MATLAB 使用入门 (I)
[理学]第一讲MATLAB软件基础及使用入门
![[理学]第一讲MATLAB软件基础及使用入门](https://img.taocdn.com/s3/m/83dd97af84868762caaed5c9.png)
2019/1/20
x= 2 5 8 3 6 0
天津大学数学系
25.0000 22.0000 99.0000
18
指令窗使用简介(c4)
以上矩阵还可以分行输入 A=[1,2,3 4,5,6 7,8,0] (以下是显示结果) A = 1 2 3 4 5 6 7 8 0
2019/1/20 天津大学数学系 19
1.4 MATLAB语言的特点
• 语言简洁紧凑,语法限制不严,程序设
计自由度大,可移植性好
• • • •
运算符、库函数丰富 图形功能强大 界面友好、编程效率高 扩展性强
天津大学数学系 7
2019/1/20
MATLAB 6.x缺省操作界面
返回 Workspace Browser 返回Editor 返回Help之 LaunchPad
2019/1/20 天津大学数学系 4
1.2 MATLAB系统的五大部分
开发环境平台(Development Environment); MATLAB 数学函数库(Mathematical Function Library); MATLAB语言; 图形句柄(Handle Graphics); 应用程序界面(Application Program Interface (API))
(1)在键盘上输入下列内容 A = [1,2,3; 4,5,6; 7,8,0] %节尾没有分号; b = [366;804;351]; %节尾有分号; x=A\b %节尾没有分号;
2019/1/20 天津大学数学系 17
指令窗使用简介(c3)
(2)每按一次【Enter】键,指令就被马上执行 (逐行执行)。由于第二条指令节尾有分号,其结 果不被显示出来,其它两条指令的结果被马上显示 出来。最后在指令窗中将显示以下结果:
1. Matlab使用入门

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
24/32
绘网面命令mesh()使用格式: mesh(x,y,z) 或 mesh(z) 例1.12 绘二元函数 z = x exp( –x2 – y2)的图形。 [x,y]=meshgrid(-2:0.2:2); z=x.*exp(-x.^2-y.^2); mesh(x,y,z) colormap([0 0 1]) 注记: x,y是维数相同的矩阵; 表达式中“.*”和“.^”运算 使得z是与x,y维数相同矩阵。 功能相同的绘图命令:surf, meshc, meshz,· · · · · · · ·
11/32
三角函数与双曲函数
sin asin cos acos tan atan cot acot sec asec csc acsc 正弦函数 反正弦函数 余弦函数 反余弦函数 正切函数 反正切函数 余切函数 反余切函数 正割函数 反正割函数 余割函数 反余割函数 sinh asinh cosh acosh tanh atanh sech asech csch acsch coth acoth 双曲正弦函数 反双曲正弦函数 双曲余弦函数 反双曲余弦函数 双曲正切函数 反双曲正切函数 双曲正割函数 反双曲正割函数 双曲余割函数 反双曲余割函数 双曲余切函数 反双曲余切函数
1/3 1/4 1/5
19/32
————矩阵创建常用方法————
1.直接输入法; 2.特殊矩阵函数法; 3. 数据文件输入 注意事项 矩阵元素必须在方括号[ ]之内; 同一行相邻元素间用逗号或空格分隔; 矩阵的行与行之间用分号分隔. A=hilb(3) B=invhilb(3) A*B
掌握MATLAB程序设计方法
以MATLAB为操作平台完成实验作业
matlab使用教程

matlab使用教程Matlab是一种用于科学计算和数据分析的强大工具。
它提供了丰富的功能和库,可以处理各种数学运算、矩阵操作和图形绘制等任务。
本教程将带你从入门到精通Matlab的使用。
1. 变量和赋值在Matlab中,你可以使用变量来存储数据。
要定义一个变量,只需给它一个名称,并将值赋给它。
