周末作业1 函数及其表示

合集下载

高一数学周末作业(实验班)

高一数学周末作业(实验班)

龙岩一中2017届高一数学(实验班)周末作业(14)06.05班级 姓名 学号1. 函数2sin 26y x π⎛⎫=+⎪⎝⎭的图象向左平移()0ϕϕ>个单位后所得的图象关于y 轴对称,则ϕ的最小值为( )A 、56π B 、23π C 、3π D 、6π 2. 如右图所示,BC 、DE 是半径为1的圆O 的两条直径,且2BF FO = ,则FD FE ⋅=( ) A .34-B .89-C .14-D .49- 3. 直线y=5与1y =-在区间40,πω⎡⎤⎢⎥⎦⎣上截曲线sin (0, 0)2y m x n m n ω=+>>所得的弦长相等且不为零,则下列描述正确的是( ) (A )35,n=22m ≤(B )3,2m n ≤=(C )35,n=22m >(D )3,2m n >= 4、如图5,在△ABC 中,AB=3,AC=5,若O 为△ABC 的外心,则⋅的值是( ) A .B . 8C .D .65.执行如图所示的程序框图.若输出15S =,则框图中①处可以填入( ) A. 2n > B. 4n > C. 6n > D. 8n >6.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期是π,若其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象A .关于点,012π⎛⎫⎪⎝⎭对称 B .关于直线12x π=对称C .关于点)0,6(π对称 D .关于直线6π=x 对称7.若G 是ABC ∆的重心,a ,b ,c 分别是角C B A ,,的对边,若30aG bG cGC A +B +=,则角=A ( ) A . 90 B.60 C.45 D.308. 在同一个坐标系中画出函数xa y =,ax y sin =的部分图象,其中0>a 且1≠a ,则下列所给图象中可能正确的是 ( )A B C D 9. 已知ABC ∆外接圆的半径为1,圆心为O ,且2,3AB AC AO AB OA +==,则CA CB ⋅的值是 ( ) A .3 B C .2D .1 10. 若在边长为4的等边三角形OAB 的边OB 上任取一点P ,则使得6OA OP ⋅≥的概率为A .34B .23C .13D .1411. 从[0,10]上任取一个数x ,从[0,6]上任取一个数y ,则使得534x y -+-≤的概率是( ) A .15B .13C .12D .3412. 已知函数x x x f cos sin )(λ+=的图象的一个对称中心是点)0,3(π,则函数()g x =x x x 2sin cos sin +λ的图象的一条对称轴是直线( )A .65π=x B .34π=x C . 3π=x D .3π-=x 13. 若将函数f (x )=∣sin(ωx -π6)∣(ω>0)的图象向左平移π9个单位后,所得图象对应的函数为偶函数 ,则实数ω的最小值是 .14. 已知正方形ABCD 的边长为2,P 是正方形ABCD 的外接圆上的动点,则AB AP ⋅的最大值为 _______________.15. ABC ∆中,3A π∠=.若点D 为BC 边上的一点,且满足2CD DB =,则当AD 取最小时,BD 的长为16. 已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为17. 已知ABC ∆的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且1cos(A+C)=2, =2csinA a .(Ⅰ)求cos C 的值;(Ⅱ)当]2,0[π∈x 时,求函数2()sin 24cos cos f x x A x =+的最大值.18. 某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取..........组,用剩下的......组数据求线性回归方程..........,.再用被选取的......2组数据进行检验.........(Ⅰ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程ˆy bx a =+;(其中718=b ) (Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的.试问该小组所得线性回归方程是否理想? 19. 某同学用“五点法”画函数()sin()(0,0,||)2f x A x B A πωϕωϕ=++>><在某一个周期内的图(Ⅰ)请求出上表中的123,并直接写出函数的解析式; (Ⅱ)将()f x 的图象沿x 轴向右平移23个单位得到函数()g x ,若函数()g x 在[0,]x m ∈(其中(2,4)m ∈)上的值域为[,且此时其图象的最高点和最低点分别为,P Q ,求OQ 与QP 夹角θ的大小.20. 设m R ∈,函数 (Ⅰ)求()f x 的单调递减区间;(Ⅱ)设锐角△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,,求()f A 的取值范围.21. 如图,矩形ABCD 中,AB =3,AD =2,一质点从AB 边上的点0P 出发,沿与AB 的夹角为θ 的方向射到边BC 上点1P 后,依次反射(入射角与反射角相等)到边CD ,DA 和AB 上的234P P P ,,处.(1)若P 4与P 0重合,求tan θ的值;(2)若P 4落在A 、P 0两点之间,且AP 0=2.设tan θ=t ,将五边形P 0P 1P 2P 3P 4的面积S 表示为t 的函数,并求S 的最大值.22. 如图,在平面直角坐标系中,锐角α、β的终边分别与单位圆交于A ,B 两点. (Ⅰ)如果3tan 4α=,B 点的横坐标为513,求()cos αβ+的值; (Ⅱ)若角αβ+的终边与单位圆交于C 点,设角α、β、αβ+的正弦线分别为MA 、NB 、PC ,求证:线段MA 、NB 、PC 能构成一个三角形;(III )探究第(Ⅱ)小题中的三角形的外接圆面积是否为定值? 若是,求出该定值;若不是,请说明理由.第21题图ABCD P 1P 0P 2P 3P 4(第20题)。

