高等数学4-1

合集下载

高等数学一(1)完整答案

高等数学一(1)完整答案
原式=
(6)令 ,则
原式=
(7)令 ,则
原式=
(8)令 ,则
原式=
(9)原式=
(10)原式=
(11)原式=
(12)原式=
(13)原式=
(14)令 ,则 ,
原式=
(15)令 ,则
原式=
(16)原式=
(17)原式=
(18)原式=
2、(1)原式=
(2)原式=0(因为 在 上为奇函数)
(3)原式=0(因为 在 上为奇函数)
原式= 发散
,而事实上 矛盾
方程 只有正根。
5.解: 为一元三次方程, 为一元二次方程,
故只有两个实根。

由罗尔定理知,两实根区间分别为 。
习题3-2
1.(1)原式
(2)原式
(3)原式
(4)原式
(5)原式
(6)原式
(7)原式
(8)原式
(9)原式
(10)原式
(11)原式
(12)原式
2.解:
3.解:
若用洛必达法则,则无限循环,即
(4)原式=
3、(1)证明:令 ,则
所以
(2)证明:令 ,则 ,
所以
(3)证明:令 ,则 ,
所以
6、(1)原式=
(4)原式=
(6)原式=
(8)令 ,则原式=
(9)原式=
(10)原式=
习题5—4
1、(1)
(3) ,发散
2、(1) 为函数 的无穷间断点,所以原式= 发散
(3) 为函数 的无穷间断点,所以
故 ,
,得唯一驻点: 。
当 , 时,圆柱体积最大。
15.解:设生产 台,利润最大。
则目标函数为

大学高等数学上册:4-1单调性与极值

大学高等数学上册:4-1单调性与极值
y
(非严格意义的) 注意
闭区间[a, b]上上述结论不一定成立. o a
bx
y
y
oa
bx o a
bx
1.闭区间上连续函数的最值
闭区间[a, b]上连续函数f (x) 的最大最小值 M,m 的求法. (1) 求出f (x) 在(a, b) 内的所有临界点:x1, x2 , , xn. (2) 求出函数值 f ( x 1), f ( x 2), , f ( x n) 及 f (a),f (b). (3) 比较以上这些函数值的大小即可得:
令 f ( x) 0 得驻点x = -1, 0, 1. f ( x) 6( x2 1)(5 x2 1)
x ( ,1) 1 (1,0) 0 (0, 1) 1
(1, )
f ( x) -
0

0
+
0
+
f ( x)
0
+
0
f (x)
非极值
极小值 f (0) = 0
非极值
三、最值
最值是整体概念而极值是局部概念. 结论:若f (x) 在 (a, b) 内有最值点 x0,则 x0 必是极值点.
例如
y x3
y x
x = 0 是驻点但非极值点 x = 0 是极小值点但 y (0) 不存在
结论:极值点必是临界点
极值点的必要条件
问题:如何判别临界点是否为极值点?
3.极值点的充分条件
y x2
y x3
y 3 x2
(1)一阶充分条件:
设 x0 是f ( x )的临界点, f ( x )在某N ( x0 )内连续,在
f ( x )的驻点.
(4) 函数的单调性是一个区间上的性质,不能用一点

高等数学第4章

高等数学第4章

• 式(4-10)称为分部积分公式。这个公式把积分∫udv转化成了积分∫vdu, 如图4-5所示,当积分∫udv不易计算,而积分∫vdu比较容易计算时, 就可以使用这个公式。
• 例4-46 求∫xsinxdx。 • 解 设u=x,dv=sinxdx=d(-cosx),则 • ∫xsinxdx=∫xd(-cosx)=-xcosx-∫(-cosx)dx • =-xcosx+∫cosxdx • =-xcosx+sinx+C • 当运算比较熟练以后,可以不写出u和dv,而直接应用分部积分

