和公式为Sn = a1 * (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。

二、函数进阶1. 函数的性质与图像函数是数学中的一个重要概念,可以表示变量间的依赖关系。

我们可以通过函数的性质来进行分析和求解函数相关问题。

例如,定义域和值域是函数常用的性质,定义域是指函数可取的自变量的取值范围,值域则是函数所有可能的函数值的取值范围。

函数的图像是通过绘制函数的曲线来表示函数的规律和特点。

通过观察函数的图像可以得到关于函数的信息,例如函数的增减性、奇偶性等。

2. 函数的运算与复合函数函数之间可以进行各种运算,包括加减乘除、求导数等。

中考数学知识重难点分析

中考数学知识重难点分析

中考数学知识重难点分析数学中考知识重难点分析及学习策略函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。

如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

中考一般以选择、填空形式出现,但却是解答题完整解答的基础。

运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的方程、不等式、函数也无法学好。

应用题,中考中占总分的30%左右包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。

一般会出现二至三道解答题(30分左右)及23道选择、填空题(10分15分),占中考总分的30%左右。

三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。

三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。

只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。

其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。

因此在初中数学学习中也是一个重点。

圆,中考中占总分的10%左右包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围通用的解题思路:第一步:先判定函数的增减性:一次函数、反比例函数看k ,二次函数看对称轴与区间的位置关系;第二步:当a x =时,min y y =;当b x =时,max y y =;所以max min y y y ≤≤.二次函数求取值范围之动轴定区间或者定轴动区间的分类方法:分对称轴在区间的左边、右边、中间三种情况。

(1)若自变量x 的取值范围为全体实数,如图①,函数在顶点处abx 2-=时,取到最值.(2)若abn x m 2-<≤≤,如图②,当m x =时,max y y =;当n x =时,min y y =.(3)若n x m ab≤≤<-2,如图③,当m x =,min y y =;当n x =,max y y =.(4)若n x m ≤≤,且n a b m ≤-≤2,m a b a b n -->+22,如图④,当a bx 2-=,min y y =;当n x =,max y y =.1.(中考真题)设a 、b 是任意两个不等实数,我们规定:满足不等式a ⩽x ⩽b 的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m ⩽x ⩽n 时,有m ⩽y ⩽n,我们就称此函数是闭区间[m,n]上的“闭函数”。

(1)反比例函数xy 2013=是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若二次函数5754512--=x x y 是闭区间[a,b]上的“闭函数”,求实数a ,b 的值。

