【精品】2015年山东省临沂十九中高一上学期期末数学试卷

合集下载

[临沂期末-数学(文)]临沂市2015届高三期末考试数学题(文)试题及答案(Word版)

[临沂期末-数学(文)]临沂市2015届高三期末考试数学题(文)试题及答案(Word版)

高三教学质量检测考试文 科 数 学2015.2本试卷分为选择题和非选择题两部分,共5页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}02,A x x B x x a A B =≤≤=≥⊆,若,则a 的取值范围是A.0a ≤B. 0a <C. a <2D. 2a ≤ 2.已知复数21z i =-+,则 A. 2z = B.z 的实部为1C.z 的虚部为1-D.z 的共轭复数为1+i3.下列函数既是奇函数又是增函数的是 A. 1y x x =+B. cos y x x =C. 3y x =D. ln y x =4. 1b =-是直线y x b =+过抛物线24y x =焦点的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.命题2:,log 0P x R x ∀∈>,命题00:,20x q x R ∃∈<,则下列为真命题的是A. p q ∨B. p q ∧C. ()p q ⌝∧D. ()p q ∨⌝6.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为A.483B.482C.481D.4807.执行如图所示的程序框图,若结束时输出的结果不小于3,则t 的取值范围为A. 1,4⎡⎫+∞⎪⎢⎣⎭B. 1,8⎡⎫+∞⎪⎢⎣⎭C. 1,8⎛⎤-∞ ⎥⎝⎦D. 1,4⎛⎤-∞ ⎥⎝⎦8.函数()()sin ln 1f x x x =⋅+的图象大致为9.某几何体的三视图如图所示,则该几何体的体积为A. 73B.72 C. 92 D. 94 10.已知点()2,3l n A a b yx x =-+在的图象上,点(),B m n 在2y x =+的图象上,则()()22a m b n -+-的最小值为A.B. 2C. D. 8文科数学2015.2第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上. 11. 22log sin log cos 1212ππ+的值为__________.12.已知向量,a b 满足()52,12a b a b a b ⎛⎫==-⊥+ ⎪⎝⎭,且,则a b 与的夹角θ为______. 13.由不等式组0,0,20x y x y ≥⎧⎪≥⎨⎪+-≤⎩确定的平面区域记为1Ω,不等式222x y +≤确定的平面区域记为21ΩΩ,在中随机取一点,则该点恰好在2Ω内的概率为________.14.如图,在坡度一定的山坡上的一点A 处,测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进75米到达B 点,再次测量得其斜度为30°,假设建筑物高50米,设山坡对于水平面的斜度为θ,则cos =θ___________.15.已知双曲线()222210,0x y C a b a b-=>>:的左、右焦点分别为122,,F F F 且恰为抛物线 214x y =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的方程为__________.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程.16. (本小题满分12分)如图,茎叶图表示甲、乙两个篮球运动员在八场比赛中的得分,其中一个数字被污损,用x 表示.(I )若甲、乙两运动员得分的中位数相同,求数字x 的值;(II )若x 取0,1,2,…,9,十个数字是等可能的,求甲的平均得分不超过乙的平均得分的概率.17. (本小题满分12分)已知函数()()()21sin cos cos cos sin sin 02f x x x x ϕϕπϕϕπ=+++<<,其图象过点1,44π⎛⎫ ⎪⎝⎭. (I )求ϕ的值;(II )将函数()y f x =图象向右平移12π个单位长度,得到函数()y g x =的图象,求函数()g x 在[]0,π上的单调增区间.18. (本小题满分12分)已知数列{}{}n n a b 和满足122nb n n a a a -⋅⋅⋅=,若{}n a 为等比数列,且1211,2a b b ==+. (I )求n n a b 与;(II )设11n n nc a b =+,求数列{}n c 的前n 项和n S . 19. (本小题满分12分)直三棱柱111ABC A B C -中,1,,,AA AC AB AC D E=⊥分别是11,AC BC 的中点.(I )求证:1//C E 平面DAB ;(II )在线段1A A 上是否存在点G ,使得平面BCG ⊥平面ABD ?若存在,试确定定点G 的位置;若不存在,请说明理由.20. (本小题满分13分)已知函数()()221x f x x a e =--. (I )若函数()[]22f x -在,上是单调增函数,求实数a 的取值范围;(II )若()f x 有两个不同的极值点,m n ,满足()1m n mn f a +≤+,求的取值范围.21. (本小题满分14分)已知椭圆()2222:10x y C a b a b +=>>的中心为坐标原点,离心率1212,,,,3e A A B B =是其四个顶点,且四边形1122A B A B 的面积为(I )求椭圆C 的方程;(II )是否存在过椭圆C 的右焦点F 且与椭圆C 相交于M,N 两点的直线l ,使得在直线3x =上可以找到一点B ,满足MNB ∆为正三角形?若存在,求出直线l 的方程;若不存在,请说明理由.11。

2025届山东省临沂市第十九中学高一上数学期末经典模拟试题含解析

2025届山东省临沂市第十九中学高一上数学期末经典模拟试题含解析

g
x
xb 2x2 a
.
(1)判断 g x 的奇偶性,并证明你的结论;
(2)设 h x x 2c ,对任意 x1 R ,总存在 x2 2, 2 ,使得 g(x1)=h(x2)成立,求实数 c 的取值范围.
在以下①,②两个条件中,选择一个条件,将上面的题目补充完整,先求出 a,b 的值,并解答本题.
由函数零点存在性定理得答案
【详解】根据题意,实数 a 满足 3a=5,则 a=log35>1,
则函数 f x ax 2x log53 为增函数,
且 f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0, f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0, f(0)=(log35)0﹣log53=1﹣log53>0, 由函数零点存在性可知函数 f(x)的零点在区间(﹣1,0)上, 故选 B
4
点 P 沿单位圆按逆时针方向旋转角 后到达点 Q(a,b) .
(1)求阴影部分的面积;
(2)当 时,求 ab 的值. 3
参考答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】因为三棱柱 A1B1C1-ABC 中,侧棱 AA1⊥底面 ABC,底面三角形 ABC 是正三角形,E 是 BC 中点, 所以对于 A,AC 与 AB 夹角为 60°,即两直线不垂直,所以 AC 不可能垂直于平面 ABB1A1;故 A 错误; 对于 B,CC1 与 B1E 都在平面 CC1BB1 中不平行,故相交;所以 B 错误; 对于 C,A1C1,B1E 是异面直线;故 C 错误; 对于 D,因为几何体是三棱柱,并且侧棱 AA1⊥底面 ABC,底面三角形 ABC 是正三角形,E 是 BC 中点,所以 BB1⊥底 面 ABC,所以 BB1⊥AE,AE⊥BC,得到 AE⊥平面 BCC1B1,所以 AE⊥BB1; 故选 D. 2、B

