小升初数学之比例百分数

合集下载

六年级【小升初】小学数学专题课程《分数、百分数问题》(含答案)

六年级【小升初】小学数学专题课程《分数、百分数问题》(含答案)

15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。

分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。

解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。

三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。

【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。

【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。

考点2 求部分量【例2】 参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的47,男队员比女队员的23多40人,问女队员有多少人?【精析】 以全体少先队员为单位“1”。

男队员占全体少先队员的1-47=37,男队员比全体少先队员的47×23=821多40人。

那么全体少先队员的(37-821)是40人,全体少先队员是40÷(37-821)=840(人),女队员有840×47=480(人)。

小升初数学百分数知识点

小升初数学百分数知识点

小升初数学百分数知识点小升初数学考试内容所占比例在整个小升初过程中越来越大,那么如何让数学考试锦上添花呢?下面为大家分享小升初数学百分数知识点,希望对大家有用!【一】百分数的基本概念1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。

2.百分数的意义:表示一个数是另一个数的百分之几。

例如:25%的意义:表示一个数是另一个数的25%。

3.百分数通常不写成分数形式,而在原来分子后面加上〝%〞来表示。

分子部分可为小数、整数,可以大于100,小于100或等于100。

4.小数与百分数互化的规那么:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

5.百分数与分数互化的规那么:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,〝死记〞之后会〝活用〞。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生〝死记〞名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

唐宋或更早之前,针对〝经学〞〝律学〞〝算学〞和〝书学〞各科目,其相应传授者称为〝博士〞,这与当今〝博士〞含义已经相去甚远。

小升初数学百分数的知识点讲解

小升初数学百分数的知识点讲解

小升初数学百分数的知识点讲解
小升初数学百分数的知识点讲解2019年小升初数学百分数的知识点讲解
什么叫百分数?
百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。

百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用,特别是在进行调查统计、分析比较时,经常要用到百分数。