=∫f1(x)dx+∫f2(x)dx+…+∫fn(x)dx
• 4.1.4 基本积分运算
• 因为求不定积分的运算是求导数的逆运算,所以,导数公式表中的 每个公式反转过来就得到表4-1的不定积分公式。
表4-1 基本积分公式
1。∫0dx=C
2。∫1dx43;C
6。∫sinxdx=-cosx+C
• 换元积分法包括:第一类换元积分法(凑微分法)和第二类换元积分法。
• 4.2.1 第一类换元积分法(凑微分法) • 定理 如果∫f(x)dx=F(x)+C,则
• ∫f(u)du=F(u)+C • 其中u=φ(x)是x的任一个可微函数。 • 上述定理表明:可以将基本积分公式中的积分变量换成任一可微函数,
(把u还原为φ(x))
• 由于积分过程中有凑微分(φ'(x)dx=d(φ(x)))的步骤,因此第一类换元积 分法又称为凑微分法。
• 用第一类换元积分法求不定积分的过程是:凑微分、换元、积分、回 代。
• 4.2.2 第二类换元积分法
• 第一类换元积分法是通过变量代换u=φ(x),将积分∫f(φ(x))φ'(x)dx化 为∫f(u)du。计算中常常遇到与第一类换元积分法相反的情形,即 ∫f(x)dx不易求出,但适当选择变量代换x=φ(t)后,得 ∫f(x)dx=∫f(φ(t))φ'(t)dt,而新的被积函数f(φ(t))φ'(t)的原函数容易求出。 设

高数高等数学同济版第七版习题答案1-4

高数高等数学同济版第七版习题答案1-4

习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x xy 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有 εδ=<-=+-=|3|39||2x x x y , 所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104.4. 求下列极限并说明理由: (1)xx x 12lim +∞→;(2)xx x --→11lim 20. 解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim20=--→x x x .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k(k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .。

1-4函数极限的运算

1-4函数极限的运算

·复习 极限的定义的几种形式·引入 如何求一个函数的极限,是高等数学的基本运算之一,为此,要切实掌握求极限的基本方法·讲授新课第四节 函数极限的运算一 函数极限的四则运算法则 (一)极限的运算法则设lim ()f x A =,lim ()g x B =,则法则 1 两个具有极限的函数的代数和的极限等于这两个函数的极限的代数和,即 lim[()()]lim ()lim()f x g x f x x A B ±=±=±。

法则2 两个具有极限的函数的积的极限等于这两个函数极限的积,即 lim[()()]lim ()lim ()f x g x f x g x A B ⋅=⋅=⋅。

特别地,(1)若()g x C =,则lim ()lim ()Cf x C f x C A =⋅=⋅ (C 是常数), (2)若()()g x f x =,则 222lim[()][lim ()]f x f x A ==, 法则3 两个具有极限的函数的商的极限,当分母的极限不为0时,等于这两个函数的极限的商,即()()limlim ()()f x f x Ag x g x B== (0B ≠)证法则2 因为lim ()f x A =,lim ()g x B =,所以()()f x A x α=+,()()g x B x β=+(,αβ都是无穷小), 于是()()()(()f x g x A B AB A B αββααβ=++=+++,由无穷小的性质知A B βααβ++仍为无穷小, 再由极限与无穷小的关系,得lim[()()]lim ()lim ()f x g x A B f x g x ⋅=⋅=⋅.法则1和法则2可以推广到具有极限的有限个函数的情形。

如当n 为正整数时,有 lim[()][lim ()]n n n f x f x A ==例1(1)求22lim(22)xx x →-+ ,(2)求22124lim 32x x x x →-+-+.解:(1)由极限的四则运算法则得22222222lim(22)lim 2lim lim 22222x x x x x x x x →→→→-+=-+=-+=(2)因为2-1lim 3250x x →+=≠,所以由极限的四则运算法则得 221243lim 325x x x x →-+-=-+由例1可以看出,当0x x →时,求有理多项式或有理分式(分母在0x x →时的极限不为0)的极限,只要把0x 直接代人表达式级数函数值即可例2 (1)求224lim 2x x x →--,(2)2147lim 1x x x →+-解:(1)由于2lim(2)x x →-=0,商的运算法则不能用,但是当 2x →时,2x ≠,因此20x -≠,可以先行约掉2x -这个因子,再求极限22224(2)(2)lim lim lim(2)422x x x x x x x x x →→→--+==+=--. (2)由于21lim(1)0x x →-=,1lim(47)11x x →+=,因此,不能使用商的运算法则,分析、分子、分母又没有非零公因式可约。

高等数学(同济第6版习题课4-1)

高等数学(同济第6版习题课4-1)