山东省临沂十九中高三数学上学期第一次月考试卷 理(含

山东省临沂十九中高三数学上学期第一次月考试卷 理(含

2015-2016学年山东省临沂十九中高三(上)第一次月考数学试卷(理科)一.选择题(共50分)1.已知全集为R,集合,则A∩∁R B=()A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=3x B.y=|x|+1 C.y=﹣x2+1 D.y=3.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+x﹣3,则f(x)的零点个数为()A.1 B.2 C.3 D.44.曲线y=在点(0,﹣1)处的切线与两坐标轴围成的封闭图形的面积为()A.1 B.﹣C.D.5.已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.函数,当0<x<1时,下列式子大小关系正确的是()A.f2(x)<f(x2)<f(x)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f(x2)<f(x)<f2(x)7.已知函数f(x)=+2ax+c,a≠0,则它们的图象可能是()A.B.C.D.8.设函数f(x)=x2+xsinx,对任意x1,x2∈(﹣π,π),若f(x1)>f(x2),则下列式子成立的是()A.x1>x2B.C.x1>|x2| D.|x1|<|x2|9.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么y=x2,值域为{1,9}的“同族函数”共有()A.7个B.8个C.9个D.10个10.设定义在(0,+∞)上的函数f(x)=,g(x)=f(x)+a,则当实数a满足2<a<时,函数y=g(x)的零点个数为()A.0 B.2 C.3二.填空题(共25分)11.已知集合M={y|y=x2﹣1,x∈R},,则M∩N=.12.若(2m+1)>(m2+m﹣1),则实数m的取值范围是.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b= .14.若f(x)=是R上的单调函数,则实数a的取值范围为.15.已知定义在R上的奇函数f(x)满足f(x+4)=﹣f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论:①f(3)=1;②函数f(x)在[﹣6,﹣2]上是减函数;③函数f(x)的图象关于直线x=1对称;④若m∈(0,1),则关于x的方程f(x)﹣m=0在[﹣8,8]上的所有根之和为﹣8.则其中正确的命题为.三.解答题(命题人16李芝17郑新建18杜孝峰19王炜20姚丙银21栾维莲)16.记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求A∩B和A∪B;(2)若C={x|4x+p<0},C⊆A,求实数P的取值范围.17.设函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数的定义域为集合B.已知α:x∈A∩B,β:x满足2x+p<0,且α是β的充分条件,求实数p的取值范围.18.已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.19.已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b∈R)(1)求函数f(x)的定义域;(2)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.20.某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a (3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12﹣x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).21.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.2015-2016学年山东省临沂十九中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一.选择题(共50分)1.已知全集为R,集合,则A∩∁R B=()A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}【考点】其他不等式的解法;交、并、补集的混合运算.【专题】计算题;不等式的解法及应用.【分析】利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.【解答】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.【点评】本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=3x B.y=|x|+1 C.y=﹣x2+1 D.y=【考点】函数奇偶性的判断;奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据偶函数和单调性的定义分别进行判断即可.【解答】解:A.y=3x在(0,+∞)单调递增,但为非奇非偶函数,不成立.B.y=|x|+1为偶函数,当x>0时,y=|x|+1=x+1,为增函数,满足条件.C.y=﹣x2+1为偶函数,当x>0时,函数为减函数,不满足条件.D.y=在(0,+∞)单调递增,但为非奇非偶函数,不成立.故选:B.【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的单调性和奇偶性的性质.3.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+x﹣3,则f(x)的零点个数为()A.1 B.2 C.3 D.4【考点】函数零点的判定定理;函数奇偶性的性质.【专题】函数的性质及应用.【分析】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为判断两函数交点个数问题,最后根据奇函数的对称性确定答案.【解答】解:∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点当x>0时,令f(x)=2x+x﹣3=0,则2x=﹣x+3,分别画出函数y=2x,和y=﹣x+3的图象,如图所示,有一个交点,所以函数f(x)有一个零点,又根据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3个,故选C.【点评】本题是个基础题,函数的奇偶性是函数最重要的性质之一,同时函数的奇偶性往往会和其他函数的性质结合应用,此题就与函数的零点结合,符合高考题的特点.4.曲线y=在点(0,﹣1)处的切线与两坐标轴围成的封闭图形的面积为()A.1 B.﹣C.D.【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】先求切线方程,再求切线与两坐标轴的交点坐标,即可求得切线与两坐标轴围成的封闭图形的面积【解答】解:求导函数,可得,当x=0时,y′=2,∴曲线y=在点(0,一1)处的切线方程为y=2x﹣1,∴当y=0时,x=∴切线与两坐标轴的交点坐标为(,0),(0,﹣1)∴所求面积为故选C.【点评】本题考查导数的几何意义,考查切线方程,考查三角形面积的计算,属于基础题.5.已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】充要条件;四种命题.【专题】计算题.【分析】根据所给的两个命题,解不等式解出两个命题的x的值,从x的值的范围大小上判断出两个命题之间的关系,从而看出两个非命题之间的关系.【解答】解:∵p:|x+1|>2,∴x>1或x<﹣3∵q:5x﹣6>x2,∴2<x<3,∴q⇒p,∴﹣p⇒﹣q∴﹣p是﹣q的充分不必要条件,故选A.【点评】本题考查两个条件之间的关系,是一个基础题,这种题目经常出现在高考卷中,注意利用变量的范围判断条件之间的关系.6.函数,当0<x<1时,下列式子大小关系正确的是()A.f2(x)<f(x2)<f(x)B.f(x2)<f2(x)<f(x)C.f(x)<f(x2)<f2(x)D.f(x2)<f(x)<f2(x)【考点】利用导数研究函数的单调性;函数单调性的性质;不等式比较大小.【分析】由0<x<1得到x2<x,要比较f(x)与f(x2)的大小,即要判断函数是增函数还是减函数,可求出f′(x)利用导函数的正负决定函数的增减性.即可比较出f(x)与f(x2)大小.【解答】解:根据0<x<1得到x2<x,而f′(x)=,因为(lnx)2>0,所以根据对数函数的单调性得到在0<x<1时,lnx﹣1<0,所以f′(x)<0,函数单调递减.所以f(x2)>f(x),根据排除法A、B、D错,C正确.故选C【点评】考查学生利用导数研究函数的单调性,以及会利用函数的单调性判断函数值的大小,在做选择题时,可采用排除法得到正确答案.7.已知函数f(x)=+2ax+c,a≠0,则它们的图象可能是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】求出函数f(x)的导数,判断导函数的对称轴,排除选项,利用函数的单调性排除C,推出结果.【解答】解:因为f(x)=,f′(x)=ax2+2ax+c,则函数f′(x)即g(x)图象的对称轴为x=﹣1,故可排除A,D;由选项C的图象可知,当x>0时,f'(x)>0,故函数在(0,+∞)上单调递增,但图象中函数f(x)在(0,+∞)上不具有单调性,故排除C.本题应选B.故选:B.【点评】本题考查函数的图象的判断,导数的应用,考查分析问题解决问题的能力.8.设函数f(x)=x2+xsinx,对任意x1,x2∈(﹣π,π),若f(x1)>f(x2),则下列式子成立的是()A.x1>x2B.C.x1>|x2| D.|x1|<|x2|【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】由于f(﹣x)=f(x),故函数f(x)=x2+xsinx为偶函数,则f(x1)>f(x2)⇔f (|x1|)>f(|x2|),f′(x)=2x+sinx+xcosx,当x>0时,f′(x)>0,从而可得答案.【解答】解:∵f(﹣x)=(﹣x)2﹣xsin(﹣x)=x2+xsinx=f(x),∴函数f(x)=x2+xsinx为偶函数,∴f(﹣x)=f(|x|);又f′(x)=2x+sinx+xcosx,∴当x>0时,f′(x)>0,∴f(x)=xsinx在[0,π]上单调递增,∵f(x1)>f(x2),∴结合偶函数的性质得f(|x1|)>f(|x2|),∴|x1|>|x2|,∴x12>x22.故选B.【点评】本题考查函数f(x)的奇偶性与单调性,得到f(x)为偶函数,在[0,π]上单调递增是关键,考查分析转化能力,属于中档题.9.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么y=x2,值域为{1,9}的“同族函数”共有()A.7个B.8个C.9个D.10个【考点】函数的值域.【专题】计算题;函数的性质及应用;集合.【分析】由题意知定义域中的数有﹣1,1,﹣3,3中选取;从而讨论求解.【解答】解:y=x2,值域为{1,9}的“同族函数”即定义域不同,定义域中的数有﹣1,1,﹣3,3中选取;定义域中含有两个元素的有2×2=4个;定义域中含有三个元素的有4个,定义域中含有四个元素的有1个,总共有9种,故选C.【点评】本题考查了学生对新定义的接受能力及集合的应用,属于基础题.10.设定义在(0,+∞)上的函数f(x)=,g(x)=f(x)+a,则当实数a满足2<a<时,函数y=g(x)的零点个数为()A.0 B.2 C.3【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】画出分段函数的图象,转化函数的零点为方程的根,利用函数的图象推出结果即可.【解答】解:函数y=g(x)的零点个数,就是方程g(x)=f(x)+a=0方程根的个数,即f (x)=﹣a根的个数,也就是函数f(x)与y=﹣a图象交点的个数,函数f(x)=与y=﹣a,2<a<的图象如图:2<a<可得﹣2>﹣a>﹣.由图象可知,两个函数的交点有3个.故选:C.【点评】本题考查函数的零点与方程的根的关系,零点的个数的判断,考查转化思想以及数形结合的应用.二.填空题(共25分)11.已知集合M={y|y=x2﹣1,x∈R},,则M∩N=.【考点】交集及其运算.【专题】计算题.【分析】先求出集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1}, ={x|﹣},再由并集的运算法则计算M∩N.【解答】解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.【点评】本题考查集合的交集的运用,解题时要认真审题,先求出集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1}, ={x|﹣},再由并集的运算法则计算M∩N.12.若(2m+1)>(m2+m﹣1),则实数m的取值范围是[,2).【考点】有理数指数幂的化简求值.【专题】不等式的解法及应用.【分析】由(2m+1)>(m2+m﹣1),可得:(2m+1)>(m2+m﹣1)>0,解得实数m的取值范围.【解答】解:∵(2m+1)>(m2+m﹣1),∴(2m+1)>(m2+m﹣1),∴(2m+1)>(m2+m﹣1)>0,解得:m∈[,2),故答案为:[,2)【点评】本题考查的知识点是有理数指数幂的化简求值,根式不等式的解法,难度中档.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b= .【考点】指数型复合函数的性质及应用.【专题】函数的性质及应用.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1, =0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.14.若f(x)=是R上的单调函数,则实数a的取值范围为[,+∞).【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】若f(x)=是R上的单调函数,根据第二段函数为减函数,故第一段也应该为减函数,且x=1时,第二段的函数值不小于第一段的函数值,进而构造关于a的不等式组,解不等式组可得实数a的取值范围.【解答】解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)【点评】本题考查的知识点是分段函数的单调性,其中根据已知构造关于a的不等式组,是解答的关键.15.已知定义在R上的奇函数f(x)满足f(x+4)=﹣f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论:①f(3)=1;②函数f(x)在[﹣6,﹣2]上是减函数;③函数f(x)的图象关于直线x=1对称;④若m∈(0,1),则关于x的方程f(x)﹣m=0在[﹣8,8]上的所有根之和为﹣8.则其中正确的命题为①②④.【考点】函数奇偶性的性质;抽象函数及其应用.【专题】函数的性质及应用.【分析】运用条件定义在R上的奇函数f(x)满足f(x+4)=﹣f(x),得出函数f(x)周期为8,x=2,x=﹣2均为对称轴,即可判断每一个选项正确与否.【解答】解:由条件可知,函数f(x)周期为8,x=2,x=﹣2均为对称轴,①中,令x=﹣1,则f(3)=f(4﹣1)=﹣f(﹣1)=f(1)=log2(1+1)=1,故①正确;②中,f(x)在[﹣2,2]上单调递增,由f(x)关于x=﹣2对称,所以f(x)在在[﹣6,﹣2]上是减函数;故②正确;③中,f(0)≠f(2),可知f(x)的图象不关于直线x=1对称;故③不正确;④中,函数f(x)的图象关于直线x=﹣6,x=2对称;,可知f(x)=m,(m∈(0,1))的根有4个,分别记为x1,x2,x3,x4,有=﹣6, =2,故x1+x2+x3+x4=8故④正确故答案为:①②④【点评】本题考查了函数的性质,函数的周期性,对称性,单调性的综合运用,属于中档题,考查了学生的分析问题的能力.三.解答题(命题人16李芝17郑新建18杜孝峰19王炜20姚丙银21栾维莲)16.记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求A∩B和A∪B;(2)若C={x|4x+p<0},C⊆A,求实数P的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;函数的性质及应用;集合.【分析】(1)由题意x2﹣x﹣2>0,9﹣x2≥0,从而解出集合A、B,再进一步解出A∩B和A∪B,(2)化简C={x|4x+p<0}={x|x<﹣},由C⊆A求实数P的取值范围.【解答】解:(1)A={x|x2﹣x﹣2>0}={x|x>2或x<﹣1},B={x|9﹣x2≥0}={x|﹣3≤x≤3},则A∩B={﹣3≤x<﹣1或2<x≤3},A∪B=R;(2)C={x|4x+p<0}={x|x<﹣},∵C⊆A,∴﹣≤﹣1,得,p≥4,所以,实数P的取值范围是[4,+∞).【点评】本题考查了函数的定义域的求法及集合的运算,同时考查了集合的化简与集合的包含关系的应用,属于基础题.17.设函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数的定义域为集合B.已知α:x∈A∩B,β:x满足2x+p<0,且α是β的充分条件,求实数p的取值范围.【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】先解不等式x2﹣x﹣2>0得集合A,再解不等式可得集合B,从而可得A∩B,再解不等式2x+p<0得集合C,由α是β的充分条件得A∩B⊆C,由集合间的包含关系可得p的取值范围【解答】解:依题意,得A={x|x2﹣x﹣2>0}=(﹣∞,﹣1)∪(2,+∞),,于是可解得A∩B=(2,3].设集合C={x|2x+p<0},则.由于α是β的充分条件,所以A∩B⊆C.则须满足.所以,实数p的取值范围是(﹣∞,﹣6).【点评】本题考查了充分条件的判断与集合的关系,训练了解不等式的能力,解题时要把握推理方向,准确运算18.已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.【考点】对数函数的单调性与特殊点;奇偶性与单调性的综合.【专题】计算题;综合题.【分析】(1)根据分式函数分母不能为零和对数函数真数大于零求解;(2)由(1)知定义域关于原点对称,再分析f(﹣x)与f(x)的关系;(3)先在给定的区间上任取两个变量,且界定其大小,再作差变形,再与零进行比较,关键是变形到位用上条件.【解答】解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);(2)∵,∴f(x)是奇函数;(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减.另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.【点评】本题主要考查函数的基本性质,涉及到定义域的求法,要注意分式函数,根式函数和基本函数的定义域;还考查了奇偶性的判断,要注意定义域,19.已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b∈R)(1)求函数f(x)的定义域;(2)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.【考点】函数奇偶性的性质.【专题】函数的性质及应用;导数的综合应用.【分析】(1)先求f(x)的定义域,根据奇函数的定义域关于原点对称即可求得a的值,并得到f(x)的定义域;(2)求出f(1﹣x)=,所以由f(1﹣x)≤lgg(x)及对数函数的单调性即可得到,所以b,根据原不等式有解,所以求最小值即可.设h(x)=,通过求导判断h(x)在[]上的单调性,根据单调性即可求出h(x)的最小值.【解答】解:(1)∵a>0,∴解得,;∵f(x)为奇函数;∴定义域关于原点对称,所以a=1;∴f(x)的定义域为(﹣1,1);(2)f(x)=lg,f(1﹣x)=;∴;∴;∴,设h(x)=;∴;∵;∴h′(x)>0;∴h(x)在[]上单调递增;∴是h(x)在[]上的最小值;∴b≥﹣13;∴b的取值范围为[﹣13,+∞).【点评】考查奇函数的定义域的特点,对数函数的单调性,以及根据函数导数符号判断函数单调性的方法,根据函数单调性求函数在闭区间上的最值,注意正确求导.20.某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a (3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12﹣x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).【考点】导数在最大值、最小值问题中的应用.【专题】应用题.【分析】(1)根据题意先求出每件产品的利润,再乘以一年的销量,便可求出分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)根据L与x的函数关系式先求出该函数的导数,令L′(x)=0便可求出极值点,从而求出时最大利润,再根据a的取值范围分类讨论当a取不同的值时,最大利润各为多少.【解答】解:(1)分公司一年的利润L(万元)与售价x的函数关系式为:L=(x﹣3﹣a)(12﹣x)2,x∈[9,11].(2)L′(x)=(12﹣x)2+2(x﹣3﹣a)(12﹣x)×(﹣1)=(12﹣x)2﹣2(x﹣3﹣a)(12﹣x)=(12﹣x)(18+2a﹣3x).令L′(x)=0得x=6+a或x=12(不合题意,舍去).∵3≤a≤5,∴8≤6+a≤.在x=6+a两侧L′的值由正值变负值.所以,当8≤6+a≤9,即3≤a≤时,L max=L(9)=(9﹣3﹣a)(12﹣9)2=9(6﹣a);当9<6+a≤,即<a≤5时,L max=L(6+a)=(6+a﹣3﹣a)[12﹣(6+a)]2=4(3﹣a)3,即当3≤a≤时,当每件售价为9元,分公司一年的利润L最大,最大值Q(a)=9(6﹣a)万元;当<a≤5时,当每件售价为(6+a)元,分公司一年的利润L最大,最大值Q(a)=4(3﹣a)3万元.【点评】本题主要考查了函数的导数的求法以及利用导数来求得函数的最值问题,是各地高考的热点和难点,解题时注意自变量的取值范围以及分类讨论等数学思想的运用,属于中档题.21.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【考点】利用导数研究函数的单调性;根据实际问题选择函数类型.【专题】压轴题;导数的综合应用.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f (x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.。