【解答】解:(1)反比例函数y=是闭区间[1,2013]上的“闭函数”.理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2013;当x=2013时,y=1,所以,当1≤x≤2013时,有1≤y≤2013,符合闭函数的定义,故反比例函数y=是闭区间[1,2013]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣x﹣=(x﹣2)2﹣,∴该二次函数的图象开口方向向上,最小值是﹣,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大;①当b≤2时,此二次函数y随x的增大而减小,则根据“闭函数”的定义知,,解得,(不合题意,舍去)或;②当a<2<b时,此时二次函数y=x2﹣x﹣的最小值是﹣=a,根据“闭函数”的定义知,b=a2﹣a﹣或b=b2﹣b﹣;a)当b=a2﹣a﹣时,由于b=(﹣)2﹣×(﹣)﹣=<2,不合题意,舍去;b)当b=b2﹣b﹣时,解得b=,由于b>2,所以b=;③当a≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵<0,∴舍去.综上所述,或.2.(中考真题)若关于x 的函数y ,当1122t x t -≤≤+时,函数y 的最大值为M ,最小值为N ,令函数2M N h -=,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数4044y x =,当1t =时,求函数y 的“共同体函数”h 的值;②若函数y kx b =+(0k ≠,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数21y x x=≥(),求函数y 的“共同体函数”h 的最大值;(3)若函数24y x x k =-++,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.解析:(1)解:①当1t =时,则111122x -≤≤+,即1322x ≤≤, 4044y x =,4044k =0>,y 随x 的增大而增大,314044404422202222M N h ⨯-⨯-∴===,②若函数y kx b =+,当0k >时,1122t x t -≤≤+,∴11,22M k t b N k t b ⎛⎫⎛⎫=++=-+ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==,当0k <时,则11,22M k t b N k t b ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==-,综上所述,0k >时,2k h =,0k <时,2kh =-,(2)解:对于函数()21y x x=≥, 20>,1x ≥,函数在第一象限内,y 随x 的增大而减小,112t ∴-≥,解得32t ≥,当1122t x t -≤≤+时,∴2424,11212122M N t t t t ====-+-+,()()()()()()2221221144442221212121212141t t M N h t t t t t t t +---⎛⎫∴==-=== ⎪-+-+-+-⎝⎭,∵当32t ≥时,241t -随t 的增大而增大,∴当32t =时,241t -取得最小值,此时h 取得最大值,最大值为()()4412121242h t t ===-+⨯;(3)对于函数24y x x k =-++()224x k =--++,10a =-<,抛物线开口向下,2x <时,y 随x 的增大而增大,2x >时,y 随x 的增大而减小,当2x =时,函数y 的最大值等于4k +,在1122t x t -≤≤+时,①当122t +<时,即3t 2<时,211422N t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422M t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=22111114422222t t k t t k ⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫-++++---+-+⎢⎥⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭=2t -,∴h 的最小值为12(当32t =时),若124k =+,解得72k =-,但32t <,故72k =-不合题意,故舍去;②当122t ->时,即5t 2>时,211422M t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422N t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=2t -,∴h 的最小值为12(当52t =时),若124k =+,解得72k =-,但52t >,故72k =-不合题意,故舍去③当11222t t -≤≤+时,即3522t ≤≤时,4M k =+,i )当112222t t ⎛⎫⎛⎫--≥+- ⎪ ⎪⎝⎭⎝⎭时,即322t ≤≤时,211422N t t k⎛⎫⎛⎫=--+-+ ⎪ ⎝⎭⎝⎭22114415252222228k t t k M N h t t ⎛⎫⎛⎫++---- ⎪ ⎪-⎝⎭⎝⎭===-+ 对称轴为52t =,102>,抛物线开口向上,在322t ≤≤上,当t =2时,h 有最小值18,148k ∴=+,解得318k =-;i i )当112222t t ⎛⎫⎛⎫--≤+- ⎪ ⎪⎝⎭⎝⎭时,即522t ≤≤时,4M k =+,N =211422t t k ⎛⎫⎛⎫-++++ ⎪ ⎝⎭⎝⎭,∴2211441392222228k t t kM N h t t ⎛⎫⎛⎫+++-+- ⎪ ⎪-⎝⎭⎝⎭===-+, 对称轴为32t =,102>,抛物线开口向上,在522t <≤上,当t =2时,h 有最小值18,148k ∴=+解得318k =-,综上所述,2t =时,存在318k =-.3.