例如,下面是定义一个名为x的变量,并给它赋值为5的例子:``` matlabx = 5;```你还可以使用变量进行计算,并将结果赋给新的变量。
例如,下面是一个将x加上3,并将结果赋给y的例子:``` matlaby = x + 3;```2. 数组和矩阵Matlab中的数组和矩阵用于存储多个值。
你可以使用方括号[]来创建数组和矩阵。
例如,以下是创建一个包含1、2和3的行向量的示例:``` matlaba = [1, 2, 3];```你可以使用索引来访问数组和矩阵中的特定元素。
索引从1开始,并按行优先顺序编号。
例如,要访问矩阵的第二行第三列的元素,可以使用以下语法:``` matlabelement = matrix(2, 3);```Matlab还提供了一些内置函数来创建特殊类型的矩阵,如单位矩阵和零矩阵。
3. 条件语句和循环在Matlab中,你可以使用条件语句和循环来控制程序的执行流程。
条件语句用于根据特定条件执行不同的代码块。
常用的条件语句是if语句。
例如,下面是一个根据x的值执行不同操作的示例:``` matlabif x > 0disp('x is positive');elseif x < 0disp('x is negative');elsedisp('x is zero');end```循环允许你重复执行一些代码块,直到特定条件满足为止。
常用的循环有for循环和while循环。
例如,以下是一个使用for 循环计算1到10的和的示例:``` matlabsum = 0;for i = 1:10sum = sum + i;end```4. 函数和脚本在Matlab中,你可以定义自己的函数和脚本。
实验1_Matlab操作入门

实验一 Matlab操作入门实验目的:1.了解Matlab的工作环境。
掌握help命令的使用。
了解general函数库中有哪些常用的函数,掌握who, whos, clear, save, load 等命令的使用。
2.掌握矩阵的输入方法;掌握利用elmat函数库中一些函数,如linspace, logspace, zeros, ones, eye, rand, randn, magic等创建矩阵的方法。
3.了解elmat函数库中的预定义变量。
4.掌握elmat函数库中diag, blkdiag, triu, tril, fliplr, flipud, rot90等函数的用法。
5.掌握elmat函数库中ndims, size, numel, length,disp等函数的使用。
6.掌握datafun函数库中的一些基本统计函数max, min, mean, median, sum, prod 等的基本用法。
7.掌握matfun函数库中的一些基本矩阵操作函数的使用:inv(A)—求矩阵A的逆,det(A)—求矩阵A的行列式值, rank(A)-求矩阵的秩,trace(A)-求矩阵A的迹(即主对角线元素之和),norm(A)-求向量或矩阵的范数,cond(A)-求矩阵A的条件数,etc。
实验内容:一、Matlab环境1.启动Matlab,了解Matlab的主要窗口:命令窗口,当前目录窗口,工作空间窗口,历史命令窗口。
2.输入help, 了解你的计算机上安装的Matlab中,有哪些帮助主题(函数库、工具箱)。
3.输入 help general(通用命令函数库), 了解Matlab中有哪些通用的命令。
4.输入 help syntax,阅读具体的内容,了解Matlab语句或命令的格式。
5.输入 help format, 了解format命令的使用格式。
6.输入help timefun(时间、日期函数库), 了解有哪些时间和日期函数。
第1章 MATLAB入门.pdf_MATLAB信号处理超级学习手册_[共9页]
![第1章 MATLAB入门.pdf_MATLAB信号处理超级学习手册_[共9页]](https://img.taocdn.com/s3/m/c2bbc23d998fcc22bdd10d75.png)
第1章 MATLAB入门MATLAB是一种用于数值计算、可视化及编程的高级语言和交互式环境。
使用MATLAB,用户可以分析数据、开发算法、创建模型和应用程序。
MATLAB借助编程、工具和内置数学函数,可以探求多种方法,比电子表格或其他传统编程语言更快地求取结果。