山东省高一上学期期末数学试题(解析版)

山东省高一上学期期末数学试题(解析版)

第一学期数学科期末考试说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,,则( ){}|24x A x =<{}|13B x x =∈-<<N A B = A.B. C. D. {}|12x x -<<{}01,{}1{}|13x x -<<【答案】B【解析】 【分析】解不等式求出集合,列举法写出集合,由交集的定义求即可.A B A B ⋂【详解】由,得,所以,又24x <2x <{}|2A x x =<{}0,1,2B =所以 {}01A B ,⋂=故选B .2. 化简的值是( )sin 600︒A. B. C. D. 1212-【答案】D【解析】【分析】根据诱导公式和常见三角函数值得出结论即可.【详解】 ()()sin 600sin 720120sin 120sin120︒=-︒=-︒=-︒=故选:D3. 命题“”的否定是( )20,0x x x ∀>-≤A. B.20,0x x x ∃>-≤20,0x x x ∃>->C.D. 20,0x x x ∀>->20,0x x x ∀≤->【解析】【分析】根据全称量词命题的否定方法写出命题的否定即可.【详解】因为全称量词命题的否定是存在量词命题,所以命题“”的否定为:“”. 20,0x x x ∀>-≤20,0x x x ∃>->故选:B.4. 函数()的零点所在的区间为( ) ()3e 2x f x x =+-e 2.7183≈A. B. C.D. ()1,0-10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭()1,2【答案】B【解析】【分析】利用零点存在定理进行逐一验证.【详解】因为,()3e 2xf x x =+-所以, ()131551=10e 2e 221f =--<---<,()031e 0=0220f =+--<,1311102212f ⎛⎫=-->-= ⎪⎝⎭,()31e+1=e 0212f =-->()223e +2=e 02221f =-+>则,()10(02f f ⋅<即函数的零点所在的区间为.()3e 2xf x x =+-10,2⎛⎫⎪⎝⎭故选:B.5. 已知,则( )2.112ln2,,ln e 3a b c -⎛⎫=== ⎪⎝⎭A. B.a cb >>a bc >>C. D.c b a >>b a c>>【答案】D【分析】由对数函数与指数函数的单调性求解即可【详解】因为, 2.10112ln1<ln2ln e,,ln ln1e e 3-⎛⎫⎛⎫<>< ⎪ ⎪⎝⎭⎝⎭所以 () 2.112ln20,1,1,ln 0e 3a b c -⎛⎫=∈=>=< ⎪⎝⎭所以.b ac >>故选:D6. 已知,且,则的值为( ) π0,2θ⎛⎫∈ ⎪⎝⎭1sin 3θ=πsin 22θ⎛⎫+ ⎪⎝⎭A. B. C. D. 7979-【答案】A【解析】【分析】根据诱导公式及二倍角公式即得.【详解】,, π0,2θ⎛⎫∈ ⎪⎝⎭ 1sin 3θ=. 2π27sin 2cos212sin 1299θθθ⎛⎫∴+==-=-= ⎪⎝⎭故选:A.7. 已知函数在上单调递减,则的取值范围为( ) ()22,1,23,1x x f x x ax a x -+<⎧=⎨-+-⎩…R a A.B. C. D.[]2,1-()2,1-[)2,-+∞(),2-∞-【答案】A【解析】【分析】由已知可得关于a 的不等式组,求解得答案.【详解】当时,单调递减,且1x <()2f x x =-+()()1,f x ∈+∞当时,单调递减,则, 1x …()223f x x ax a =-+-1a …因为函数在上单调递减, ()22,1,23,1x x f x x ax a x -+<⎧=⎨-+-⎩…R所以,解得,故的取值范围为. 11123a a a⎧⎨-+-⎩……21a -……a []2,1-故选:A .8. 《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如图所示,直角三角形中最小的一个角为,且小正方形与大正方形的面积之比为,则()045αα︒<<︒1:4( )tan α=A. B.C.D.【答案】A【解析】【分析】设大正方形的边长为a ,则小正方形的边长为,根据已知可得()cos sin a αα-,由同角三角函数关系化简得,结合角的范围求. ()222cos sin 14a a αα-=23tan 8tan 30αα-+=tan α【详解】设大正方形的边长为a ,则小正方形的边长为,()cos sin a αα-故,故,即()222cos sin 14a a αα-=112sin c 4os αα-=,解得2223sin cos 3tan 3sin cos 8sin cos 8tan 18αααααααα=⇒=⇒=++23tan8tan 30αα⇒-+=tan α=tan α=因为,则,故045α︒<<︒0tan 1α<<tan α=故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 如果幂函数的图象不过原点,则实数的取值为( )()22233m m y m m x --=-+mA.B. C. D. 无解021【答案】BC【解析】 【分析】利用已知条件可得出关于实数的等式与不等式,由此可解得实数的值.m m 【详解】由已知可得,解得或. 2233120m m m m ⎧-+=⎨--≤⎩1m =2故选:BC.10. 若,,则下列不等式恒成立的是0a >0b >A. B. 21a a +>114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C. D.()114a b a b ⎛⎫++≥ ⎪⎝⎭296a a +>【答案】ABC【解析】【分析】根据基本不等式分别判断选项. 【详解】A.根据基本不等式可知时,,即,所以A 正确;0a >212a a a +≥>212a a +>B.当时,,当时等号成立, 0,0a b >>12a a +≥=1a =,当时等号成立,所以当,当时等号成立,故B 12b b +≥=1b =114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭1,1a b ==正确;C.,当时等号成立,故C 正确; ()1111224b a a b a b a b ⎛⎫++=++=++≥+= ⎪⎝⎭a b =D.,当时等号成立,又因为,所以等号成立,即,故296a a +≥=29a =0a >3a =296a a +≥D 不正确.故选:ABC【点睛】本题考查基本不等式,重点考查公式的理解和简单应用,属于基础题型.11. 已知函数则以下判断正确的是( ) ()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩A. 若函数有3个零点,则实数的取值范围是()()g x f x m =-m ()0,1B. 函数在上单调递增()f x (),0∞-C. 直线与函数的图象有两个公共点1y =()y f x =D. 函数的图象与直线有且只有一个公共点()f x 2y x =+【答案】AC【解析】【分析】作出的图像如图所示,B 可直接由图像或二次函数单调性判断;AC 零点及交点问题均可以()f x 通过与交点个数判断;D 通过图像或者联立方程求解即可判断.()y f x =y m =【详解】当, 0,x ≤()22211y x x x =--=++-故的图像如图所示,()221,02,0x x f x x x x ⎧->=⎨--≤⎩对AC ,函数有3个零点,相当于与有3个交点,()()g x f x m =-()y f x =y m =故的取值范围是,直线与函数的图象有两个公共点,AC 对;m ()0,11y =()y f x =对B ,函数在上先增后减,B 错;()f x (),0∞-对D ,如图所示,联立可得解得或,由图右侧一定有一个交点,故函数222y x y x x =+⎧⎨=--⎩20x y =-⎧⎨=⎩11x y =-⎧⎨=⎩的图象与直线不止一个公共点,D 错.()f x 2y x =+故选:AC12. 已知函数的图象关于直线对称,则( ) ()()ππsin 222f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭π3x =A. 函数在上为减函数 ()f x ππ,32⎡⎤⎢⎥⎣⎦B. 函数为偶函数 π3f x ⎛⎫+ ⎪⎝⎭C. 由可得是的整数倍 ()()1212f x f x ==12x x -πD. 函数在区间上有19个零点()f x ()0,10π【答案】AB【解析】【分析】由函数的对称性求出的值,从而可得的解析式.对于A ,由三角函数的性质即可判断;ϕ()f x 对于B ,化简即可判断;对于C ,当,时,即可得出判断;对于D ,令co 2πs 3f x x ⎛⎫+= ⎪⎝⎭1π6x =2π2x =,则,由题意解得,由此即可判断. ()0f x =π2π,Z 6x k k -=∈112066k -<<-【详解】因为函数的图象关于直线对称, ()f x π3x =所以,,可得, 232ππk πϕ⨯+=+Z k ∈,Z 6k k ϕπ=π-∈又,所以, ππ22ϕ-<<π6ϕ=-所以. π()sin(2)6f x x =-对于A ,当时,,由正弦函数性质知是减函数,故A 正确; ππ,32x ⎡⎤∈⎢⎥⎣⎦2ππ5π,626x -⎡⎤∈⎢⎥⎣⎦()f x 对于B ,是偶函数,故B 正确; πsin 2sin 6ππ2cos232π3f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦对于C ,当,时,,但不是的整数倍,故C 错误; 1π6x =2π2x =121()()2f x f x ==12π3x x -=-π对于D ,令,则,即, π()sin(2)06f x x =-=π2π,Z 6x k k -=∈ππ,Z 122k x k =+∈由,解得, ππ010π122k <+<112066k -<<-因为,所以,因此在区间上有20个零点,故D 错误, Z k ∈0,1,2,,18,19k =L ()f x ()0,10π故选:AB .三、填空题:本题共4小题,每小题5分,共20分.13. 当且时,函数的图象一定经过定点___________0a >1a ≠24x y a -=+【答案】()2,5【解析】【分析】令可求出定点.20x -=【详解】令,可得当时,,所以图象一定经过定点.20x -=2x =5y =()2,5故答案为:.()2,514.______. tan 70tan 5050tan 70+=【答案】【解析】【分析】根据,化简整理,即可得出结果. tan 70tan 50tan1201tan 50tan 70+=-⋅【详解】因为, tan 70tan 50tan1201tan 50tan 70+=-⋅所以,()tan 70tan 50tan1201tan 50tan 70tan 50tan 70+=-⋅=+⋅∴原式50tan 7050tan 70=+⋅-⋅=故答案为【点睛】本题主要考查三角恒等变换,熟记两角和与差的正切公式即可,属于常考题型. 15. 已知扇形的半径为,面积为,则扇形的圆心角的弧度数为_______. 243π【答案】23π【解析】 【分析】根据扇形的面积公式,即可求解.【详解】设扇形的圆心角的弧度数为α,解得 212234S απ=⋅=扇形23απ=故答案为 23π【点睛】本题主要考查了扇形的面积公式,属于基础题.16. 若函数在区间上递减,则a 的取值范围是______. ()()2lg 21f x x ax a =-++(],1-∞【答案】[)1,2【解析】【分析】令,则,结合及复合函数单调性得解. 