百分数与分数的区别
1.意义不同。

百分数是“表示一个数是另一个数的百分之几的数。

”它只能表示两数之间的倍数关系,不能表示某一具体数量。

如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。

”因此,百分数后面不能带单位名称。

分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。

分数还可以表示两数之间的倍数关系。

2.应用范围不同。

百分数在生产、工作和生活中,常用于调查、统计、分析与比较。

而分数常常是在测量、计算中,得不到整数结果时使用。

3.书写形式不同。

百分数通常不写成分数形式,而采用百分号“%”来表示。

如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可。

数学小升初备考重点梳理比例与百分数的计算方法

数学小升初备考重点梳理比例与百分数的计算方法

数学小升初备考重点梳理比例与百分数的计算方法在数学小升初备考中,比例与百分数是非常重要的内容。

掌握了比例与百分数的计算方法,将有助于学生在解决实际问题时更加灵活和高效。

本文将针对比例与百分数的计算方法进行详细介绍与梳理。

一、比例的计算方法比例是用来表示两个事物之间的对应关系,通常使用两个数的比来表示,比如1:2。

比例的计算方法主要包括比的求值、比的化简和比例的四则运算。

1. 比的求值比的求值是指根据已知条件,计算出比的具体数值。

比如,已知一件事物的长度为3cm,另一件事物的长度为6cm,求它们的比。

解题的步骤是:将两个长度用比符号“:”连接起来,即3:6。

然后,化简比,得到1:2,即这两件事物的长度比为1:2。

2. 比的化简比的化简是指将一个比化简为最简形式。

比如,已知一个比是3:9,要求将其化简为最简形式。

解题的步骤是:找出3和9的最大公因数,然后将3和9都除以最大公因数即可。

这里3和9的最大公因数是3,所以3:9可以化简为1:3。

3. 比例的四则运算比例的四则运算主要包括比例的加法、减法、乘法和除法。

比例的四则运算类似于分数的四则运算。

比如,已知两个比分别为2:3和3:4,求它们的和。

解题的步骤是:将两个比的分子分母对应的部分相加,得到5:7,即这两个比的和为5:7。

二、百分数的计算方法百分数是指以100为基数的百分比,通常以%表示。

在小升初的数学备考中,百分数的计算方法主要包括百分数与分数的互相转化、百分数的加减乘除和百分数与实际问题的应用。

1. 百分数与分数的转化百分数与分数可以互相转化,转化的方法如下:- 百分数转化为分数:将百分数除以100,然后简化为最简分数即可。

比如,75%可以转化为75/100=3/4。

- 分数转化为百分数:将分数的分子除以分母,然后乘以100,得到百分数即可。

比如,2/5可以转化为2/5=0.4=40%。

2. 百分数的加减乘除百分数的加减乘除与整数的加减乘除类似,只不过要将百分数先转化为小数,进行计算后再转化为百分数。

小升初百分数应用题七种类型

小升初百分数应用题七种类型

小升初百分数应用题七种类型摘要:一、百分数应用题的定义和意义二、小升初百分数应用题的七种类型1.求一个数是另一个数的百分之几2.求一个数的百分之几是多少3.求一个数比另一个数多(少)百分之几4.求一个数比另一个数多(少)几分之几5.求一个数的几分之几是多少6.求两个数的几分之几相加(减)等于百分之几7.求两个数的乘积或商是百分之几三、解题方法与技巧1.转换为分数或小数2.利用比例关系3.列方程求解四、注意事项1.认真审题,理解题意2.注意单位换算3.灵活运用解题方法正文:百分数应用题是小升初数学考试中的重要题型,主要考察学生对百分数概念的理解及应用能力。

百分数是表示一个数是另一个数的百分之几的数,它将一个数乘以100%,通常用于表示比例、增长率、折扣等。

下面将详细介绍小升初百分数应用题的七种类型及其解题方法。

1.求一个数是另一个数的百分之几例如:甲数是乙数的60%,求甲数是乙数的百分之几。

解答:甲数是乙数的60%,即甲数是乙数的0.6 倍。

2.求一个数的百分之几是多少例如:一个数是另一个数的60%,求这个数是另一个数的百分之几。

解答:这个数是另一个数的60%,即这个数是另一个数的0.6 倍。

3.求一个数比另一个数多(少)百分之几例如:甲数比乙数多20%,求甲数比乙数多(少)百分之几。

解答:甲数比乙数多20%,即甲数比乙数多0.2 倍。

4.求一个数比另一个数多(少)几分之几例如:甲数比乙数多2/5,求甲数比乙数多(少)几分之几。

解答:甲数比乙数多2/5,即甲数比乙数多0.4 倍。

5.求一个数的几分之几是多少例如:一个数是另一个数的3/5,求这个数是另一个数的几分之几。

解答:这个数是另一个数的3/5,即这个数是另一个数的0.6 倍。

6.求两个数的几分之几相加(减)等于百分之几例如:甲数是乙数的30%,乙数是丙数的40%,求甲数与丙数的几分之几相加等于50%。

解答:设丙数为x,则有0.3(x) + 0.4(x) = 0.5(x),解得x=2。

小学数学-有答案-学而思教育小升初专项训练9:比例百分数篇

小学数学-有答案-学而思教育小升初专项训练9:比例百分数篇

学而思教育小升初专项训练9:比例百分数篇一、解答题(共25小题,满分0分)1. 甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元?2. 100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有________千克。

3. 有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?4. 有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。

如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。

这两堆煤共重多少吨?5. 一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚?6. 某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?7. 把一个正方形的一边减少20%,另一边增加2米,得到一个长方形。

它与原来的正方形面积相等。

问正方形的面积是多少?8. 学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?9. 某校四年级原有2个班,现在要重新编为3个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班。

如果新一班的人数比新二班的人数多10%,那么原一班有多少人?10. 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?11. 有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?12. 某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?13. 幼儿园大班和中班共有32名男生,18名女生。

【名师精讲】小升初数学知识点—百分数

【名师精讲】小升初数学知识点—百分数
3
所以0.38> >0.373 >37%
8
易错3
一杯糖水含糖率是40%,喝了一 半后剩下糖水的含糖率是( )
错析:
糖水喝了一半, 糖和水的质量都 减少了一半,含 糖率是不变的。
归纳总结
百分数的意义