它是一种功能强大的科学计算软件。
在使用之前,读者应该对它有一个整体的了解。
本章主要介绍MA TLAB的基本知识,如主要特点、系统安装、基本操作等。
学习目标:1.理解MATLAB的特点。
2.熟悉MATLAB各种平台的窗口。
3.熟练掌握MATLAB的各种基本操作。
4.熟悉MATLAB中M文件的操作。
1.1 MATLAB概述MATLAB是由美国MathWorks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案。
1.1.1 什么是MATLABMATLAB提供了一个高性能的数值计算和图形显示的科学和工程计算软件环境。
这种易于使用的MATLAB环境,是由数值分析、矩阵运算、信号处理和图形绘制等组成。
在这种环境下,问题和解答的表达形式(程序)几乎和它们的数学表达式完全一样,而不像传统的编程那样繁杂。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C、FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使其成为一个强大的数学软件。
MATLAB在新的版本中也加入了对C、FORTRAN、C++、Java的支持。
用户可以直接调用它们,也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。
此外,许多的MATLAB爱好者还编写了一些经典的程序,用户可以直接进行下载使用。
MATLAB的基本使用教程

MATLAB的基本使用教程MATLAB是一种强大的数学计算软件,广泛应用于科学、工程和技术领域。
它提供了丰富的功能和工具,能够快速、有效地处理和分析各种数学问题。
本文将介绍MATLAB的基本使用方法,帮助初学者快速入门。
一、MATLAB的安装与启动1、下载和安装MATLAB软件:在MathWorks官方网站上下载适合自己操作系统的MATLAB软件,并根据安装提示进行安装。
安装完成后,会生成一个MATLAB的启动图标。
2、启动MATLAB:双击MATLAB的启动图标,或者在命令行中输入"matlab"命令,即可启动MATLAB。
二、MATLAB的基本操作1、工作环境:MATLAB提供了一个强大的集成开发环境(IDE),可以在其中编写和运行代码。
在MATLAB的界面中,包括主窗口、命令窗口、变量窗口、编辑器等。
2、命令窗口:在命令窗口中可以输入和执行MATLAB命令。
可以直接在命令窗口中输入简单的计算,例如输入"2+3"并按下回车键,即可输出计算结果。
3、脚本文件:MATLAB可以编写和运行脚本文件,将一系列命令组织起来,并按顺序执行。
在编辑器中编写MATLAB代码,并将文件保存为.m扩展名的脚本文件。
然后在命令窗口中输入脚本文件的文件名(不带扩展名),按下回车键即可执行脚本文件中的代码。
4、变量和赋值:在MATLAB中,可以创建和操作各种类型的变量。
例如,可以使用"="符号将一个值赋给一个变量,例如"A=5"。
在后续的计算和分析中,可以使用这个变量,例如输入"B=A+3",结果B 将被赋值为8。
5、矩阵和向量:MATLAB中的基本数据结构是矩阵和向量。
可以使用方括号[]来创建矩阵和向量,并使用逗号或空格来分隔不同的元素。
例如,"[1,2,3]"表示一个包含3个元素的行向量。
6、矩阵运算:MATLAB提供了丰富的矩阵运算符和函数,可以对矩阵进行各种运算。
Matlab工程数学 第1章 使用方法入门

Matlab工程数学Matlab是“Matrix Laboratory”的缩写,意为“矩阵实验室”,是当今很流行的科学计算软件。
它的主要功能是给人们提供一个方便的数值计算平台。
Matlab的基本运算单元是不需指定维数的矩阵,系统提供了大量的矩阵及其它运算函数,可以方便的进行一些很复杂的计算,而且运算效率极高。
Matlab的命令和数学中的符号、公式非常接近,可读性强,容易掌握,还可利用它所提供的编程语言进行编程,完成特定的工作。
除基本部分外,Matlab还根据各专门领域中的特殊需要提供了许多可选的工具箱,在很多时候能够给予我们极大的帮助。
以下简单介绍一下Matlab软件的基本使用方法,并结合本讲义内容介绍如何使用Matlab软件解决一些常见的数值问题。