221u x ax a =-++lg f u u =()2210x ax a -++>【详解】令,则, 221u x ax a =-++lg f u u =()函数的对称轴为,如图所示:221u x ax a =-++x a =若函数在区间上递减,只需在区间上单调()()2lg 21f x x ax a =-++(],1-∞221u x ax a =-++]1∞(-,递减,由图象可知,当对称轴时,在区间上单调递减, 1a ≥221u x ax a =-++]1∞(-,又真数,且在上单调递减, 2210x ax a -++>221u x ax a =-++]1∞(-,故只需当时, ,1x =2210x ax a -++>代入解得,所以a 的取值范围是[1,2)1x =2a <故答案为:.[)1,2四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (1)计算:; 1213lg15lg 42-⎛⎫++- ⎪⎝⎭(2)已知,求的值. 4cos sin 13sin 2cos 4αααα-=+tan α【答案】(1)1(2)2【解析】【分析】(1)利用指数、对数的运算及其运算性质计算求解.(2)分子分母同时除以,把弦化切进行求解. 4cos sin 13sin 2cos 4αααα-=+cos α【详解】(1)原式= ()121233122lg 1523-⨯⨯⎛⎫⎛⎫+-+⨯ ⎪ ⎪⎝⎭⎝⎭= ()1112lg102-⎛⎫+-+ ⎪⎝⎭=221-+=1(2)因为,且, 4cos sin 13sin 2cos 4αααα-=+cos 0α≠所以分子分母同除以有: cos α, 4cos sin 4tan 13sin 2cos 3tan 24αααααα--==++即,3tan 2164tan αα+=- 7tan 14α=解得 .tan 2α=18. 已知,且. 0,022ππαβ<<<<3cos ,cos()5ααβ=+=(1)求的值; sin 24πα⎛⎫+⎪⎝⎭(2)求的值. β【答案】(1; (2).4πβ=【解析】 【分析】(1)由同角平方关系可得,再由二倍角正余弦公式有、,4sin 5α=7cos 225α=-24sin 225α=最后利用和角正弦公式求值.(2)由题设可得,结合差角余弦公式求出对应三角函数sin()αβ+=()βαβα=+-β值,由角的范围确定角的大小.【小问1详解】 由,,则, 02πα<<3cos 5α=4sin 5α=所以,, 27cos 22cos 125αα=-=-24sin 22sin cos 25ααα==而. 17sin 22cos 2)425αααπ⎛⎫+=+== ⎪⎝⎭【小问2详解】由题设,而 0αβ<+<πcos()αβ+=sin()αβ+=而. cos cos[()]cos()cos 3sin (45)si 5n βαβααβααβα=+-=+++==又,则. 02βπ<<4πβ=19. 已知关于的不等式的解集为.x ()233log 2log 30x x --≤M (1)求集合;M(2)若,求函数的最值. x M ∈()()33log 3log 81x f x x ⎛⎫=⋅⎡⎤ ⎪⎣⎦⎝⎭【答案】(1);(2),. 1,273⎡⎤⎢⎥⎣⎦()min 254f x =-()max 0f x =【解析】 【分析】(1)由得,可解出实数的范围,即可得出集合; ()233log 2log 30x x --≤31log 3x -≤≤x M (2)换元,可得出,则,问题转化为求二次函数3log t x =13t -≤≤()()()14f x t t =+-在上的最值问题,然后利用二次函数的性质求解即可.()()14y t t =+-[]1,3t ∈-【详解】(1)由,得,解的, ()233log 2log 30x x --≤31log 3x -≤≤1273x ≤≤因此,; 1,273M ⎡⎤=⎢⎥⎣⎦(2), ()()()()()23333log log 3log log 811434f x x x t t t t =+-=+-=--Q ,则,二次函数, 1,273x ⎡⎤∈⎢⎥⎣⎦Q []3log 1,3t x =∈-223253424y t t t ⎛⎫=--=-- ⎪⎝⎭当时,, 32t =()min min 254f x y ==-又当时,,当时,,.1t =-0y =3t =4y =-()max 0f x ∴=因此,函数在区间上的最大值为,最小值为. ()y f x =M 0254-【点睛】本题考查对数不等式的求解,同时也考查了对数型函数的最值问题,解题的关键就是利用换元法将对数型函数的最值问题转化为二次函数的最值问题来求解,考查化归与转化思想,属于中等题.20. 已知函数. ()9π3π19πsin 2sin 246f x x x ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭(1),求函数的单调区间;()0,πx ∈()f x(2)求函数的解集. ()f x ≤【答案】(1)单增区间是,单减区间是; 3π7π,88⎡⎤⎢⎥⎣⎦3π7π0,,,π88⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭(2). π17ππ,π,Z 2424k k k ⎡⎤++∈⎢⎥⎣⎦【解析】【分析】(1)利用诱导公式及三角函数恒等变换可得,然后根据三角函数的性质()π24f x x ⎛⎫=+ ⎪⎝⎭即得;(2)根据余弦函数的图象和性质即得.【小问1详解】因为 ()9π3π19πsin 2sin 246f x x x ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭122x x x ⎛⎫⎛⎫=++⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1x x x =-+-cos2sin 2x x =-, π24x ⎛⎫=+ ⎪⎝⎭令,得, π2ππ22π2π,Z 4k x k k +≤+≤+∈37,Z 88k x k k πππ+≤≤π+∈令,得, π2π22ππ,Z 4k x k k ≤+≤+∈3,Z 88k x k k πππ-≤≤π+∈故函数的递调递增区间为,单调递减区间为, ()f x 37,,Z 88k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦3,,Z 88k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦又,()0,πx ∈所以函数的单增区间是,单减区间是; ()f x 3π7π,88⎡⎤⎢⎥⎣⎦3π7π0,,,π88⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭【小问2详解】由, ()π24f x x ⎛⎫=+ ⎪⎝⎭π1cos 242x ⎛⎫+≤ ⎪⎝⎭所以, ππ5π2π22π,Z 343k x k k +≤+≤+∈即, π17πππ,Z 2424k x k k +≤≤+∈所以不等式的解集是. π17ππ,π,Z 2424k k k ⎡⎤++∈⎢⎥⎣⎦21. 某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2),(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润、表示为投资额x 的函数;()f x ()g x (2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?【答案】(1), 1()(0)4f x x x =≥()0)g x x =≥(2)6.25万元,4.0625万元【解析】【分析】(1)设,,代入点的坐标,求出解析式;()()0f x kx x =≥()0)g x x =≥(2)设B 产品的投资额为x 万元,创业团队获得的利润为y 万元,列出,换元后,配方得到时,y 取得最大值4.0625. 1(10)(010)4y x x =-≤≤ 6.25x =【小问1详解】因为A 产品的利润与投资额成正比,故设,()()0f x kx x =≥将代入,解得:, ()1,0.2514k =故, 1()(0)4f x x x =≥因为B 产品的利润与投资额的算术平方根成正比,故设,()0)g x x =≥将,解得:, ()4,2.5 2.5=54m =故; ()0)g x x =≥【小问2详解】设B 产品的投资额为x 万元,则A 产品的投资额为万元,创业团队获得的利润为y 万元,()10x -则. 1()(10)(10)(010)4y g x f x x x =+-=+-≤≤,可得, (0t t =≤≤2155(0442y t t t =-++≤≤即. 21565(04216y t t ⎛⎫=--+≤≤ ⎪⎝⎭当,即时,y 取得最大值4.0625. 52t = 6.25x =答:当B 产品的投资额为6.25万元时,生产A ,B 两种产品能获得最大利润.获得的最大利润为4.0625万元.22. 已知函数是定义在上的奇函数且 ()()2,R x b f x a b x a +=∈+[]1,1-()112f =(1)求函数的解析式;()f x (2)判断函数的单调性;并利用单调性定义证明你的结论;()f x (3)设,当,使得成立,试求()()12g x f x =-+121,,12x x ⎡⎤∃∈⎢⎥⎣⎦()()()21112100g mx x g x f x -+->实数的所有可能取值.m 【答案】(1) ()21x f x x =+(2)函数在上增函数,证明见解析()f x []1,1-(3).25<≤m 【解析】【分析】(1)利用题给条件列出关于a 、b 的方程,解之即可求得a 、b 的值,进而得到函数的解析()f x 式;(2)利用函数单调性定义去证明函数在上为增函数;()f x []1,1-(3)利用函数在上为增函数,构造关于实数的不等式,解之即可求得实数的取值范围. ()f x 1,12⎡⎤⎢⎥⎣⎦m m 【小问1详解】由在上的奇函数, ()f x []1,1-所以,则,则 ()00b f a ==0b =()2x f x x a=+由,得,所以.经检验符合题意; ()11112f a ==+1a =()21x f x x =+【小问2详解】函数在上增函数,证明如下: ()f x []1,1-设,且, []12,1,1x x ∀∈∈-12x x <则, ()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++又,所以,因为,所以, 12x x <120x x -<[]12,1,1x x ∈-1210x x ->所以,则, ()()()()121222121011x x x x x x --<++()()12f x f x <故函数在上增函数;()f x []1,1-【小问3详解】,使得成立, 121,,12x x ⎡⎤∃∈⎢⎥⎣⎦()()()21112100g mx x g x f x -+->即,使得成立, 121,,12x x ⎡⎤∃∈⎢⎥⎣⎦()()()21112111040f mx x f x f x --+--+>即, ()()()2111211104f mx x f x f x --+->-∵,即, ()2min 1225f x f ⎛⎫== ⎪⎝⎭11,12x ⎡⎤∃∈⎢⎥⎣⎦使得成立, ()()211121110405f mx x f x --+->⨯-=,使得, 11,12x ⎡⎤∃∈⎢⎥⎣⎦()()211111f mx x f x -->-即,且, 11,12x ⎡⎤∃∈⎢⎥⎣⎦211111mx x x -->-1111mx x -≤--≤1即且, 11min 21m x x ⎛⎫>-++ ⎪⎝⎭1max 211m x ⎛⎫≤≤+ ⎪⎝⎭当时,, 11,12x ⎡⎤∈⎢⎥⎣⎦11min 212x x ⎛⎫-++= ⎪⎝⎭1max 215x ⎛⎫+= ⎪⎝⎭即且,解得:.m>215m ≤≤25<≤m。