(3) xd x = d( x2 ) ;
(4) xd x = d(5 x2 ) ;
(5) xd x = d(1 - x2 ) ;
(6) x3 d x = d(3 x4 - 2) ;
(7) e2 x d x = d(e2 x ) ;
(8)
e-
x 2
dx

d(1

e-
x 2


(9)

x -
x都是
1的 x - x2
原函数 畅
证 [arcsin(2 x - 1)]′ =

·2=
1 - (2 x - 1)2
1, x - x2
[arccos(1 - 2 x)]′ = -

· ( - 2) =
1 - (1 - 2 x)2
1, x - x2
2arctan
x 1- x





1 1
x -
dx =3
dx 1 + x2
-2
dx 1 - x2
= 3arctan x - 2arcsin x + C .
∫ ∫ ∫ (15)
ex
1 - e- x x
dx=
exd x -
x-
1 2
d
x

ex

- 2x2

C.
∫ ∫ (16) 3x ex d x =
(3e) x d x

(3e) x ln(3e)

t= 0
(2)
求使
d d
s t

0的
t值

(3) 求使 s = 50 的 k 值 畅

高等数学_第四章习题课

高等数学_第四章习题课
真分式化为部分分式之和的待定系数法
四种类型分式的不定积分
1. x A adx Aln xaC;2. (x A a)d nx (1n)A x (a)n1C ;
3. x2M pxN xqdxM 2lnx2pxq
NM2parctx anp2 C;
qp24
qp24
4 .( x 2 M p N q x ) x n d M x 2( x ( 2 2 x p p ) d q x ) n x ( x 2 N p M 2 q x ) n p d
即:连续函数一定有原函数.
2、不定积分
(1) 定义
在区间 I内, 函数f(x)的带 有任意 常数项 的 原函 数称 为f(x)在区间 I 内的 不定积 分, 记
为f(x)dx.
f(x)d xF (x)C
函 数 f(x )的 原 函 数 的 图 形 称 为 f(x )的 积 分 曲 线 .
(1)3axdx lan
ln 3 2
dt t2 1
2l1n3(t
1 1 t
1 )dt 1 lnt1C 1 2(ln 3ln2) t1
2
1
3x2x
ln C.
2(l3 nln2) 3x2x
例2 求ex1(1csoixsnx)dx.
ex(12sinxcosx)
解 原式
2 2 dx 2co2sx
2
(ex 1 extanx)dx
高等数学_第四章习题课
1、原函数
定义 如果在区间I内,可导函数F(x)的导函数为 f(x) ,即xI ,都有F(x) f(x) 或 dF(x) f(x)dx,那么函数F(x)就称为f(x)或 f(x)dx在区间I内原函数. 原函数存在定理 如 果 函 数 f(x)在 区 间 I 内 连 续 , 那 么 在 区 间 I内 存 在 可 导 函 数 F (x), 使 x I, 都 有 F (x)f(x).

高等数学1-4-无穷小与无穷大

高等数学1-4-无穷小与无穷大

说明: 除 0 以外任何很小的常数函数都不是无穷小 !
因为 C 当
显然 C 只能是 0 换句话说,0 是无穷小量。 C 时,
定理 1 . ( 无穷小与函数极限的关系 )
x x0
lim f ( x) A
f ( x ) A , 其中 为
x x0 时的无穷小量 .
证: lim f ( x) A
1.4 无穷小与无穷大
一、无穷小量 定义1 . 若 则称函数 例如 : 函数 函数 为当 函数
(或x ) 时 , 函数
为当
(或x ) 时的无穷小 .
(以零为极限的变量。) 为当 时为无穷小;
时为无穷小;
为当 时为无穷小.
定义1. 若 则称函数 为
(或
x ) 时 , 函数
(或
x ) 时的无穷小 .