第1章使用方法入门1.1 操作方法1.1.1 启动和退出从Windows中双击Matlab图标,会出现Matlab命令窗口(Command Window),在一段提示信息后,出现系统提示符“>>”,这时你就可以输入命令了。
Matlab是一个交互式的系统,输入命令后,系统会马上解释和执行你输入的命令并输出结果。
如果命令有语法错误,系统会给出提示信息。
在当前提示符下,你可以通过上下箭头调出以前输入的命令。
用滚动条可以查看以前的命令及其输入信息。
退出Matlab和退出其它Windows程序一样,可以选择File菜单中的Exit Matlab菜单项,也可以使用Alt-F4热键。
还可以执行Matlab的Exit命令退出。
1.1.2. 变量和表达式Matlab命令的通常形式为:变量= 表达式表达式由操作符或其它特殊字符,函数和变量名组成。
Matlab执行表达式并将执行结果显示于命令后,同时存在变量中以留用。
如果变量名和“=”省略,即不指定返回变量,则名为ans的变量将自动建立。
例如:键入命令:A = [ 1.2 3.4 5.6 sin(2) ]系统将产生4维向量A,输出结果为:A =1.2000 3.4000 5.6000 0.9093键入1900/81结果为:ans =23.4568Matlab保留本次运行中建立的所有变量的信息。
MATLAB教程及实训

MATLAB教程及实训MATLAB是一种强大的计算机软件,主要用于数值计算、数据分析和可视化,广泛应用于科学、工程和金融领域。
以下是一个针对初学者的MATLAB教程及实训,旨在帮助读者快速入门并掌握基本的MATLAB使用技巧。
第一部分:MATLAB基础1.MATLAB的安装与启动2.MATLAB命令行介绍MATLAB的命令行界面,包括如何输入和执行MATLAB命令以及查看命令的输出结果。
3.MATLAB的基本数据类型介绍MATLAB中常用的数据类型,包括标量、向量、矩阵和字符串等,并讲解如何创建和操作这些数据类型。
4.数学运算介绍如何在MATLAB中进行基本的数学运算,包括加减乘除、指数运算和三角函数等,并讲解MATLAB提供的数学函数。
5.逻辑运算和控制流程介绍如何在MATLAB中进行逻辑运算和比较运算,以及如何使用条件语句、循环语句和逻辑判断语句来控制程序的流程。
第二部分:MATLAB数据处理与分析1.数据导入和导出介绍如何使用MATLAB读取和写入各种格式的数据文件,包括文本文件、Excel文件和MAT文件等,并讲解如何处理和转换数据。
2.数据可视化介绍如何使用MATLAB绘制各种类型的图表,包括折线图、散点图、柱状图和饼图等,并讲解如何设置图表的样式和属性。
3.数据统计和分析介绍如何使用MATLAB进行常见的数据统计和分析,包括均值、方差、相关系数和回归分析等,并讲解如何使用MATLAB的统计工具箱进行高级数据分析。
第三部分:MATLAB编程与应用实例1.MATLAB编程基础介绍如何使用MATLAB编写脚本和函数,包括变量的定义和赋值、条件语句和循环语句的使用,并讲解MATLAB的函数库和程序调试技巧。
2.MATLAB的应用实例介绍几个典型的MATLAB应用实例,包括信号处理、图像处理和机器学习等领域,通过实际案例演示如何使用MATLAB解决实际问题。
3.MATLAB与其他工具的集成介绍如何将MATLAB与其他科学计算和数据处理工具集成,包括Python、R和Excel等,并讲解如何使用MATLAB的接口进行数据交互和共享。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
————MATLAB 常用函数介绍————
三角函数与双曲函数 sin asin cos acos tan atan cot acot sec asec csc acsc 正弦函数 反正弦函数 余弦函数 反余弦函数 正切函数 反正切函数 余切函数 反余切函数 正割函数 反正割函数 余割函数 反余割函数 sinh asinh cosh acosh tanh atanh sech asech csch acsch coth acoth 双曲正弦函数 反双曲正弦函数 双曲余弦函数 反双曲余弦函数 双曲正切函数 反双曲正切函数 双曲正割函数 反双曲正割函数 双曲余割函数 反双曲余割函数 双曲余切函数 反双曲余切函数