山东省临沂高一上学期期末考数学试题(解析版)

山东省临沂高一上学期期末考数学试题(解析版)

一、单选题1.已知集合,,则( ) {}2,0,1,2A =-{}21B x x =≤A B = A .B .C .D .{}1,0,1-{}0,1{}2,0,1-{}2,0,1,2-【答案】B 【分析】解一元二次不等式化简集合B ,再利用交集的定义求解作答.【详解】解不等式得:,则有,而,21x ≤11x -≤≤{|11}B x x =-≤≤{}2,0,1,2A =-所以.{}0,1A B = 故选:B2.若实数满足,则下列不等式成立的是( ),a b a b >A .B . a b >33a b >C .D .11a b<23ab b >【答案】B【分析】对于选项ACD 可以举反例判断,选项B 可以利用函数单调性判断.【详解】选项A ,可以举反例,如,满足,但是,错误;1a =3b =-a b >a b <选项B :对于函数是上单调增函数,所以当时,,正确;3()f x x =R a b >33a b >选项C :可以举反例,如,满足,但是,错误; 1a =3b =-a b >11a b >选项D :可以举反例,如,,满足,但是,错误;1a =0b =a b >23ab b =故选:B3.函数的定义域是( ) ()ln 1x f x x x =+-A .B . ()0,∞+[)0,∞+C .D .()()0,11,⋃+∞[)()0,11,+∞ 【答案】C【分析】根据对数式的真数大于零、分式的分母不为零,求解出的取值范围可得答案. x 【详解】因为,所以或,所以函数的定义域为:, 010x x >⎧⎨-≠⎩01x <<1x >()()0,11,+∞ 故选:C.4.“”是“”的( )4lg 4x =lg 1x =A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B 【分析】解方程、,利用集合的包含关系判断可得出结论.4lg 4x =lg 1x =【详解】由可得,解得;由可得.4lg 4x =4410x =10x =±lg 1x =10x =因为 ,因此,“”是“”的必要非充分条件 .{}10,10-{}104lg 4x =lg 1x =故选:B.5.已知a =0.63,b =30.6,c =log 30.6,则( )A .a <b <cB .b <a <cC .c <a <bD .c <b <a【答案】C【分析】利用对数函数和指数函数的性质求解即可.【详解】因为0<0.63<0.60=1,则0<a <1,而b =30.6>30=1,c =log 30.6<log 31=0,所以c <a <b .故选:C6.函数的图象大致是( ) lg 1()x x f x x -=A . B . C .D .【答案】A【解析】先求函数定义域得,再根据定义域分,,三()()(),00,11,x ∈-∞+∞ 0x <01x <<1x >种情况分别讨论即可得答案.【详解】解:函数的定义域为:,()()(),00,11,-∞+∞ 当时,函数,故排除CD 选项; 0x <11x -+>()()lg 1lg 1()lg 10x x x x f x x x x--+===--+<-当时,,故函数,故排除B 选01x <<011x <-+<()()lg 1lg 1()lg 10x x x x f x x x x --+===-+<项;当时,函数,该函数图象可以看成将函数的图象1x >()()lg 1lg 1()lg 1x x x x f x x x x--===-lg y x =向右平移一个单位得到.故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.7.若函数,在R 上为严格增函数,则实数的取值范围是( ) 6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩a A .(1,3); B .(2,3);C .;D .; 9,34⎛⎫ ⎪⎝⎭9,34⎡⎫⎪⎢⎣⎭【答案】D 【分析】直接根据分段函数减函数的定义构造不等式组,解不等式组即可求出参数的取值范围.a 【详解】在上为严格增函数,,解得. ()f x R ()76301373a a a a -⎧->⎪∴>⎨⎪-⨯-≤⎩934a ≤<即实数的取值范围是. a 9,34⎡⎫⎪⎢⎣⎭故选:D8.黄龙体育馆有A ,B ,C 三个观看区,其中A 、B 、C 三区人数之比为,已知三个区的出6:3:2口在一条直线上,位置如图所示,体育馆拟在此间设一个临时医务室,为使所有观众从出口步行到医务室路程总和最小,那么医务室位置应在( )A .A 区B .B 区C .C 区D .A ,B 两区之间【答案】A【分析】根据题意计算医务室分别在A 、B 、C 各区和A 、B 两区之间时,所有观众从出口步行到医务室路程总和,选择最小的值即可得出答案.【详解】设A 、B 、C 三区人数分别为6n 、3n 、2n ,(n >0),当医务室在A 区时,所有观众从出口步行到医务室路程总和是:3n ×100+2n ×300=900n (米), 当医务室在B 区时,所有观众从出口步行到医务室路程总和是:6n ×100+2n ×200=1000n (米), 当医务室在C 区时,所有观众从出口步行到医务室路程总和是:6n ×300+3n ×200=2400n (米), 当医务室在A 、B 两区之间时,设距离A 区x 米,(0<x <100),则所有观众从出口步行到医务室路程总和是:6nx +3n (100−x )+2n (100+200−x )=nx +900n >900n (米),综上,当医务室在A 区时,所有观众从出口步行到医务室路程总和最小,为900n 米.故选:A .二、多选题9.下列说法正确的有( )A .命题“”的否定是“”2R,10x x x ∀∈++≤2,10x R x x ∃∉++>B .两个三角形面积相等是两个三角形全等的必要不充分条件C .若为上的奇函数, 则为上的偶函数()y f x =R ()y xf x =RD .若,则, (121f x =+()2243f x x x =++[)1x ∈+∞,【答案】BC【分析】根据全称命题的否定为特称命题可判断A ,根据必要不充分条件的定义可判断B ,根据奇偶性的定义可判断C ,根据换元法可求解D.【详解】命题“”的否定是“”,故A 错误,2R,10x x x ∀∈++≤2R,10x x x ∃∈++>两个三角形面积相等,不能得到两个三角形全等,但是两个三角形全等,那么他们的面积一定相等,所以两个三角形面积相等是两个三角形全等的必要不充分条件,故B 正确,若为上的奇函数,则,所以故()y f x =R ()()f x f x =--()(),g x xf x =()()(),g x xf x xf x -=--=,因此为上的偶函数,故C 正确,()()g x g x =-()y xf x =R若,令,所以,故则(121f x =+()11t t =≥()()22211243f t t t t =-+=-+,,故D 错误, ()2243f x x x =-+[)1x ∈+∞,故选:BC10.已知函数,则( )()()()ln 2ln 6f x x x =-+-A .在上单调递增B .在上的最大值为 ()f x ()2,6()f x ()2,62ln 2C .在上单调递减D .的图像关于直线对称()f x ()2,6()y f x =4x =【答案】BD【分析】为复合函数,结合二次函数及定义域判断单调性|.()f x 【详解】,定义域为,()()()()()ln 2ln 6ln 26f x x x x x ==-+---()2,6令,则,()()26t x x =--ln y t =二次函数的图像的对称轴为x =4,()()26t x x =--∴的图像关于直线x =4对称,且在(2,4)上递增,在(4,6)上递减,()f x 当x =4时,,()()()max ln 4264ln 42ln 2f x =-==-故选:BD. 11.设函数,则下列结论正确的是( ) ()cos 3f x x π⎛⎫=+ ⎪⎝⎭A .的一个周期为B .的图象关于直线对称 ()f x 2π-()y f x =83x π=C .的一个零点为D .在上单调递减 ()f x π+6x π=()f x ,2ππ⎛⎫ ⎪⎝⎭【答案】ABC【分析】根据周期、对称轴、零点、单调性,结合整体思想即可求解.【详解】对于A 项,函数的周期为,,当时,周期,故A 项正确; 2k π,0k k ∈≠Z 1k =-2T π=-对于B 项,当时,为最小值,此时的83x π=89cos cos cos cos3cos 13333x ππππ⎛⎫⎛⎫+=+=-π=π=- ⎪ ⎪⎝⎭⎝⎭()y f x =图象关于直线对称,故B 项正确; 83x π=对于C 项,,,所以的一个零点为,故4()cos 3f x x ππ⎛⎫+=+ ⎪⎝⎭43cos cos 0632πππ⎛⎫+== ⎪⎝⎭()f x π+6x π=C 项正确;对于D 项,当时,,此时函数有增有减,不是单调函数,故D 项错2x ππ<<54633x πππ<+<()f x误.故选:ABC.12.已知定义在上函数的图象是连续不断的,且满足以下条件:①,;R ()f x x ∀∈R ()()f x f x -=②,当时,都有;③,则下列选项成立的是()12,0,x x ∀∈+∞12x x ≠()()21210f x f x x x ->-()10f -=( ):A .B .函数在上单调递增 (1)(3)(4)f f f <<-()f x (),0∞-C .函数在上单调递减D .的解集为 ()f x (),0∞-()0f x <[1,1]-【答案】AC【分析】根据①判断出是偶函数,根据②判断出在上单调递增,结合奇偶()f x ()f x ()0,x ∈+∞性、单调性可判断ABC ;再由可判断D.()10f -=【详解】因为,有,所以是偶函数, x ∀∈R ()()f x f x -=()f x ,当时,都有, ()12,0,x x ∀∈+∞12x x ≠()()21210f x f x x x ->-所以在上单调递增,又是偶函数,()f x ()0,x ∈+∞()f x 所以在上单调递减,故B 错误,C 正确;()f x (),0x ∈-∞所以,故A 正确;(1)(3)(4)(4)<<=-f f f f 而, 所以当时, ,当或时,,故D 错误. ()10f -=11x -<<()0f x <1x <-1x >()0f x >故选:AC.三、填空题13.已知角为第四象限角,且满足,则_________ α1sin cos 2αα+=sin cos αα-=【答案】【分析】利用和的关系,先求出的值,再利用和sin cos αα+sin cos αα2sin cos ααsin cos αα-的关系,开方时结合角的范围检验,即可求得结果.sin cos αα【详解】由题意得, 1sin cos 2αα+=()21sin cos 4αα+=所以, 221sin 2sin cos cos 4αααα++=因为,所以可得 , 22sin cos 1αα+=32sin cos 4αα=-所以, ()22237sin cos sin 2sin cos cos 144αααααα⎛⎫-=-+=--= ⎪⎝⎭因为是第四象限角,所以,所以αsin cos 0αα-<sin cos αα-=故答案为:. 14.已知幂函数在上是减函数,则实数值是______.()()2211m m f x m m x +-=--()0,∞+m 【答案】1-【分析】由幂函数的性质可得,求解即可. 221110m m m m ⎧--=⎨+-<⎩【详解】解:因为幂函数在上是减函数,()()2211m m f x m m x +-=--()0,∞+所以, 221110m m m m ⎧--=⎨+-<⎩解得.1m =-故答案为:1-15.若命题“”是假命题,则实数的取值范围是______.2R,210x ax ax ∃∈++…a 【答案】[)0,1【分析】原命题为假,则其否定为真,转化为二次不等式的恒成立问题求解.