(中考真题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =()②my (m 0)x=≠()③31y x =-()(2)若点()1,A m 与点(),4B n -关于x 的“H 函数”()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值或取值范围;(3)若关于x 的“H 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【详解】(1)①2y x =是“H 函数”②my (m 0)x=≠是“H 函数”③31y x =-不是“H 函数”;故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠,得44a b c a b c ++=⎧⎨-+=-⎩,解得40b ac =⎧⎨+=⎩,又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a >2,∴-42a >2,∴-1<a <0,∵a+c=0,∴0<c <1,综上,-1<a <0,b=4,0<c <1;(3)∵223y ax bx c =++是“H 函数”,∴设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩,解得ap 2+3c=0,2bp=q ,∵p 2>0,∴a,c 异号,∴ac <0,∵a+b+c=0,∴b=-a-c ,∵(2)(23)0c b a c b a +-++<,∴(2)(23)0c a c a c a c a -----+<,∴(2)(2)0c a c a -+<,∴c 2<4a 2,∴22c a<4,∴-2<c a <2,∴-2<c a <0,设t=c a ,则-2<t <0,设函数与x 轴的交点为(x 1,0)(x 2,0),∴x 1,x 2是方程223ax bx c ++=0的两根,∴12x x -=,又∵-2<t <0,∴2<12x x -<4.(2022春•芙蓉区校级期末)在y 关于x 的函数中,对于实数a ,b ,当a ≤x ≤b 且b =a +3时,函数y 有最大值y max ,最小值y min ,设h =y max ﹣y min ,则称h 为y 的“极差函数”(此函数为h 关于a 的函数);特别的,当h =y max ﹣y min 为一个常数(与a 无关)时,称y 有“极差常函数”.(1)判断下列函数是否有“极差常函数”?如果是,请在对应()内画“√”,如果不是,请在对应()内画“×”.①y =2x ();②y =﹣2x +2();③y =x 2().(2)y 关于x 的一次函数y =px +q ,它与两坐标轴围成的面积为1,且它有“极差常函数”h =3,求一次函数解析式;(3)若,当a ≤x ≤b (b =a +3)时,写出函数y =ax 2﹣bx +4的“极差函数”h ;并求4ah 的取值范围.【解答】解:(1)①∵y =2x 是一次函数,且y 随x 值的增大而增大,∴h =2(a +3)﹣2a =6,∴y =2x 是“极差常函数”,故答案为:√;②∵y =﹣2x +2是一次函数,且y 随x 值的增大而减小,∴h =﹣2a +2﹣[﹣2(a +3)+2]=6,∴y =﹣2x +2是“极差常函数”,故答案为:√;∵y =x 2是二次函数,函数的对称轴为直线x =0,当a +3≤0时,h =a 2﹣(a +3)2=﹣9﹣6a ;当a ≥0时,h =(a +3)2﹣a 2=9+6a ;∴y =x 2不是“极差常函数”,故答案为:×;(2)当x =0时,y =q ,∴函数与y 轴的交点为(0,q ),当y =0时,x =﹣,∴函数与x 轴的交点为(﹣,0),∴S =×|q |×|﹣|=1,∴=2,当p >0时,h =p (a +3)+q ﹣(pa +q )=3,∴p =1,∴q =±,∴函数的解析式为y =x ;当p <0时,h =pa +q ﹣[p (a +3)+q ]=3,∴p =﹣1,∴q =±,∴函数的解析式为y =﹣x;综上所述:函数的解析式为y =x 或y =﹣x;(3)y =ax 2﹣bx +4=a (x ﹣)2+4﹣,∴函数的对称轴为直线x =,∵b =a +3,∴x ==+,∵,∴≤+≤,≤a +3≤,∵(a +3﹣﹣)﹣(+﹣a )=2a +2﹣,∵,∴2a +2﹣>0,∴a +3到对称轴的距离,大于a 到对称轴的距离,∴当x =a +3时,y 有最大值a (a +3)2﹣(a +3)2+4,当x =时,y 有最小值4﹣=4﹣,∴h =a (a +3)2﹣(a +3)2+4﹣4+=(a +3)2(a ﹣1+),∴4ah =(2a 2+5a ﹣3)2,∵2a 2+5a ﹣3=2(a +)2﹣,,∴≤2a 2+5a ﹣3≤9,∴≤4ah ≤81.5.(雅实)若函数1y 、2y 满足12y y y =+,则称函数y 是1y 、2y 的“融合函数”.例如,一次函数121y x =+和二次函数2234y x x =+-,则1y 、2y 的“融合函数”为21253y y y x x =+=+-.(1)若反比例函数12y x=和一次函数23y kx =-,它们的“融合函数”过点()1,5,求k 的值;(2)若21y ax bx c =++为二次函数,且5a b c ++=,在x t =时取得最值,函数2y 为一次函数,且1y 、2y 的“融合函数”为224y x x =+-,当12x -≤≤时,求函数1y 的最小值(用含t 的式子表示);(3)若二次函数21y ax bx c =++与一次函数2y ax b =--,其中0a b c ++=且a b c >>,若它们的“融合函数”与x 轴交点为()1,0A x 、()2,0B x 12x -的取值范围.【解答】解:(1)由题意可得y 1、y 2的融合函数23y kx x=+-,将点()1,5代入,可得:523k =+-,解得6k =.(2)∵12y y y =+,∴()()2222124214y y y x x ax bx c a x b x c =-=+----=-+---,∵y 2为一次函数,∴20a -=,即2a =,∴212y x bx c =++在x =t 处取得最值,∴4bt =-,即4b t =-,∴5a b c ++=,即54234c t t =+-=+,∴212434y x tx t =-++,对称轴:x t =.①若1t ≤-时,即当1x =-时,min 58y t =+,②若12t -<<时,即当x t =时,2min 234y t t =-++,③若2t ≥时,即当2x =时,min 114y t =-.