百分数的读写


百分数和小数的互化
百分数和分数的互化
•等式、程与代数 •1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 •2.方程式:含有未知数的等式叫方程式。 •3.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会元一次方程式的例法及计算。即例出代有x的算式并计算。 •4.代数:代数就是用字母代替数。 •5.代数式:用字母表示的式子叫做代数式。 •(一)整数 •1整数的意义 •自然数和0都是整数。 •整数分为正整数和负整数。 •整数的个数是无限的,没有最小的整数,也没有最大的整数。. •2自然数 •我们在数物体的时候,用来表示物体个数的1, 2, 3..... 叫做自然数。 •一个物体也没有,用0表示。0也是自然数。 •3正数和负数 •描述具有相反意义的量,可以用正、负数。 •0既不是正数,也不是负数。
1 - (20% + 3 ) 4
=1-(20%+75%)
=5%
易错点拨
易错1
因为
4 5
=80%,所以
4 5
千克可以写成80%千克。(
•等式、程与代数
•1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
•2.方程式:含有未知数的等式叫方程式。

小升初数学知识点可打印

小升初数学知识点可打印

小升初数学知识点可打印以下是小升初数学常见知识点,可供打印使用:
一、整数
1. 整数的概念和表示方法
2. 整数的加减法
3. 整数的乘除法
二、分数
1. 分数的概念和表示方法
2. 分数的加减法
3. 分数的乘除法
4. 分数化简
三、小数
1. 小数的概念和表示方法
2. 小数的加减法
3. 小数的乘除法
4. 小数化分为整数
5. 小数的四舍五入
四、比例与百分数
1. 比例的概念和表示方法
2. 比例的性质
3. 比例的应用
4. 百分数的概念和表示方法
5. 百分数与小数的转换
五、代数式
1. 代数式的概念和表示方法
2. 代数式的加减法
3. 代数式的乘法
4. 代数式的化简
六、方程与不等式
1. 方程的概念和解法
2. 不等式的概念和解法
七、几何图形
1. 平面图形的概念和分类
2. 直线、角度、三角形、四边形的基本概念
3. 圆的概念和性质
4. 空间图形的概念和分类
以上知识点仅供参考,具体内容可根据学生的实际情况进行适当调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学之比例百分数
1.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?
2.把一个正方形的一边减少 20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?
3.学校男生人数占45%,会游泳的学生占54%。

男生中会
游泳的占72%,问在全体学生中不会游泳的女生占百分之几?
4.某校四年级原有2个班,现在要重新编为3个班,将原一班的1/3与原二班的1/4组成新一班,将原一班的1/4与原二班的1/3组成新二班,余下的30人组成新三班。

如果新一班的人数比新二班的人数多10%,那么原一班有多少人?
5.一个长方形长与宽的比是14:5,如果长减少13厘米,
宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?
6.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2∶5。

现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(左下图),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(右下图),那么做成的竖式纸盒与横式纸盒个数之比是多少?
7.某学校入学考试,参加的男生与女生人数之比是4∶3.结果录取91人,其中男生与女生人数之比是8∶5.未被录取的学生中,男生与女生人数之比是3∶4.问报考的共有多少人?
8.幼儿园大班和中班共有32名男生,18名女生。

已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?
9.某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?
10.A,B,C三个试管中各盛有10克、20克、30克水。

把某种浓度的盐水 10克倒入 A中,混合后取出10克倒入B 中,混合后又从 B中取出 10克倒入 C中。

现在 C中盐水浓度是 0.5%。

问最早倒入A中的盐水浓度是多少?
11.小明到商店买红、黑两种笔共66支。

红笔每支定价5元,黑笔每支定价9元。

由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?
12.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元。

每提高一个档次,每双皮鞋利润增加6元。

最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋。

按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元?
13,某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?
14.在下图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.
15.成本 0.25元的练习本 1200本,按 40%的利润定价出售。

当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的 86%,问剩下的练习本出售时是按定价打了什么折扣?
16.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数
的1
4
,如果甲给乙20本,那么乙比甲多的数量恰好是两人
总数的1
6。

那么他们共有多少本书?
17.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5∶4.求甲、乙、丙三人所有的图书数之比.
18一个容器内已注满水,有大、中、小三个球。

第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起
,第三次是第一次的2.5倍,求三个球的体积之比。

19.某种密瓜每天减价20%.第一天妈妈按定价减价20%买了3个密瓜,第二天妈妈又买了5个密瓜,两天共花了42元.如这8个密瓜都在第三天买,问要花多少钱?
20.袋子里红球与白球数量之比是19:13。

放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11。

已知放入的红球比白球少80只,那么原先袋子里共有多少只球?
11。

相关文档
最新文档