函数练习题及答案

函数练习题及答案

函数练习题及答案函数练习题及答案函数作为数学中的重要概念,被广泛应用于各个领域。

在数学学习过程中,通过练习题的形式巩固和提高对函数的理解和运用能力是非常有效的方法。

本文将介绍一些常见的函数练习题及其答案,希望能对读者的数学学习有所帮助。

一、函数定义与性质题1. 已知函数f(x) = 2x + 3,求f(4)的值。

解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 11。

2. 函数f(x) = x^2 + 2x - 1的定义域是什么?解答:由于函数中存在x的平方项,所以定义域应满足x^2存在的条件,即实数集R。

3. 函数f(x) = 3x^2 - 4x + 1的图像是否对称于y轴?解答:对称于y轴的函数满足f(x) = f(-x)。

将函数中的x替换为-x,得到f(-x) = 3(-x)^2 - 4(-x) + 1 = 3x^2 + 4x + 1。

由于f(x) ≠ f(-x),所以函数的图像不对称于y轴。

二、函数图像与方程题1. 函数f(x) = x^3的图像在坐标系中的形状是什么?解答:函数f(x) = x^3是一个奇函数,其图像关于原点对称。

当x > 0时,f(x) > 0;当x < 0时,f(x) < 0。

因此,函数图像在坐标系中呈现出一种类似"S"形的形状。

2. 已知函数f(x) = x^2 - 4x + 3,求解方程f(x) = 0。

解答:将f(x)置为0,得到x^2 - 4x + 3 = 0。

通过因式分解或者求根公式,可以得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。

三、函数与导数题1. 已知函数f(x) = x^3 - 2x^2 + x,求f'(x)。

解答:对函数f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。

2. 已知函数f(x) = e^x,求f''(x)。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

函数的表示法习题含答案

函数的表示法习题含答案
(1)∵- ∈(-∞,-1),
∴f =-2× =3.
∵ ∈[-1,1],∴f =2.
又2∈(1,+∞),∴ =f(2)=2×2=4.
∵4.5∈(1,+∞),∴f(4.5)=2×4.5=9.
(2)经观察可知a∉[-1,1],否则f(a)=2.
若a∈(-∞,-1),令-2a=6,得a=-3,符合题意;
若a∈(1,+∞),令2a=6,得a=3,符合题意.
故选:C.
【点睛】
考查函数的定义,函数的三要素,判断两函数是否相同的方法:判断定义域和解析式是否都相同.
7.A
【解析】
【分析】
先利用导数研究函数的单调性,可得函数 在 上递增,排除 ,再证明 ,有 ,可排除 , ,从而可得结果.
【详解】
令 ,则 ,
由 ,得 ,即函数 在 上单调递增,
由 ,得 ,即函数 在 上单调递减,
3.配凑法:由已知条件 ,可将 改写成关于 的表达式,然后以 代替 ,便得 的解析式;
4.消去法:已知 与 之间的关系式,可根据已知条件再构造出另外一个组成方程组,通过解方程组求出
16.(1) ;(2)
【解析】
【分析】
(1)过A、D分别作 于G, 于H,由平面图形的知识可得线段长度,由面积公式分段可得函数解析式;(2)化简A、B集合,由 可得 ,得到关于a的不等式,从而求出 的取值范围。
若 ,则
解得 或 (舍去),
或 .
(2)由题意:
【点睛】
本题考查分段函数求值以及由函数值求自变量,考查分类讨论思想以及基本求解能力.
20.(1) .(2)
【解析】
【分析】
(1) 对任意的 恒成立,等价于 对任意的 ,由此能求出实数 的最小值.

高中试卷-3.1 函数的概念及其表示方法(含答案)

高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。

高三数学一轮复习计划表电子教案

高三数学一轮复习计划表电子教案

高三数学
第一轮复习计划
别嫌爸妈唠叨,你想想看,他们除了唠叨,还能做些什么呢?你不能把他们这点仅有的“权力”和“爱好”,都给剥夺了吧?多理解理解你爸爸妈妈吧!
会做的题,一题不错;该拿的分,一分不丢。

对待难题-——我难人亦难,我不畏难;对待易题——我易人也易,我不大意!
青岛国开中学高三数学(文)第一轮复习计划
别嫌爸妈唠叨,你想想看,他们除了唠叨,还能做些什么呢?你不能把他们这点仅有的“权力”和“爱好”,都给剥夺了吧?多理解理解你爸爸妈妈吧!
会做的题,一题不错;该拿的分,一分不丢。