(3)y 1、y 2的融合函数()2y ax b a x c b =+-+-,∵与y 轴交于点()1,0A x 、()2,0B x ,∴12b a x x a -+=,12c b x x a -⋅=,∵12||x x a -==,又∵0a b c ++=,∴b a c =--,∴12x x ==,∵a b c >>∴a a c c >--<,∴122c a -<<-,当2ca=-时,12maxx x -=,当12c a =-时,12min32x x -=12x <-<.6.(立信)已知:抛物线1C :2y ax bx c =++(0a >).(1)若顶点坐标为(1,1),求b 和c 的值(用含a 的代数式表示);(2)当0c <时,求函数220221y ax bx c =-++-的最大值;(3)若不论m 为任何实数,直线()214m y m x =--与抛物线1C 有且只有一个公共点,求a ,b ,c 的值;此时,若1k x k ≤≤+时,抛物线1C 的最小值为k ,求k 的值.【解答】解:(1)∵抛物线的顶点坐标为(1,1),∴y =a (x ﹣1)2+1=ax 2﹣2ax +a +1,∴b =﹣2a ,c =a +1;(2)∵y =ax 2+bx +c ,a >0,c <0,∴Δ=b 2﹣4ac >0,∴抛物线y =ax 2+bx +c (a >0)与x 轴有两个交点,∴|ax2+bx+c|≥0,∴﹣2022|ax2+bx+c|≤0,∴﹣2022|ax2+bx+c|﹣1≤﹣1,∴函数y=﹣2022|ax2+bx+c|﹣1的最大值为﹣1;(3)∵直线与抛物线C1有且只有一个公共点,∴方程组只有一组解,∴ax2+(b﹣m)x++m+c=0有两个相等的实数根,∴Δ=0,∴(b﹣m)2﹣4a(+m+c)=0,整理得:(1﹣a)m2﹣2(2a+b)m+b2﹣4ac=0,∵不论m为任何实数,(1﹣a)m2﹣2(2a+b)m+b2﹣4ac =0恒成立,∴,∴a=1,b=﹣2,c=1.此时,抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的对称轴为直线x=1,开口向上,∵当k≤x≤k+1时,抛物线的最小值为k,∴分三种情况:k<0或0≤k≤1或k>1,①当k<0时,k+1<1,当k≤x≤k+1时,y随着x的增大而减小,则当x=k+1时,y的最小值为k,∴(k+1﹣1)2=k,解得:k=0或1,均不符合题意,舍去;②当0≤k≤1时,当x=1时,抛物线的最小值为0,∴k=0;③当k>1时,y随着x的增大而增大,则当x=k时,y的最小值为k,∴(k﹣1)2=k,解得:k=或,∵k>1,∴k=,综上所述,若k≤x≤k+1时,抛物线的最小值为k,k的值为0或.7.(长郡)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k (b﹣a),则称此函数为“k属和合函数”,例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)若一次函数y=kx﹣1(1≤x≤3)为“4属和合函数”,求k的值;(2)反比例函数kyx(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣x2+2ax+3,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.【详解】解:(1)当k >0时,y 随x 的增大而增大,∵1≤x ≤3,∴k ﹣1≤y ≤3k ﹣1,∵函数y =kx ﹣1(1≤x ≤3)为“k 属和合函数”,∴(3k ﹣1)﹣(k ﹣1)=4(3﹣1),∴k =4;当k <0时,y 随x 的增大而减小,∴3k ﹣1≤y ≤k ﹣1,∴(k ﹣1)﹣(3k ﹣1)=4(3﹣1),∴k =﹣4,综上所述,k 的值为4或﹣4;(2)∵反比例函数y =kx,k >0,∴在第一象限,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属和合函数”,∴k a ﹣kb=k (b ﹣a ),∴ab =1,∵a +b =3,∴(a ﹣b )2=(a +b )2﹣4ab =9﹣4=5,∴a ﹣b (3)∵二次函数y =﹣x 2+2ax +3的对称轴为直线x =a ,∵当﹣1≤x ≤1时,y 是“k 属和合函数”,∴当x =﹣1时,y =2﹣2a ,当x =1时,y =2+2a ,当x =a 时,y =a 2+3,①如图1,当a ≤﹣1时,当x =﹣1时,有y 最大值=2﹣2a ,当x =1时,有y 最小值=2+2a ∴(2﹣2a )﹣(2+2a )=k •[1﹣(﹣1)]=2k ,∴k =﹣2a ,而a ≤﹣1,∴k ≥2;②如图2,当﹣1<a ≤0时,当x =a 时,有y 最大值=a 2+3,当x =1时,有y 最小值=2+2a ,∴a 2+3﹣(2+2a )=2k ,∴k =2(1)2a -,∴12≤k <2;③如图3,当0<a ≤1时,当x =a 时,有y 最大值=a 2+3,当x =﹣1时,有y 最小值=2﹣2a ,∴a 2+3﹣(2﹣2a )=2k ,∴k =2(1)2a +,∴12<k ≤2;④如图4,当a >1时,当x =1时,有y 最大值=2+2a ,当x =﹣1时,有y 最小值=2﹣2a ,∴(2+2a )﹣(2﹣2a )=2k ,∴k =2a ,∴k >2.综上所述,当﹣1≤x ≤1时,y 是“k 属和合函数”,k 的取值范围为k ≥12.8.(师大附中博才)已知a 、b 是两个不相等的实数且a b <,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],.a b 对于一个函数,如果它的自变量x 与函数值y 满足:当a x b ≤≤时,有(ta y tb t ≤≤为正数),我们就称此函数是闭区间[],a b 上的“t 倍函数”.例如:正比例函数2y x =,当13x ≤≤时,26y ≤≤,则2y x =是13x ≤≤上的“2倍函数”.(1)已知反比例函数4yx=是闭区间[],m n 上的“2倍函数”,且m n +=22m n +的值;(2)①已知正比例函数y x =是闭区间[]1,2023上的“t 倍函数”,求t ;②一次函数()0y kx b k =+≠是闭区间[],m n 上的“2倍函数”,求此函数的解析式.(3)若二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,求实数a 、b 的值.