所以
3. 若
时,
不是无穷大 !
则直线
x x0
为曲线
的铅直渐近线 .
三、无穷小与无穷大的关系
定理2. 在自变量的同一变化过程中, 若 若
1 为无穷大, 则 为无穷小 ; f ( x) 1 为无穷大. 为无穷小, 且 f ( x) 0 , 则 f ( x) (自证)
说明: 据此定理 , 关于无穷大的问题都可转化为 无穷小来讨论.
无穷小的性质
定理1
定理2
有限个无穷小量的代数和仍是无穷 小量。
有界变量与无穷小量的乘积仍是无
穷小量。 推论1 常量与无穷小量的乘积是无穷小量。
推论2 有限个无穷小量的乘积仍是无穷小量。
定理3 极限不为零的函数除无穷小量,所得的
商是无穷小量。
x x0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意一个原函数.
目录 上页 下页 返回 结束
定义 2.
在区间 I 上的原函数全体称为 其中 — 被积函数 被积函数; — 被积表达式 被积表达式.
上的不定积分, 记作 — 积分号 积分号; — 积分变量 积分变量; 若 则
( C 为任意常数 ) 例如,
∫ cos xdx = sin x + C
ex dx = ex + C ∫ x2dx = ∫
(sin x)′ = cos x (sin x + C)′ = cos x
sin x,sin x + C 都是 cosx的原函数.
所以,
目录
上页
下页
返回
结束
问题: 问题 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 定理 下章证明) 下章证明 存在原函数 . (下章证明
例14. 求
1 4∫ 2 dx = 4∫ csc2 xdx = −4cot x + C 解: 原式 = sin x
例15. 求 解: 原式 =
2 3 = x − x + 4arctan x + C 3
目录 上页 下页 返回 结束
内容小结
1. 不定积分的概念 • 原函数与不定积分的定义 • 不定积分的性质 • 基本积分表 (见P188) 2. 直接积分法: 利用恒等变形 积分性质 及 基本积分公式 恒等变形, 基本积分公式进行积分 . 恒等变形 分项积分 常用恒等变形方法 加项减项 利用三角公式 , L
所求曲线过点 (1, 2) , 故有
(1,2)
O
因此所求曲线为 yБайду номын сангаас= x2 +1
x
目录
上页
下页
返回
结束
不定积分的几何意义: 不定积分的几何意义 的原函数的图形称为 的积分曲线 . 积分曲线 的所有积分曲线组成 的平行曲线族.
∫ f (x) dx 的图形
y
O
x0
x
目录 上页 下页 返回 结束
从不定积分定义可知:
dx (2) ∫ = ln x + C x
例7. 求 解: 原式 = ∫ x
− 4 3
dx = −3x
4 − +1 3
+ C = −3x
−1 3
+C
目录
上页
下页
返回
结束
三、不定积分的性质
1. ∫ k f (x) dx = k∫ f (x)dx (k≠ 0) 2. ∫[ f (x) ± g(x)]dx = ∫ f (x)dx ± ∫ g(x) d x
(2e)x (2e)x (2e)x dx = +C = +C 解: 原式 = ln(2e) 1+ ln2

例12. 求
(sec2 x −1)dx = tan x − x + C 解: 原式 = ∫
例13. 求
1− cos x x − sin x dx = +C 解: 原式 = ∫ 2 x
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
说明: 性质2可推广到有限个函数的情形. 说明
目录
上页
下页
返回
结束
例8. 求
2 5+1 2 1+1 解: 原式 = (x − 5x )dx = x2 − 5⋅ x2 + C 7 3 7 3 2 2 10 2 = x − x +C 7 3

5 2
1 2
例9. 求 解: 原式
目录
上页
下页
返回
结束
例11. 求
第四章 不定积分
微分法: F′(x) = ( ? ) 积分法: ( ? )′ = f (x) 互逆运算
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
第四章 四
目录
上页
下页
返回
结束
一、 原函数与不定积分的概念
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x) 满足 则称 F (x) 为f (x) 在区间 I 上的一个原函数 . 例如,
目录
上页
下页
返回
结束
定理 2.

另一个原函数,则 Φ(x) − F(x) = C. ( C 为任意常数 ) . 证: 由题意得
∴ [Φ(x) − F(x)]′=Φ′(x) − F′(x) = f (x) − f (x) = 0

Φ(x) − F(x) = C ( C 为任意常数 ) .
F 因此,当 C 为任意常数时, (x) + C 可以表示
1 x3 + C 3
C 称为积分常数 积分常数, 积分常数 不可丢 !
目录
上页
下页
返回
结束
例2. 求 解: 1)当 x > 0 时,
2)当 x < 0 时,
综上所述,
目录
上页
下页
返回
结束
例3. 设曲线通过点(1, 2), 且其上任一点处的切线 斜率等于该点横坐标的两倍, 求此曲线的方程. 解:
y
d [ ∫ f (x)d x ] = f (x) (1) dx
d [ ∫ f (x)dx ] = f (x) dx
记作
(2)
∫F′(x) dx =F(x) + C
∫ d F(x)= F(x)+ C
目录
上页
下页
返回
结束
二、 基本积分表 (P188)
注: (1)
xµ dx = µ11 xµ+1 + C (µ ≠ −1) + ∫
相关文档
最新文档