对待难题-——我难人亦难,我不畏难;对待易题——我易人也易,我不大意!。

函数及其表示练习题与答案之欧阳美创编

函数及其表示练习题与答案之欧阳美创编

(数学1必修)第一章(中) 函数及其表示[基础训练A 组] 一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( )A .1B .0C .0或1D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A .2,3B .3,4C .3,5D .2,5 4.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A.1B .1或32C.1,32或5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13 二、填空题 1.设函数.)().0(1),0(121)(a a f x x x x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是。

2.函数422--=x x y 的定义域。

3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是。

高一数学北师大版必修1课时作业2.2.2函数的表示法 Word版含解析

高一数学北师大版必修1课时作业2.2.2函数的表示法 Word版含解析

课时作业函数的表示法基础巩固(分钟,分)一、选择题(每小题分,共分).设函数()=+,(+)=(),则()的解析式是( ).()=+.()=-.()=-.()=+【解析】因为(+)=()=+,所以令+=,则=-,()=(-)+=-.所以()=-.【答案】.函数()=-的图象是( )【解析】由绝对值的意义可知当≥时=-,当<时,=-,选.【答案】.已知函数()=(\\(,>,+,≤,))且()+()=,则等于( ).-.-..【解析】当>时,()+()=+=⇒=-,与>矛盾;当≤时,()+()=++=⇒=-,适合题意.【答案】.已知函数=(\\(+,≤,-,>,))则使函数值为的的值是( ).-.或-.或-.或-或-【解析】当≤时,+=,=-.当>时,-<,不合题意.【答案】.如图所示的四个容器高度都相同.将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图像显示该容器中水面的高度和时间之间的关系,其中不正确的有( ).个.个.个.个【解析】对于第一幅图,水面的高度的增加应是均匀的,因此不正确,其他均正确.【答案】二、填空题(每小题分,共分).已知函数()在[-]上的图像如图所示,则()的解析式为.【解析】当∈[-]时,=+;当∈(]时,=-,故()的解析式为()=(\\(+,-≤≤,-(),<≤.))【答案】()=(\\(+,-≤≤,-(),<≤.)).如图,函数()的图象是折线段,其中,,的坐标分别为(),(),(),则[()]=.【解析】由图象可知()=,()=,[()]=.【答案】.已知≠,函数()满足=+,则()=.【解析】=+=+,所以()=+.【答案】+三、解答题(每小题分,共分).() 已知函数()=,求(-);()已知函数(-)=,求();。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大昌中学高中数学周末练习(1)
函数及其表示,单调性与最值
一、选择题(共5小题;共 40分)
1. 设M=x0≤x≤2,N=y0≤y≤2,给出四个图形(如图所示),其中能表示从集合M到集合N的函数关系的有
A. 0个
B. 1个
C. 2个
D. 3个
2. 已知函数f x=2x+1,x<1
x2+ax,x≥1,若f f0=4a,则实数a等于 ( )
A. 1
2B. 4
5
C. 2
D. 9
3. 若函数f x满足f x+y=f x+f y x,y∈R,则下列各式不恒成立的是 ( )
A. f0=0
B. f3=3f1
C.
f 1
2
=
1
2
f1 D. f−x⋅f x<0
4. 函数f x=x和g x=x2−x的递增区间依次是 ( )
A. −∞,0,−∞,1
B. −∞,0,1,+∞
C. 0,+∞,−∞,1
D. 0,+∞,1,+∞
5. 已知函数f x=x2−2x+3在闭区间0,m上有最大值3,最小值2,则m的取值范围是 ( )
A. 1,+∞
B. 0,2
C. −∞,2
D. 1,2
二、填空题(共3小题;共24分)
6. 已知y=f x是定义在−2,2上的增函数,若f m−1<f1−2m,则m的取值范围
是.
7. 已知函数y=x2−4x+6,x∈1,4,则函数的最大值为;最小值为.
8. 下列说法正确的是.
(1)定义在R上的函数f x满足f2>f1,则函数f x是R上的增函数;
(2)定义在R上的函数f x满足f2>f1,则函数f x在R上不是减函数;
(3)定义在R上的函数f x在区间−∞,0上是增函数,在区间0,+∞上也是增函数,则函数f x在R上是增函数;
(4)若f x在R上是增函数,且f x1>f x2,则x1>x2.
三、解答题(共2小题;共36分)
9.已知f x+1=x2+4x+3,
(1)求f x的解析式;
(2)求函数y=f(x)在x (-2,5)的值域.
10.已知函数f x=1
a −1
x
a>0,x>0.
(1)用定义证明函数f x在区间0,+∞上是增函数;
(2)若函数f x在区间1
2
,4上取得最大值5,求实数a的值.。

相关文档
最新文档