【详解】(1)已知反比例函数4y x=是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,当x m =时,4y m =;当x n =时,4y n=,又40k => ,∴当0x >时,y 随x 的增大而减小,当0x <时,y随x 的增大而减小,42n m ∴=,且42m n=,24mn ∴=,又m n += ,()22222023m n m mn n ∴+=++=,2220232202342019m n mn ∴+=-=-=.(2)①已知正比例函数y x =,y 随x 的增大而增大,且当1x =时,1y =;当2023x =时,2023y =,∴当12023x ≤≤时,12023y ≤≤,y x ∴=是闭区间[]1,2023上的“1倍函数”,即1t =.② 一次函数0y kx b k =+≠()是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,若0k >时,y 随x 的增大而增大,∴当x m =,则2y km b m =+=;当x n =,则2y kn b n =+=,()()2m n k m n ∴-=-,2k ∴=,将2k =代入2km b m +=,得22m b m +=,0b ∴=.∴若0k >时,函数解析式为2y x =.若0k <时,y 随x 的增大而减小,∴当x m =时,2y km b n =+=;当x n =时,2y kn b m =+=,2k ∴=-,22b m n =+.∴若0k <时,函数解析式为()22y x m n =-++,综合以上分析,函数的解析式为2y x =或()22y x m n =-++.(3)由二次函数269y x x =--解析式可知,抛物线开口向上,对称轴3x =,∴当3x <时,y 随x 的增大而减小;当3x >时,y 随x 的增大而增大, 二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,∴当a x b ≤≤时,()770a y b a ≤≤≠,若3b ≤时,根据增减性,当x a =时,2697y a a b =--=;当x b =时,2697y b b a =--=,两式相减得:226677a b a b b a --+=-,()()a b a b b a ∴+-=-,1b a ∴=--,将1b a =--代入2697a a b --=得:220a a +-=,2a ∴=-或1a =,当2a =-时,1b =;当1a =时,2b =-(舍去,a b <).若3a ≥时,当x a =时,2697y a a a =--=,解得a =a =x b =时,2697y b b b =--=.解得132b =或b =均不符合a b <,舍去.若3a <,3b >时,当3x =时,236397y a =-⨯-=,187a ∴=-,则x a =时,26396949y a a =--=,若639749b =,6393343b =<,(舍去),当x b =时,2697y b b b =--=,则b =b =综上分析,2a =-,1b =或者187a =-,b =9.(长郡)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值的和叫做点P (x ,y )的勾股值,记为[]P x y =+.(1)已知点A (1,3),B (2-,4),C 22),直接写出[]A,[]B ,[]C 的值;(2)已知点D 是直线2y x =+上一点,且[]4D =,求点D 的坐标;(3)若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且[]24M ≤≤.令2242022t b a =-+,试求t 的取值范围.【详解】(1)解:∵A (1,3),B (−2,4),C ),∴[A ]=|1|+|3|=4,[B ]=|-2|+|4|=6,[C ;(2)设D (m ,n ),∵D 是直线y =x +2上一点,且[D ]=4,∴42m n n m ⎧+⎨+⎩==,解得13m n =⎧⎨=⎩或31m n =-⎧⎨=-⎩,∴点D 的坐标(1,3)或(-3,-1);(3)由题意方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解,消去y 得2(1)10ax b x +-+=,由题意224(1)40b ac b a -=--=,∴24(1)a b =-,∴方程可以化为()()2214140b x b x -+-+=,∴1221x x b ==-,∴22,11M b b ⎛⎫ ⎪--⎝⎭,∵[]24M ≤≤,∴2121b ≤≤-或2211b -≤≤--,解得10b -≤≤或23b ≤≤,∵点M 在第一象限,∴10b -≤≤,∵22222420222(1)202222021t b a b b b b =-+=--+=++=2(1)2020b ++,∵10b -≤≤,∴20202021t ≤≤.10.(雅礼)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=11b ab a≥⎧⎨-⎩,,<,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点1)的限变点的坐标是;②在点A(-2,-1),B(-1,2)中有一个点是函数y=2x图象上某一个点的限变点,这个点是;(填“A”或“B”)(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;(3)若点P在关于x的二次函数y=x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式及s的取值范围.【详解】(1)①根据限变点的定义可知点1)1);②(-1,-2)限变点为(-1,2),即这个点是点B.(2)依题意,y=-x+3(x≥-2)图象上的点P的限变点必在函数y=31321x xx x-+≥⎧⎨--≤⎩,,<的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=-2时,-2=-x+3.∴x=5.当b′=-5时,-5=x-3或-5=-x+3.∴x=-2或x=8.∵-5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.。