【详解】命题“”的否定为:“,”.2R,210x ax ax ∃∈++…x ∀∈R 2210ax ax ++>因为原命题为假命题,则其否定为真.当时显然不成立;当时,恒成立;当时,a<00a =10>0a >只需,解得:.2440a a ∆=-<01a <<综上有[)0,1a ∈故答案为:.[)0,116.已知,,则的最小值_________. 11,23a b >>127a b +=312131a b +--【答案】20【分析】设,利用表示,利用得到,再变形11,2131x y a b ==--,x y 12,a b 127a b +=(1)(5)12x y --=得到,利用基本不等式求出最小值. 313(1)(5)802131x y a b +=-+-+--【详解】令,则, 11,2131x y a b ==--1226711x y a b x y +=+=++去分母化简得:,所以, 57xy x y --=(1)(5)12x y --=所以, 3133(1)(5)88202131x y x y a b +=+=-+-+≥+=--当且仅当时,等号成立. 24,311a b ==故答案为:20四、解答题17.在平面直角坐标系中,角的顶点坐标原点,始边为的非负半轴,终边经过点.αx ()1,2-(1)求的值; sin tan αα⋅(2)求的值.()()()()π7π3πsin cos tan 2πcos 222sin 2πtan πsin πααααααα⎛⎫⎛⎫⎛⎫+⋅-⋅-⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-⋅--⋅+【答案】(1)(2)【分析】(1)根据角终边经过点,得出的值,即可求出;α()1,2-sin ,cos ,tan αααsin tan αα⋅(2)根据诱导公式进行化简,代入角的三角函数值即可. α【详解】(1)解:由题知角终边经过点,α()1,2-r∴===siny r α∴===cos x r α===, 2tan 21y x α===--sin tan αα∴⋅=(2)由(1)知, cos α=则原式()()()()π7π3πsin cos tan 2πcos 222sin 2πtan πsin πααααααα⎛⎫⎛⎫⎛⎫+⋅-⋅-⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-⋅--⋅+()()()()()()sin tan sin sin tan s os i c n ααααααα⋅-⋅-⋅-=-⋅-⋅-cos α==18.已知函数是上的偶函数,若对于,都有,且当()f x (),-∞+∞0x ≥()()2f x f x +=-[)0,2x ∈时,,求:()()2log 1f x x =+(1)与的值;()0f ()3f (2)的值.()()20202021f f +-【答案】(1),()00f =()31f =-(2)()()202020211f f +-=【分析】(1)由赋值法求解,(2)由偶函数的性质与周期性求解,【详解】(1)当时,,所以,[)0,2x ∈()()2log 1f x x =+()20log 10f ==因为函数,所以.()()2f x f x +=-()()()231log 111f f =-=-+=-(2)依题意,当时,都有,0x ≥()()2f x f x +=-可得当时,,0x ≥()()()42f x f x f x +=-+=即时,函数是以4为周期的函数,而函数为偶函数,0x ≥()f x 所以,()()()()()()202020212020202101f f f f f f +-=+=+又由,,()()20log 010f =+=()()21log 111f =+=故.()()202020211f f +-=19.已知函数 ()π2sin 2,R 4f x x x ⎛⎫=-∈ ⎪⎝⎭(1)求的最小值及对应的的集合;()f x x(2)求在上的单调递减区间;()f x []0,π【答案】(1), ()min 2f x =-|,Z 8ππx x k k ⎧⎫=-+∈⎨⎬⎩⎭(2) 3π7π,88⎡⎤⎢⎥⎣⎦【分析】(1)根据正弦函数的最值结合整体思想即可得解;(2)根据正弦函数的单调性结合整体思想即可得出答案.【详解】(1)解:当,即时, 2ππ22π4x k -=-ππ,Z 8x k k =-+∈,()min 2f x =-所以,此时的集合为; ()min 2f x =-x |,Z 8ππx x k k ⎧⎫=-+∈⎨⎬⎩⎭(2)解:令, ππ3π2π22π,Z 242k x k k +≤-≤+∈则, 3π7πππ,Z 88k x k k +≤≤+∈又因,[]0,πx ∈所以在上的单调递减区间为. ()f x []0,π3π7π,88⎡⎤⎢⎥⎣⎦20.已知是定义域为R 的奇函数. ()221x f x a =-+(1)求a 的值;(2)判断的单调性并证明你的结论;()f x (3)若恒成立,求实数k 的取值范围. ()()22220f x x f x k -++--<【答案】(1);1a =(2)单调递增,证明见解析;(3). 116k >【分析】(1)利用奇函数定义,列式计算作答.(2)判断单调性,再利用函数单调性定义按步骤推理作答.(3)利用函数的奇偶性、单调性脱去法则“f ”,再分离参数求出最值作答.【详解】(1)因为函数是定义域为R 的奇函数,则有,()221x f x a =-+02(0)1021f a a =-=-=+解得, 1a =此时,,函数是奇函数, ()22112121x x x f x -=-=++()211221()211221x x x x x x f x f x ------===-=-+++()f x 所以.1a =(2)函数在R 上单调递增,()f x 任意,, 1212,R,x x x x ∈<121221*********(22)()()(1(1)21212121(21)(21)x x x x x x x x f x f x --=---=-=++++++因为函数在R 上单调递增,,则有,即有,即2x y =12x x <12022x x <<12())0(f x f x -<,12()()f x f x <所以函数在R 上单调递增.()f x (3)由(2)知,函数在R 上单调递增,又是R 上的奇函数,()f x ()f x 不等式恒成立,等价于, ()()22220f x x f x k -++--<()()()222222f x x f x k f x k -+<---=+即恒成立,而,当且仅当时取222224x x x k k x x -+<+⇔>-+2211144(81616x x x -+=--+≤18x =等号,则, 116k >所以实数k 的取值范围是. 116k >21.我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为万美元,且当该公司一()R x 2400,040,()740040000,40.kx x R x x xx -<≤⎧⎪=⎨->⎪⎩年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:W x (2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.【答案】(1);(2)32万部,最大值为6104万美元. 2638440,040,40000167360,40.x x x W x x x ⎧-+-<⎪=⎨--+>⎪⎩…【解析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后6k =由,将代入即可.()(1640)W xR x x =-+()R x (2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结040x <…40x >论.【详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,4002440216704k ⨯---⨯=解得,6k =当时, ,040x <…2()(1640)638440W xR x x x x =-+=-+-当时, . 40x >40000()(1640)167360W xR x x x x=-+=--+所以 2638440,040,40000167360,40.x x x W x x x ⎧-+-<⎪=⎨--+>⎪⎩…(2)①当时, ,所以;040x <…26326104()W x =+--max (32)6104W W ==②当时, ,由于, 40x>40000167360x W x --=+40000161600x x +=…当且仅当,即时,取等号,所以此时的最大值为5760. 4000016x x=50(40,)x =∈+∞W 综合①②知,当,取得最大值为6104万美元.32x =W 【点睛】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数; (3)解应用题时,要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.22.已知定义在区间上的函数. ()0,∞+4()6f x x x=+-(1)求函数的零点;()y f x =(2)若方程有四个不相等的实数根,,证明:;()()0f x m m =>123,,x x x 4x 123416x x x x =(3)设函数,,若对任意的,总存在,使得()352g x x b =+-R b ∈[]12,4x ∈[]22,4x ∈,求的取值范围.()()112x f x g x =b 【答案】(1);33(2)证明见解析;(3). 21[8,]2【分析】(1)解方程,即可求得函数的零点; 4()60f x x x =+-=()y f x =(2)作出函数的图象,将方程四个不相等的实数根问题转()()0,,y f x x ∞=∈+()()0f x m m =>化为函数图象交点问题,数形结合,利用二次方程根与系数的关系,证明结论;(3)求出时,的范围,求出,的范围,根据题意可将原问题转化[]12,4x ∈()11x f x []22,4x ∈()2g x 为集合间的子集问题,列出相应不等式,求得答案.【详解】(1)由题意可知,令,即,解得, 4()60f x x x =+-=2640x x -+=3x ==故函数在内的零点为()0,∞+3+3(2)证明:作出函数的图象,()()0,,y f x x ∞=∈+方程有四个不相等的实数根,,()()0f x m m =>123,,x x x 4x 即为图象与的四个交点的横坐标,()()0,,y f x x ∞=∈+y m =方程即,,即, ()()0f x m m =>4|6|x m x+-=()0,x ∈+∞2|64|x x mx -+=不妨设的四个根为,()()0f x m m =>1234x x x x <<<当即时,为即的两根,()0f x >2640x x -+>14,x x 264x x mx -+=2(6)40x m x -++=则,144x x =当时,为即的两根,2640x x -+<23,x x 264x x mx -+=-2(6)40x m x --+=则,234x x =故;123416x x x x =(3)设,当时,,2()()64h x xf x x x ==-+[]2,4x ∈()[5,4]h x ∈--当时,,[]2,4x ∈()352[112,172]g x x b b b =+-∈--对任意的,总存在,使得,[]12,4x ∈[]22,4x ∈()()112x f x g x =则,故且,[112[5,,]7412]b b --⊆--1125b -≤-1724b -≥-解得 ,即的取值范围为. 2182b ≤≤b 21[8,2【点睛】本题考查了函数的零点以及关于方程的根的相关等式的证明和恒成立问题,综合性强,计算量大,解答时涉及到数形结合和转化思想,解答的关键是解决恒成立问题时转化为集合的包含关系解决.。