在解决实际问题时,如果频繁使用同一个数学表达式, 在解决实际问题时,如果频繁使用同一个数学表达式, 则应该定义一个临时函数以方便操作. 则应该定义一个临时函数以方便操作. 定义方法: 定义方法 函数名= inline(‘表达式’) ( 1 并分析函数性质。 并分析函数性质。 例1.11 定义函数 f ( x ) = x sin x fun=inline('x.*sin(1./x)') fplot(fun,[-0.15,0.15]) N=1:5;x=2./(2*N+1)/pi; y=fun(x)
16/22
例1.13用基本绘图方法绘衰减振荡函数 用基本绘图方法绘衰减振荡函数 y = e– 0.5xsin 5x 的图形并用虚线表示振幅衰减情况。 的图形并用虚线表示振幅衰减情况。 x=0:0.1:4*pi; y= exp(-0.5*x) ; y1=y .*sin(5*x); plot(x,y1,x,y,’--r’,x,-y,’--r’)
90 120 150 1 60 0.8 0.6 0.4 0.2 30
180
0
210 240 270 300
330
19/22
MATLAB程序 程序(mlab1.m) 程序 n=3;N=10000; theta=2*pi*(0:N)/N; r=cos(n*theta); x=r.*cos(theta); y=r.*sin(theta); comet(x,y)
300 200 100 0
0
200
400
600
800
1000
1200
18/22
玫瑰线绘制实验: 玫瑰线绘制实验: 极坐标方程为 ρ = a cos nθ 或 ρ = a sin nθ 的图象以 形似玫瑰而被称为玫瑰线, 形似玫瑰而被称为玫瑰线, 它们是由以原点为公共点的玫 瑰花瓣环线组成。 瑰花瓣环线组成。用极坐标绘 图命令polar()可实现快速绘图, 可实现快速绘图, 图命令 可实现快速绘图 几何图形表现出完美的对称性。 几何图形表现出完美的对称性。 三叶玫瑰线方程 ρ = a cos 3θ theta=0:0.001:2*pi; r=cos(3*theta); polar(theta,r,'k')
S=1+2+22+23++263=
∑2
n= 0
63
n
= 2 1
64
方法一: 方法一 N=2^64-1
N = 1.8447e+019
方法二: n=0:1:63; S=sum(2.^n)
S = 1.8447e+019
8/22
程序窗口操作
录入程序,调式成功后 将程序 录入程序 调式成功后,将程序 proportion = 调式成功后 文件存盘、命名。 文件存盘、命名。在命令窗 89.5963 口中键入文件名并回车
13/22
————向量创建与一元函数图形————
命令绘衰减振荡曲线函数: 例1.10 用ezplot()命令绘衰减振荡曲线函数 命令绘衰减振荡曲线函数 y=e -0.5x sin 5x 图形. ezplot('exp(-0.5*x)*sin(5*x)',[0,10,-1,1])
14/22
————向量创建与一元函数图形 向量创建与一元函数图形———— 向量创建与一元函数图形
12/22
————MATLAB 常用函数介绍————
abs(x) sqrt(x) conj(z) round(x) floor(x) rat(x) gcd(x,y) exp(x) log(x) Log10(x)
绝对值 开平方 共轭复数 四舍五入 舍去正小数 分数表示 最大公因数 自然指数 自然对数 10底对数 底对数
chess
9/22
————向量创建和一元函数图形 向量创建和一元函数图形———— 向量创建和一元函数图形
例1.6 给定 α=150,300,450,600 , 计算 sin α 的值 alpha=[15, 30, 45, 60]*pi/180; sin(alpha) ans = 0.2588 0.5000 0.7071 0.8660 方括号直接输入法是创建向量(和矩阵) 方括号直接输入法是创建向量(和矩阵)的 常用方法, 常用方法,输入时将向量元素用方括号 ]”括起来 元素之间用逗号(或空格) 括起来, “[ ] 括起来, 元素之间用逗号(或空格) 隔开. 隔开.