2024年中考数学压轴题重难点知识剖析及训练—圆与射影定理结合型压轴题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—圆与射影定理结合型压轴题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—圆与射影定理结合型压轴题(含解析)射影定理模型:射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。

射影定理是数学图形计算的重要定理,在初三各名校的数学和各地中考试题中都多次考查了这一模型的应用。

图形推导过程结论因为⎩⎨⎧∠=∠∠=∠ACDABCAA∴ABC∆∽ACD∆∴ACABADAC=①ABADAC ⋅=2;②BABDBC⋅=2;③BDADCD⋅=21.(长沙中考)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)+=.(2)若PN2=PM•MN,则=.【解答】解:(1)∵MN 为⊙O 的直径,∴∠MPN =90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°,∵NE 平分∠PNM ,∴∠MNE =∠PNE ,∴△PEN ∽△QFN ,∴,即①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°,∴∠NPQ =∠PMQ ,∵∠PQN =∠PQM =90°,∴△NPQ ∽△PMQ ,∴②,∴①×②得,∵QF =PQ ﹣PF ,∴=1﹣,∴+=1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPM ,∴由射影定理得:PN 2=QN •MN ,∵PN 2=PM •MN ,∴PM =QN ,∴,∵,∴,∴,∴NQ 2=MQ 2+MQ •NQ ,即,设,则x 2+x ﹣1=0,解得,x =,或x =﹣<0(舍去).2.(北雅)如图,点P 在以MN 为直径的半圆上运动(不与M 、N 重合),PH MN ⊥于H 点,过N 点作NQ 与PH 平行交MP 的延长线于Q 点.(1)求QPN ∠的度数;(2)求证:QN 与O 相切;(3)若2PN PM MN =⋅,求MH NH 的值.【解答】(1)解:MN 是直径,90MPN ∴∠=︒,90QPN ∴∠=︒;(2)证明:PH MN ⊥ ,90PHM ∴∠=︒,//QN PH ,90QNM PHM ∴∠=∠=︒,ON QN ∴⊥,ON 是半径,QN ∴与O 相切;(3)解:90MNP PNQ ∠+∠=︒ ,90PNQ Q ∠+∠=︒,MNP Q ∴∠=∠,MPN QPN ∠=∠ ,NPM QPN ∴∆∆∽,∴PN PM QP PN=,2PN PM QP ∴=⋅,2PN PM MN =⋅ ,QP MN ∴=,//PH QN ,∴MH MP HN PQ=,∴MH MP HN MN =,同理得,MHP MPN ∆∆∽,∴MP MH MN MP =,HN MP ∴=,设PQ MN a ==,MP b =,∴MH MP HN PQ=,∴a b b b a -=,(12a b -∴=(舍)或1)2a b =∴12MH a b HN b -==.3.(长沙中考)如图,点A ,B ,C 在O 上运动,满足222AB BC AC =+,延长AC 至点D ,使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交O 于点M (点M 在劣弧 AC 上).(1)BD 是O 的切线吗?请作出你的判断并给出证明;(2)记BDC ∆,ABC ∆,ADB ∆的面积分别为1S ,2S ,S ,若212()S S S ⋅=,求2(tan )D 的值;(3)若O 的半径为1,设FM x =,FE FN y ⋅=,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.【解答】解:(1)BD 是O 的切线.证明:如图,在ABC ∆中,222AB BC AC =+,90ACB ∴∠=︒.又点A ,B ,C 在O 上,AB ∴是O 的直径.90ACB ∠=︒ ,90CAB ABC ∴∠+∠=︒.又DBC CAB ∠=∠,90DBC ABC ∴∠+∠=︒.90ABD ∴∠=︒.BD ∴是O 的切线.(2)由题意得,112S BC CD =⋅,212S BC AC =⋅,12S AD BC =⋅.212()S S S ⋅= ,∴2111()222BC CD AD BC BC AC ⋅⋅⋅=⋅.2CD AD AC ∴⋅=.2()CD CD AC AC ∴+=.又90D DBC ∠+∠=︒ ,90ABC A ∠+∠=︒,DBC A ∠=∠,D ABC ∴∠=∠.tan tan BC AC D ABC CD BC∴∠==∠=.2BC CD AC ∴=.又2()CD CD AC AC +=,∴4222BC BC AC AC +=.4224BC AC BC AC ∴+⋅=.241(()AC AC BC BC ∴+=.由题意,设2(tan )D m ∠=,2(AC m BC∴=.21m m ∴+=.152m ±∴=.0m > ,152m ∴=.2(tan )D ∴∠=.(3)设A α∠=,90A ABC ABC DBC ABC N ∠+∠=∠+∠=∠+∠=︒ ,A DBC N α∴∠=∠=∠=.如图,连接OM .∴在Rt OFM ∆中,OF =.1BF BO OF ∴=+=+,1AF OA OF =-=.∴在Rt AFE ∆中,tan (1tan EF AF αα=⋅=⋅,1cos cos AF AE αα==.在Rt ABC ∆中,sin 2sin BC AB αα=⋅=.(1r = ,2AB ∴=.)cos 2cos AC AB αα=⋅=.在Rt BFN ∆中,sin BF BN α==tan BF FN α==.y FE FN ∴=⋅2x =2x =2x =21x x=⋅x =.即y x =.FM AB ⊥ ,FM ∴最大值为F 与O 重合时,即为1.01x ∴< .综上,y x =,01x <.4.(长沙中考)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求∠CDE 的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.解:(1)∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)设DE=1,则AC=2,由射影定理得:AC2=AD×AE,∴20=AD(AD+1),∴AD=4或﹣5(舍去),∵DC2=AC2﹣AD2,∴DC=2,∴tan∠ABD=tan∠ACD==2;5.(青竹湖三模)如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.(1)求证:AE=CE;(2)EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;(3)在(2)的条件下,若CF:CD=n(n>0),求sin∠CAB.