2014-2015学年山东省临沂市高一(上)期末数学试卷

2014-2015学年山东省临沂市高一(上)期末数学试卷

2014-2015学年山东省临沂市高一(上)期末数学试卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 直线x+√3y−1=0的倾斜角为()A.60∘B.30∘C.120∘D.150∘2. 函数y=√x+1+1x−1的定义域为()A.[−1, 1)B.(−1, 1)C.[−1, 1)∪(1, +∞)D.(−1, 1)∪(1, +∞)3. 已知f(e x)=x,则f(5)=()A.lg5B.ln5C.5eD.e54. 函数f(x)=1−2|x|的图象大致是()A. B. C. D.5. 函数y=x2−4ax+1在区间[−2, 4]上单调递增函数,则实数a的取值范围是()A.(−∞, −1]B.(−∞, 2]C.[−1, +∞)D.[2, +∞)6. 某几何体的三视图如图,则该几何体的表面积为()A.36B.24C.60D.487. 函数f(x)=lg x−1x 的零点所在的区间为()A.(2, 3)B.(1, 2)C.(4, 5)D.(3, 4)8. 已知两条直线m,n,两个平面α,β,下列四个结论中正确的是()A.若α // β,m // α,n // β,则m // nB.若m⊥α,α⊥β,n // β,则m // nC.若m⊥n,m // α,n // β,则α⊥βD.若m⊥n,m⊥α,n⊥β,则α⊥β9. 一个圆锥的表面积为π,它的侧面展开图是圆心角为120∘的扇形,则该圆锥的高为()A.√2B.1C.2√2D.210. 函数f(x)=(14)x+(12)x−1,x∈[0, +∞)的值域为()A.[−54, 1] B.(−54, 1] C.[−1, 1] D.(−1, 1]二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..log93+(827)−13=________.已知f(x)是奇函数,当x<0时,f(x)=x3+x2,则f(2)=________.三条直线ax+2y+8=0,4x+3y=10,2x−y=10相交于一点,则实数a的值为________.圆________.在正方体ABCD−A1B1C1D1中,给出下列结论:①AC⊥B1D1;②AC1⊥B1C;③AB1与BC1所成的角为60∘;④AB与A1C所成的角为45∘.其中所有正确结论的序号为________.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤已知集合A={x|2<2x<8},B={x|a≤x≤a+3}.(1)当a=2时,求A∩B;(2)若B⊆∁R A,求实数a的取值范围.已知函数f(x)=log a(x+1),g(x)=log a(1−x),其中a>0且a≠1(1)判断函数f(x)+g(x)的奇偶性;(2)求使f(x)<g(x)成立的x的取值范围.已知直线l1:(a−1)x+y+b=0,l2:ax+by−4=0,求满足下列条件的a,b的值(1)l1⊥l2,且l1过(1, 1)点;(2)l1 // l2,且l2在第一象限内与两坐标轴围成的三角形的面积为2.圆心在直线2x+y=0上的圆C,经过点A(2, −1),并且与直线x+y−1=0相切(1)求圆C的方程;(2)圆C被直线l:y=k(x−2)分割成弧长的比值为12的两段弧,求直线l的方程.如图,在四棱锥P−ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AD=2,E,F,G分别是PC,PD,BC的中点.(1)求四棱锥P−ABCD的体积;(2)求证:平面PAB // 平面EFG;(3)在线段PB上确定一点M,使PC⊥平面ADM,并给出证明.某网店经营的一红消费品的进价为每件12元,周销售量p(件)与销售价格x(元)的关系,如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p(件)与销售价格x(元)的函数关系式;(2)写出周利润y(元)与销售价格x(元)的函数关系式;(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润.参考答案与试题解析2014-2015学年山东省临沂市高一(上)期末数学试卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】此题暂无答案【考点】直线于倾斜落【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】函数的定较域熔其求法【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】函数表图层变换【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】二次明数织性质【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】由三都问求体积【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】二分法求明程月近似解【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】空间使如得与平度之间的位置关系【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】旋转验(圆柱立圆锥碳藏台)【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二次于数在落营间上周最值指数射复初函数判性产及应用【解析】此题暂无解析【解答】此题暂无解答二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上.. 【答案】此题暂无答案【考点】有于械闭数古的化简求值对数都北算性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数奇明性研性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】两条直验立交点坐标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相交弦所射直线可方程【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】命题的真三判断州应用棱柱三实构特征【解析】此题暂无解析【解答】此题暂无解答三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤【答案】此题暂无答案【考点】集合体包某关峡纯断及应用交集根助运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数奇三性的判刺对数值于小的侧较【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线的较般式划程皮直校的垂直关系直线的水根式方务式直线的平行关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆的射纳方程点到直使的距离之式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线与平正垂直的判然平面与平三平行腔判定柱体三锥州、台到的体建计算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数模型较选溴与应用函根的萄送木其几何意义函数于析式偏速站及常用方法【解析】此题暂无解析【解答】此题暂无解答。

山东省临沂市高一上学期数学期末联考试卷

山东省临沂市高一上学期数学期末联考试卷

山东省临沂市高一上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016高一下·承德期中) sin(π+α)=﹣,则sinα=()A .B .C .D .2. (2分)函数的图像关于()A . y轴对称B . 直线y=-x对称C . 坐标原点对称D . 直线y=x对称3. (2分)已知,函数在上单调递减.则的取值范围()A .B .C .D .4. (2分) (2018高一下·攀枝花期末) 设是所在平面内一点,且,则()A .B .C .D .5. (2分)若,则是()A . 第二象限B . 第三象限C . 第二或第四象限D . 第三或第四象限6. (2分)设R,向量且,则()A .B .C .D . 107. (2分) (2016高一下·河源期末) 函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A . (,)B . (,)C . (,1)D . (1,2)8. (2分)(2019·潍坊模拟) 已知不共线向量,夹角为,,,,,在处取最小值,当时,的取值范围为()A .B .C .D .9. (2分)在等差数列{an}中,an>0,且a1+a2+a3+…+a8=40,则a4•a5的最大值是()A . 5B . 10C . 25D . AB=4,5010. (2分)设,,且满足则x+y=()A . 1B . 2C . 3D . 4二、填空题 (共7题;共7分)11. (1分) (2018高三上·东区期末) 已知向量,,则向量在向量的方向上的投影为________12. (1分)已知,,则sinα=________.13. (1分) (2016高一下·甘谷期中) 角A是△ABC的一个内角,若函数y=cos(2x+A)的图象的一个对称中心为(,0),则A=________.14. (1分)已知函数f(x)=x2+2x+1,如果使f(x)≤kx对任意实数x∈(1,m]都成立的m的最大值是5,则实数k= ________.15. (1分) (2016高一上·平阳期中) 已知()﹣x+1>(),则x的解集为________(请写成集合形式)16. (1分) (2016高三上·襄阳期中) 已知函数f(x)= ,且f(a)=﹣3,则f(6﹣a)=________.17. (1分)如图,B是AC的中点,=2, P是平行四边形BCDE内(含边界)的一点,且=X+y.有以下结论:①当x=0时,y∈[2,3];②当P是线段CE的中点时,x=-,y=;③若x+y为定值1,则在平面直角坐标系中,点P的轨迹是一条线段;④x﹣y的最大值为﹣1;其中你认为正确的所有结论的序号为________ .三、解答题 (共5题;共25分)18. (5分) (2016高一下·齐河期中) 已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.(1)若A∩B=[2,4],求实数m的值;(2)设全集为R,若A⊆∁RB,求实数m的取值范围.19. (5分) (2017高一下·景德镇期末) 已知向量 =(1,2), =(cosα,sinα),设 = +t (t为实数).(1)若,求当| |取最小值时实数t的值;(2)若⊥ ,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.20. (5分) (2016高一上·东营期中) 已知定义域为R的函数f(x)= 是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.21. (5分) (2017高一上·金山期中) 设函数,函数,其中a为常数且a>0,令函数f(x)=g(x)•h(x).(1)求函数f(x)的表达式,并求其定义域;(2)当时,求函数f(x)的值域;(3)是否存在自然数a,使得函数f(x)的值域恰为?若存在,试写出所有满足条件的自然数a所构成的集合;若不存在,试说明理由.22. (5分) (2017高一上·肇庆期末) 若函数f(x)在定义域内存在实数x0 ,使得f(x0+1)=f(x0)+f (1)成立,则称函数f(x)有“飘移点”x0 .(Ⅰ)证明f(x)=x2+ex在区间上有“飘移点”(e为自然对数的底数);(Ⅱ)若在区间(0,+∞)上有“飘移点”,求实数a的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共25分) 18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、第11 页共11 页。