7/22
国际象棋发明人向印度国王求赐大麦, 例1.5 国际象棋发明人向印度国王求赐大麦,希望 得到大麦数量由如下规则计算. 得到大麦数量由如下规则计算.在国际象棋棋盘的 64个方格中 第一格放一粒麦粒,第二格放两粒, 个方格中, 64个方格中,第一格放一粒麦粒,第二格放两粒,第 三格放四粒, 三格放四粒,……,以此类推.每格比前一格麦粒数 ,以此类推. 多一倍,直到放满64格为止. 64格为止 多一倍,直到放满64格为止.计算麦粒数表明这些大 麦几乎可以覆盖地球表面. 麦几乎可以覆盖地球表面. 级数:
2/22
————数学实验课程背景 数学实验课程背景———— 数学实验课程背景
完成实验报告,总结方法, 完成实验报告,总结方法,增强数学思维能力 1.抛射曲线的数学实验 1.抛射曲线的数学实验 2.飞行航程计算实验 2.飞行航程计算实验 3.探月卫星速度计算实验 3.探月卫星速度计算实验 4.昆虫繁殖问题实验 4.昆虫繁殖问题实验 5.蒙特卡罗方法计算三维体积 5.蒙特卡罗方法计算三维体积 6.最优化方法实验 6.最优化方法实验
x = sin(3 t) cos(t), y = sin(3 t) sin(t) 0.5
0.5
1
0.5
0
-0.5
-1 -1
-0.5
0
0.5
1
ezplot('sin(3*t)*cos(t)','sin(3*t)*sin(t)',[0,pi])
x = sin(4 t) cos(t), y = sin(4 t) sin(t)
MATLAB 使用入门 (I)
数学实验课程背景 MATLAB 工作界面与窗口 向量创建与一元函数图形 玫瑰线绘图实验
1/22
————数学实验课程背景 数学实验课程背景———— 数学实验课程背景
观测 实验方法 ——观测 猜想 验证 发现 数学实验方法——分析 思考 探索 发现 分析 数学实验方法 熟练掌握MATLAB的命令操作方式 的命令操作方式 熟练掌握 掌握MATLAB程序设计方法 程序设计方法 掌握 以MATLAB为操作平台完成实验作业 为操作平台完成实验作业
10/22
————向量创建与一元函数图形 向量创建与一元函数图形———— 向量创建与一元函数图形
: : 利用冒号表达式创建向量 x = x0:step:xn 当步长 step=1 时可省略为 x = x0:xn : x0 应大于 xn 当步长 step 为负数时
用线性等分函数linspace( )创建[0, 2π]上的等 例1.8 用线性等分函数 创建 分点,绘出正六边形和正十二边形. 分点,绘出正六边形和正十二边形. alpha=linspace(0,2*pi,7) bata=linspace(0,2*pi,13); x1=cos(alpha);y1=sin(alpha); x2=cos(bata);y2=sin(bata); plot(x1,y1,x2,y2)
1 0.5 0 -0.5 -1
0
2
4
6
8
10
12
14ቤተ መጻሕፍቲ ባይዱ
17/22
x = v 0 cos α × t 例1.14 绘抛射曲线图形 v0=100;g=9.8;alpha=pi/4; y = v0 sin α × t 1 gt 2 2 T=2*v0*sin(alpha)/g; 1 v 0 sin α gt = 0 t= (0:16) *T /16; 2 x=v0*t*cos(alpha); T = 2v0 sin α / g y=v0*t*sin(alpha)-g*t.^2/2; plot(x,y,x,y,'r*')
4/22
工作空间浏览
命令历史窗口
命令窗口
MATLAB桌面 桌面
5/22
————MATLAB 工作界面和窗口————
命令窗口、编辑窗口、 命令窗口、编辑窗口、图形窗口
6/22
命令窗口操作 例1.1 A=magic(3) 例1.3 logo load logo; mesh(L)
A= 8 3 4 1 5 9 6 7 2
3/22
————MATLAB 工作界面和窗口————
MATLAB (MATrix LABoratory ) 一种解释式语言.易学易用、代码短效率高、 一种解释式语言.易学易用、代码短效率高、 具有强大的数值计算和绘图功能、扩展性强. 具有强大的数值计算和绘图功能、扩展性强. 矩阵的数值运算、数值分析、 矩阵的数值运算、数值分析、数值模拟 数据可视化、绘制 2维/3维 图形 数据可视化、 维 维 可以与FORTRAN、C/C++做数据链接 可以与 、 做数据链接 几百个核心内部函数 信号处理、自动控制、 几十个工具箱(信号处理、自动控制、 )