解:(1)证明:连接DE,∵∠ABC=90°∴∠ABE=90°∴AE是⊙O直径,∴∠ADE =90°∴DE ⊥AC 又∵D 是AC 的中点∴DE 是AC 的垂直平分线∴AE =CE ;(2)解:在△ADE 和△EFA 中,∵∠ADE =∠AEF =90°,由射影定理得:AE 2=AD ×AF,∴AE 2=2×6,∴AE =2cm ;(3)解:∵AE 是⊙O 直径,EF 是⊙O 的切线,∵CF:CD=n,令CD=1,则CF=n ,∵∠ADE =∠AEF =90°,由射影定理得:AE 2=AD ×AF ,∴AE 2=1×(n+2),∴AE ==CE ,∵∠CAB =∠DEC,∴sin ∠CAB =sin ∠DEC ===.6.(长郡)如图,AB 为⊙O 的直径,弦CD 与AB 相交于E ,DE =EC ,过点B 的切线与AD 的延长线交于F ,过E 作EG ⊥BC 于G ,延长GE 交AD 于H .(1)求证:AH =HD ;(2)若BFBD =,DF =9,求⊙O 的半径.【解答】(1)证明:∵AB 为⊙O 的直径,DE =EC ,∴AB ⊥CD ,∴∠C +∠CBE =90°,∵EG ⊥BC ,∴∠C +∠CEG =90°,∴∠CBE =∠CEG ,∵∠CBE =∠CDA ,∠CEG =∠DEH ,∴∠CDA =∠DEH ,∴HD =EH ,∵∠A +∠ADC =90°,∠AEH +∠DEH =90°,∴AH =EH ,∴AH =HD ;(2)解:∵∠BDF =90°,BFBD =,令BD=4x ,BF=5x ,则222)5(94x x =+)(,∴2=x ,BD=12,由射影定理得:BD 2=DF •DA ,∴144=9×DA ,∴DA=16,又由射影定理得:AB 2=AF •DA ,∴AB 2=25×16,∴AB=20,即半径为10.10.如图,AB 是O 的直径,点C 是O 上一点,AD 与过点C 的切线垂直,垂足为D ,直线DC 与AB的延长线交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE ,BE =.(1)求证:AC 平分DAB ∠;BC=,求阴影部分的面积;(2)若5CD=,求PC的长度(射影定理).(3)若3【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)解:连接AE.∵∠ACE=∠BCE,∴,∴AE=BE.又∵AB是直径,∴∠AEB=90°.∴AB=BE=×5=10,∵OB=5,∴BC=OB=OC=5,即△OBC是等边三角形,=×5×=,∴∠BOC=60°,∴OH==,CH=OH=,∴S△BOCS扇形BOC=×π×52=π,∴阴影部分的面积为π﹣;(3)解:过点C作CH⊥AB垂足为点H,如图:由(2)得:OC=OB=5,(2)∵AC平分∠DAB,CH⊥AB,CD⊥AD,∴CH=CD=3,∵∠ACB=∠BHC=90°,由射影定理得:CH2=BH•AH,设BH=x,AH=10-x,∴32=x(10﹣x),解得:x=1或9(舍),又由射影定理得:CH2=O H•HP,∴32=4HP,解得:HP=.7.(雅礼)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=24,AM=MC,求的值.解:(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴=,∠A=∠A,∴△ADM∽△APO.(2)∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠1=∠4,∠2=∠3,∵OD=OM,∴∠3=∠4,∴∠1=∠2,∵OP=OP,OD=OC,∴△ODP≌△OCP,∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(2)连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+242=9R2,∴R=6,∴OD=6,MC=12,∵==,∴DP=12,∵O是MC的中点,∴==,∴点P是BC的中点,∴BP=CP=DP=12,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=24,MC=12,∴BM=12,由射影定理得:MC2=MD×MB,∴122=12×MD,∴MD=4,∴=.8.(广益)如图,已知PB与⊙O相切于点B,A是⊙O上的一点,满足PA=PB,连接PO,交AB于E,交⊙O于C,D两点,E在线段OD上,连接AD,OB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:(1)△ABP∽△QCB,y=40/x。当P与A重合时,BP最短,x=AB=5;当P与D重合时,BP最长,x=BD= ,5<x< 。(2)由上小题得BP×CQ=40,∴以CQ2=40,则面积比=AB2/QC2=5/8。
28、距某学校A点东240米的O点处有一货场,经过O点沿北偏西600方向有一条公路OM,假定运货车辆形成的噪音影响的范围在130米以内。(1)通过计算说明这条公路上车辆的噪音必然对学校造成影响。(2)为了消除噪音对学校的影响,计划在公路边修筑一段消间墙,请确定消间墙的位置并计算消音墙的长度(只考虑声音的直线传播)。
25、菱形ABCD的边长为a,∠A=600,E、F分别是边AD、DC上的动点(E、F异于菱形的顶点),且AE+CF=a。①E、F在移动时,△BEF形状如何?②求△BEF面积的最小值。
分析:①连结BD,∵∠A=600,∴△ABD与△BCD都为等边三角形,BD=BC,∠ADB=∠C,AE+CF=a=AE+DE,∴DE=CF,∴△BDE≌△BCF,则BE=BF,∠EBD=∠FBC,∴∠EBF=600,于是△BEF为正三角形。②∵△BEF为正三角形,∴△BEF的面积= ,则当其边长最短时面积最小,又∵E为动点,∴当BE⊥AD时,BE最短,即BE= ,∴△BEF的面积最小值为 。
分析:欲使四边形CDEF为平行四边形,必须DE=CF,即AD-AE=CF,于是24-t=3t,t=6。由于四边形CDEF为等腰梯形,则分别过E、D作EG⊥BC于G,DH⊥BC于H,CF=CH+HG+GF=2CH+GH=2CH+DE,CH=BC-BH=26-24=2,DE=AD-AE=24-t,3t=4+24-t,得t=7。
12、一元二次方程(m-1)x2+2mx+m+2=0有两个实数根,求m的取值范围。(提示:“一元二次方程”意味着m-1≠0,“两个实数根”意味着△≥0。答案,m≤2且m≠1。)
13、设x1、x2是x的方程x2+px+q的两根,x1+1、x2+1是x的方程x2+qx+p的两根,求p、q的值。(提示:利用根与系数的关系列出4个等式,代入化简求得p=-1,q=-3,注意检验两方程是否都有实数根。)
5、先化简再求值: - ,其中a= 。(提示:∵a=2- <1,∴a-1<0。原式=5。=
6、如果x +3x-3=0,求代数式x +3x -3x+3的值。(分析:①用降次法,由已知x =3-3x,代入式子;②原式=x(x +3x-3)+3。值=3。)
7、已知x、y是实数,且(x+y-1) 与 互为相反数,求实数y 的负倒数。(提示:由题意得(x+y-1) + =0,结果为-2。)