山东省临沂市高一上学期数学期末考试试卷

山东省临沂市高一上学期数学期末考试试卷

山东省临沂市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(∁UA)∩B=()A . ∅B . {x|<x≤1}C . {x|x<1}D . {x|0<x<1}2. (2分)某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步人数a b c登山人数x y z其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的 .为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则应从高三年级参与跑步的学生中抽取()A . 15人B . 30人C . 40人D . 45人3. (2分)若函数f(x)=(m2﹣m﹣1)x 是幂函数,在(0,+∞)是增函数,则实数m=()A . ﹣1B . 2C . 2或﹣1D . 0或2或﹣14. (2分)设偶函数满足,则不等式的解集为()A . 或B . 或C . 或D . 或5. (2分)已知变量和满足关系,变量与正相关. 下列结论中正确的是()A . 与负相关,与负相关B . 与正相关,与正相关C . 与正相关,与负相关D . 与负相关,与正相关6. (2分)函数的零点所在的一个区间是()A . (-2,-1)B . (-1,0)C . (0,1)D . (1,2)7. (2分)如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是()A . 12,4B . 16,5C . 20,5D . 24,68. (2分) (2016高三上·黑龙江期中) 在区间[0,π]上随机取一个数x,使的概率为()A .B .C .D .9. (2分) .若则()A .B . 2C .D .10. (2分) (2017高二下·长春期末) 下列关系式中,成立的是()A .B .C .D .11. (2分)掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是()A . P(M)=, P(N)=B . P(M)=, P(N)=C . P(M)=, P(N)=D . P(M)=, P(N)=12. (2分) (2019高一上·仁寿期中) 已知函数是上的增函数,则实数的取值范围是A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高三上·日照期中) 若函数f(x)= ,则f(log23)=________.14. (1分) (2016高二下·日喀则期末) 荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示,假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是________.15. (1分)(2017·和平模拟) 已知f(x)=x3+3x2+6x,f(a)=1,f(b)=﹣9,则a+b的值为________.16. (1分)已知函数,则f(x)的最大值为________.三、解答题 (共6题;共70分)17. (10分) (2016高一上·杭州期中) 已知函数f(x)=﹣x2+2x+5,令g(x)=(2﹣2a)x﹣f(x)(1)若函数g(x)在x∈[0,2]上是单调增函数,求实数a的取值范围;(2)求函数g(x)在x∈[0,2]的最小值.18. (10分) (2018高二下·重庆期中) 一只药用昆虫的产卵数与一定范围内的温度有关,现收集了该种药用昆虫的6组观测数据如下表:温度212324272932产卵数 /个61120275777附:一组数据,其回归直线的斜率和截距的最小二乘估计为;相关指数 .(1)若用线性回归模型,求关于的回归方程(精确到0.1);(2)若用非线性回归模型求关的回归方程为,且相关指数①试与(1)中的线性回归模型相比,用说明哪种模型的拟合效果更好.②用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).19. (10分) (2017高一上·潮州期末) 已知定义域为R的函数f(x)= 是奇函数,f(1)=﹣.(1)求a,b的值;(2)判断函数f(x)的单调性,并用定义证明.20. (10分) (2018高一下·河南月考) 从2017年1月18日开始,支付宝用户可以通过“ 扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜,每一位提前集齐五福的用户都将获得一份现金红包.某髙校一个社团在年后开学后随机调査了80位该校在读大学生,就除夕夜之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:(1)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;(2)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.21. (15分) (2016高一上·安庆期中) 已知函数f(x)= 为偶函数(1)求实数a的值;(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣,判断λ与E的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年山东省临沂十九中高一(上)期末数学试卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5.00分)已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3 B.﹣2 C.2 D.不存在2.(5.00分)下列函数中,在R上单调递增的是()A.y=|x|B.y=log2x C.y=D.y=0.5x3.(5.00分)函数f(x)=log4x与f(x)=4x的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称4.(5.00分)已知直线PQ的斜率为,将直线绕点P顺时针旋转60°所得的直线的斜率是()A.B.C.0 D.﹣5.(5.00分)过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=06.(5.00分)光线沿直线y=2x+1射到直线y=x上,被直线y=x反射后的光线所在的直线方程为()A. B.C.D.7.(5.00分)由直线y=x+2上的点P向圆C:(x﹣4)2+(y﹣2)2=1引切线PT(T 为切点),当|PT|的值最小时,点P的坐标是()A.(﹣1,1)B.(0,2) C.(﹣2,0)D.(1,3)8.(5.00分)已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被圆C截得的弦长为2时,a的值等于()A.B.﹣1 C.2﹣D.+19.(5.00分)设P(x,y)是圆x2+(y+4)2=4上任意一点,则的最小值为()A.+2 B.﹣2 C.5 D.610.(5.00分)(理科)已知两点A(0,﹣3),B(4,0),若点P是圆x2+y2﹣2y=0上的动点,则△ABP面积的最小值为()A.6 B.C.8 D.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5.00分)过原点O作圆x2+y2﹣6x﹣8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为.12.(5.00分)若圆x2+y2=r2(r>0)上有且只有两个点到直线x﹣y﹣2=0的距离为1,则实数r的取值范围是.13.(5.00分)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β.其中为真命题的是.14.(5.00分)计算=.15.(5.00分)已知f(x)是奇函数,且当x>0时,f(x)=x+1,则f(﹣1)的值为.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12.00分)已知集合A={2,3,a2+4a+2},B={0,7,2﹣a,a2+4a﹣2},A ∩B={3,7},求a的值及集合A∪B.17.(12.00分)如图,已知三角形的顶点为A(2,4),B(0,﹣2),C(﹣2,3),求:(Ⅰ)AB边上的中线CM所在直线的一般方程;(Ⅱ)求△ABC的面积.B1C1﹣ABC中,点D是BC的中点,.设18.(12.00分)正三棱柱AB1D∩BC1=F.(Ⅰ)求证:A1C∥平面AB1D;(Ⅱ)求证:BC1⊥平面AB1D.19.(13.00分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,AC∩BD=O.(1)若AC⊥PD,求证:AC⊥平面PBD;(2)若平面PAC⊥平面ABCD,求证:|PB|=|PD|.20.(13.00分)已知函数,(1)判断f(x)的奇偶性;(2)判断并用定义证明f(x)在(﹣∞,+∞)上的单调性.21.(13.00分)已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.2014-2015学年山东省临沂十九中高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5.00分)已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3 B.﹣2 C.2 D.不存在【解答】解:由直线的斜率公式得直线AB的斜率为k==﹣2,故选:B.2.(5.00分)下列函数中,在R上单调递增的是()A.y=|x|B.y=log2x C.y=D.y=0.5x【解答】A、y=|x|=的单调增区间是[0,+∞);故A不正确;B、y=log2x的定义域是(0,+∞),故不正确;C、y=的定义域是R,并且是增函数,故正确;D、y=0.5x在R上单调递减,故不正确.故选:C.3.(5.00分)函数f(x)=log4x与f(x)=4x的图象()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称【解答】解:函数f(x)=log4x与f(x)=4x互为反函数∴函数f(x)=log4x与f(x)=4x的图象关于直线y=x对称故选:D.4.(5.00分)已知直线PQ的斜率为,将直线绕点P顺时针旋转60°所得的直线的斜率是()A.B.C.0 D.﹣【解答】解:直线PQ的斜率为,可知:直线PQ的倾斜角为120°,将直线绕点P顺时针旋转60°所得的直线的倾斜角为60°,因此斜率是.故选:A.5.(5.00分)过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0【解答】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选:A.6.(5.00分)光线沿直线y=2x+1射到直线y=x上,被直线y=x反射后的光线所在的直线方程为()A. B.C.D.【解答】解:直线y=2x+1与y=x的交点为(﹣1,﹣1),又直线y=2x+1与y轴的交点(0,1)被y=x反射后,经过(1,0)所以反射后的光线所在的直线方程为:故选:B.7.(5.00分)由直线y=x+2上的点P向圆C:(x﹣4)2+(y﹣2)2=1引切线PT(T 为切点),当|PT|的值最小时,点P的坐标是()A.(﹣1,1)B.(0,2) C.(﹣2,0)D.(1,3)【解答】解:圆(x﹣4)2+(y+2)2=1的圆心为C(4,﹣2),半径r=1,连结CT,可得∵PT是圆C的切线,∴CT⊥PT根据勾股定理得|PT|=,设P(x,x+2),可得|PT|=因此当x=0时,|PT|min=.此时P的坐标为(0,2).故选:B.8.(5.00分)已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被圆C截得的弦长为2时,a的值等于()A.B.﹣1 C.2﹣D.+1【解答】解:∵圆C:(x﹣a)2+(y﹣2)2=4的圆心为C(a,2),半径r=2∴圆心到直线l:x﹣y+3=0的距离d=∵l被圆C截得的弦长为2时,∴d+()2=22,解得d=1因此,=1,解之得a=﹣1(舍负)故选:B.9.(5.00分)设P(x,y)是圆x2+(y+4)2=4上任意一点,则的最小值为()A.+2 B.﹣2 C.5 D.6【解答】解:圆x2+(y+4)2=4的圆心是C(0,﹣4),半径为r=2.设M(1,1),可得|PM|=,∵P(x,y)是圆x2+(y+4)2=4上任意一点,∴运动点P,可得当P点在圆C与线段CM的交点时,|PM|达到最小值.∵|CM|==,∴|PM|的最小值为|CM|﹣r=﹣2.故选:B.10.(5.00分)(理科)已知两点A(0,﹣3),B(4,0),若点P是圆x2+y2﹣2y=0上的动点,则△ABP面积的最小值为()A.6 B.C.8 D.【解答】解:求△ABP面积的最小值,即求P到直线AB的最小值,即为圆心到直线AB的距离减去半径.直线AB的方程为,即3x﹣4y﹣12=0,圆x2+y2﹣2y=0,即x2+(y﹣1)2=1,圆心为(0,1),半径为1∵圆心到直线AB的距离为d==,∴P到直线AB的最小值为=∵|AB|=5,∴△ABP面积的最小值为=故选:B.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5.00分)过原点O作圆x2+y2﹣6x﹣8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为4.【解答】解:圆x2+y2﹣6x﹣8y+20=0 可化为(x﹣3)2+(y﹣4)2 =5,圆心(3,4)到原点的距离为5.故cosα=,∴cos∠PO1Q=2cos2α﹣1=﹣,∴|PQ|2=()2+()2+2×()2×=16.∴|PQ|=4.故答案为:4.12.(5.00分)若圆x2+y2=r2(r>0)上有且只有两个点到直线x﹣y﹣2=0的距离为1,则实数r的取值范围是(,).【解答】解:作出到直线x﹣y﹣2=0的距离为1的点的轨迹,得到与直线x﹣y ﹣2=0平行,且到直线x﹣y﹣2=0的距离等于1的两条直线,∵圆x2+y2=r2的圆心为原点,原点到直线x﹣y﹣2=0的距离为,∴两条平行线中与圆心O距离分别为:,,如图,当<r<时,圆x2+y2=r2与离圆心较近的直线有两个交点,即有且只有两个点到直线x﹣y﹣2=0的距离为1.故答案为:.13.(5.00分)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β.其中为真命题的是①②④.【解答】解:m⊂α,l∩α=A,A∉m,则l与m异面,故①正确;若m、l是异面直线,l∥α,m∥α,在则α内必然存在两相交直线a,b使a∥m,b∥l,又由n⊥l,n⊥m,则n⊥a,n⊥b,∴n⊥α,故②正确;若l∥α,m∥β,α∥β,则l与m可能平行与可能相交,也可能异面,故③错误;若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则由面面平行的判定定理可得α∥β,故④正确;故答案为:①②④14.(5.00分)计算=7.【解答】解:原式=1+8﹣4+lg100=5+2=7.故答案为:7.15.(5.00分)已知f(x)是奇函数,且当x>0时,f(x)=x+1,则f(﹣1)的值为﹣2.【解答】解:函数f(x)是R上的奇函数则f(﹣x)=﹣f(x)∴f(﹣1)=﹣f(1)∵当x>0时,f(x)=x+1,∴f(1)=2则f(﹣1)=﹣f(1)=﹣2故答案为:﹣2三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12.00分)已知集合A={2,3,a2+4a+2},B={0,7,2﹣a,a2+4a﹣2},A ∩B={3,7},求a的值及集合A∪B.【解答】解:∵A∩B={3,7}∴7∈A,∴a2+4a+2=7即a=﹣5或a=1当a=﹣5时,B={0,7,7,3}(舍去)当a=1时,B={0,7,1,3}∴B={0,7,1,3}.∴A∪B={0,1,2,3,7}17.(12.00分)如图,已知三角形的顶点为A(2,4),B(0,﹣2),C(﹣2,3),求:(Ⅰ)AB边上的中线CM所在直线的一般方程;(Ⅱ)求△ABC的面积.【解答】解:(1)∵A(2,4),B(0,﹣2),C﹣2,3),∴AB的中点M(1,1)AB边上的中线CM过点(1,1)和(﹣2,3)∴中线CM的斜率是k==∴直线的方程是2x+3y﹣5=0(2))∵A(2,4),B(0,﹣2),C﹣2,3),∴AB=2,AC=,BC=∴cosA==,∴sinA=,∴S=×=11△ABCB1C1﹣ABC中,点D是BC的中点,.设18.(12.00分)正三棱柱AB1D∩BC1=F.(Ⅰ)求证:A1C∥平面AB1D;(Ⅱ)求证:BC1⊥平面AB1D.【解答】解:(Ⅰ)连结A1B,设A1B交AB1于E,连结DE.∵△A1BC中,点D是BC的中点,点E是A1B的中点,∴DE∥A1C.…(3分)∵A1C⊄平面AB1D,DE⊂平面AB1D,∴A1C∥平面AB1D.…(6分)(Ⅱ)∵△ABC是正三角形,点D是BC的中点,∴AD⊥BC.∵平面ABC⊥平面B1BCC1,平面ABC∩平面B1BCC1=BC,AD⊂平面ABC,∴AD⊥平面B1BCC1.∵BC1⊂平面B1BCC1,∴AD⊥BC1.…(9分)∵点D是BC中点,,∴.由此可得:,∴Rt△B1BD∽Rt△BCC1,可得∠BDB1=∠BC1C.∴∠FBD+∠BDF=∠C1BC+∠BC1C=90°∴BC1⊥B1D,…(13分)∵B1D∩AD=D,B1D、AD⊂平面AB1D,∴BC1⊥平面AB1D.…(15分)19.(13.00分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,AC∩BD=O.(1)若AC⊥PD,求证:AC⊥平面PBD;(2)若平面PAC⊥平面ABCD,求证:|PB|=|PD|.【解答】证明:(1)因为底面ABCD是菱形,所以AC⊥BD.又因为AC⊥PD,PD∩BD=D,所以AC⊥平面PBD…(4分)(2)由(1)知AC⊥BD.因为平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面PAC.因为PO⊂平面PAC,所以BD⊥PO.因为底面ABCD是菱形,所以|BO|=|DO|,所以|PB|=|PD|.…(10分)20.(13.00分)已知函数,(1)判断f(x)的奇偶性;(2)判断并用定义证明f(x)在(﹣∞,+∞)上的单调性.【解答】解:(1)∵函数的定义域为R,且==﹣f(x)∴函数为奇函数(2)任取(﹣∞,+∞)上两个实数x1,x2,且x1<x2,则x1﹣x2<0,>0,>0,则f(x1)﹣f(x2)=﹣=<0即f(x1)<f(x2)∴f(x)是(﹣∞,+∞)上的增函数;21.(13.00分)已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.【解答】解:(1)由方程x2+y2+2x﹣4y+3=0知(x+1)2+(y﹣2)2=2,所以圆心为(﹣1,2),半径为.当切线过原点时,设切线方程为y=kx,则=,所以k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=,所以a=﹣1或a=3,即切线方程为x+y+1=0或x+y﹣3=0.综上知,切线方程为y=(2±)x或x+y+1=0或x+y﹣3=0;(2)因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1﹣2)2,即2x1﹣4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x﹣4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(﹣,).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档