17、解方程:x + =3 (提示:原方程可化为 -4-3 =0,设y= ,注意要检验,x=2 。)
18、知关于x的不等式组 无解,求a的取值范围。
解:由(1)得x≤3,由(,2)得x>a,若不等式组有解,则a<x≤3,即a<3。∵不等式无解,∴a≥3。
19、关于x的不等式组 ,有四个整数解,求a的取值范围。
分析:(1)欲说明学校在噪音的影响范围内,只需说明学校到的公路的最短距离小于噪音的影响半径,根据垂线段最短原理,学校到公路的最短距离为点A到OM的垂线段的长。(2)噪音的影响半径是130米,必须在公路上找到与学校距离为130米的两点,即以A为圆心,130米为半径的圆与OM的交点,故OM上这两点间的部分即为消音墙所在的位置,这两点间的距离即为消音墙的长度。
解:解关于a、b的方程组 得 ,由题意得 ,解得 。m=3a+b-7c=21c-9+7-11c-7c=3c-2,∴ 。
4、某人将1,2,3,……,n这n个数输入电脑,求平均数,当他认为输入完毕时,电脑显示只输入了n-1个数,平均数为 ,假设这n-1个数输入无误,问未输入的一个数是多少?
解:设未输入的数是k,则1≤k≤n,据题意得:
8、若m +3m -3m+k分解因式后有一个因式为(m+3),则k=?(提示:由题意(m+3)=0时,m +3m -3m+k=0。k=-9。)
9、若关于x的方程 无解,则m的值是多少?(提示:一个分式方程要无解,即化成整式方程后的解是原方程的增根。整理化简原方程得x=4-m,据题意,x=4-m的解是x=3,代入后解得m=1。)
解:(1)假设该厂现有原料能保证生产,且能生产A产品x件,则能生产B产品80-x件,则5x+2.5(80-x)≤290,1.5x+3.5(80-x)≤212,得34≤x≤36。由题意知,x应为整数,故x=34或x=35或x=36。此时对应的80-x分别为46、45、44。即该厂现有原料能保证生产,可有三种生产方案:生产A、B产品分别为34件、46件;35件、45件;36件、44件。(2)设生产A产品x件,生产B产品80-x件,据题意y=120x+200(80-x),当x=34时,y=13280;当x=35时,y=13220;当x=36时,y=13120。故生产A、B产品分别为36件、44件的方案成本最低,最低生产总成本为13120元。
一、探索、开放、阅读类试题精选
1、设a是大于1的实数,若a、 、 在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上自左至右的顺序是(C)(提示:可以取特殊值来解决,如当a=2时,只有B才成立。)
A、C、B、AB、B、C、AC、A、B、CD、C、A、B
2、规定一种新的运算:a△b=ab-a-b+1,如3△4=3×4-3-4+1,请比较大小:
30、某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元;生产一件B产品需要甲种原料2.5千克,乙种原料3.5千克,生产成本是200元。(1)该化工厂现有原料能否保证生产?若能的话,有几种生产方案?请设计出来。(2)设生产A、B两种产品的总成本为y元,其中一种的生产件数为x,试写出y与x的函数关系式,并利用函数的性质说明(1)中哪种生产方式方案总成本最低,最低生产总成本是多少。
14、已知方程x2+(2m+1)x+m2-2=0的两个实数根的平方和等于11,求m的值。(提示:根据根与系数的关系和已知条件,解得m1=1,m2=-3,分别代入△求值,舍去-3,故m的值为1。。)
15、已知关于x的方程x2+2(2-m)x+3-6m=0,①求证:无论m取什么实数,方程总有实数根;②如果方程的两实根分别为x1、x2,满足x1=3x2,求实数m的值。
26、把一个矩形剪去一个正方形,如果所剩矩形与原距形相似,则原矩形的短边与长边比为多少?
分析:设原矩形的短边与长边分别为x和y,所剩矩形的短边与长边分别为y-x和x,∴ , ,∵x、y分别为短边、长边,∴0< <1,即 。
27、矩形ABCD中,AB=5,BC=8,BC为⊙O的直径,P是AD上一动点(不运动到A、D点),BP交⊙O于Q。(1)设BP=x,CQ=y,求y与x的函数关系式,并写出自变量的取值范围。(2)当BP=CQ时,求△BQC与△PAB的面积比。
(-3)△4=4△(-3)。(提示:可直接将数字代入计算,也可将ab-a-b+1分解成(a-1)(b-1)后再代入数字计算。)
3、观察下列分母上面的规律计算:
(答案:2002)
4、已知:a+ =5,则 =?(提示:原式= +1+ =( +2+ )-1=(a+ ) -1=24)
(1)解:由②代入①得x2-x+a+1=0,∵x1、x2是两个不等的正数,∴x1+x2=1,x1x2=a+1>0,△=1-4a-4>0,解得-1<a<- 。
(2)解:由(1)知x1+x2=1,x1x2=a+1,∴x12+x22-3x1x2=(x1+x2)2-5 x1x2=1-5a-5=-5a-4。∴8a2-6a-11=-5a-4,解得a=1或a=- 。由(1)知-1<a<- ,∴a=- 。
(分析:由于EF=AE+FC,从而构造线段AE+FC是解决本题的关键。于是延长BC至G,使CG=AE,连结DE、DF、DG。)
23、以△ABC的三边作如图所示的三个正三角形△ACD、△ABE、△BCF,连接DF、FE。
①判断四边形AEFD是什么四边形?为什么?
②当∠BAC满足什么条件时,平行四边形ADFE为矩形?
29、甲船在点O处发现乙船在北偏东600的B处以每小时a海里的速度向北航行,甲船的速度是每小时 a海里,问甲船应以什么方向航行才能追上乙船。
分析:求甲船的航行方向,即求甲船的航线与正北方向的夹角。如果将甲、乙两船的航线看作边长,那么只要构造直角三角形就可角的度数。
解:设两船行驶t小时后在A处相遇,则BA=at,OA= at。延长AB交OM于C,则AC⊥OM,∵∠NOB=600,∴∠BOC=300,设BC=b,则OC= b。( at)2=(at+b)2+( b)2,解得at=2b,∴OA= at=2 b,∴cos∠AOC=OC/OA=1/2,即∠AOC=600,因此甲船的行驶方向应为北偏东300。
10、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是多少?(提示:三个未知数两个等式,x、y、z的值不唯一确定,不妨视其中一个字母为常数,解关于另外两个字母的方程组,得x=z,y=5-2z,∴x+y+z=5。)
11、已知关于x、y的两个方程组 具有相同的解,求a、b的值。(提示:据题意,方程组 的解。解得前面的方程组的解代入后面的方程组,再解得a=2,b=3。)
,解得 ,∵ 是n-1个整数的平均数,∴ ×(n-1)的结果是整数,即(n-1)能被7整除。所以n=71,此时k=56。
答:……。
21、满足(1- )x>1+ 的最大整数是多少?
解:∵1- <0
∴x< ,∴x<-2- ,所以最大整数是-4。
22、正方形ABCD中,E、F分别是AB、BC边上的点,且EF=AE+FC,DH⊥EF于H,求证:DH=DC。
①证明:△=4(m+1)2,∵m无论取什么实数,(m+1)2≥0,即△≥0,∴无论m取什么实数,原方程总有两个实数根。
相关文档
最新文档