数学分析·下定义及定理
数学分析定理总结

数学分析定理总结数学分析是数学的一部分,主要研究函数、极限、连续性、微分和积分等概念与定理。
在数学分析中,有一些重要的定理,它们为我们理解和应用数学提供了基础。
下面将对数学分析中的一些重要定理进行总结。
首先是极限的定理。
极限是数学分析中重要的概念之一,描述了函数在某一点或趋近于某一点时的性质。
数学分析中有多个极限的定理,如夹逼定理、唯一极限定理、柯西收敛定理等。
夹逼定理告诉我们,如果一个函数夹在两个收敛于同一个极限的函数之间,那么这个函数也会收敛于同一个极限。
唯一极限定理则说明一个数列只能有一个极限。
柯西收敛定理则是一个重要的收敛准则,它指出一个数列收敛的充要条件是这个数列是柯西数列。
其次是连续性的定理。
连续性是函数分析中的重要概念,它描述了函数的平滑性和无间断性。
数学分析中有多个连续性的定理,如介值定理、零点定理、罗尔定理、拉格朗日中值定理等。
介值定理告诉我们,如果一个函数在闭区间内取得了两个值,那么它在这个区间内必然取到介于这两个值之间的任何值。
零点定理则指出,如果一个连续函数在一个闭区间的两个端点取得了相反的函数值,那么它在这个区间内必然存在一个零点。
罗尔定理和拉格朗日中值定理则是微分学中的两个重要定理,它们指出了在一定条件下函数的特殊性质。
再次是微分的定理。
微分是数学分析中的重要内容,研究函数的变化率和斜率。
微分学中有多个微分的定理,如高阶导数的性质、泰勒展开、洛必达法则等。
高阶导数的性质指出,函数的高阶导数与原函数之间存在一定的关系,可以通过高阶导数来推断原函数的性质。
泰勒展开是一个重要的函数逼近工具,它告诉我们任何一个光滑函数都可以用一个无穷级数来表示。
洛必达法则则是求解函数极限的一种方法,通过求解极限的导数来求得函数极限。
最后是积分的定理。
积分是数学分析中的重要概念,用于计算曲线下面的面积和求解定积分。
数学分析中有多个积分的定理,如牛顿-莱布尼兹公式、分部积分、换元积分等。
牛顿-莱布尼兹公式指出,如果一个函数在某一闭区间上是连续的,并且存在原函数,那么在该闭区间上的定积分就可以通过求解原函数在这个区间上的差值来计算。
数学定义定理公式大全

数学定义定理公式大全
数学是一门广泛的学科,涵盖了许多不同的定义、定理和公式。
在这里我将尝试从几个主要的数学分支来介绍一些常见的定义、定
理和公式。
1. 代数学:
定义,代数学是研究数学结构和运算规则的一个分支,其中
包括各种代数结构如群、环、域等的定义。
定理,例如费马小定理、拉格朗日定理等。
公式,例如二次方程的解公式、二项式定理等。
2. 几何学:
定义,几何学研究空间、形状、大小和相对位置的性质和关系。
定理,比如皮亚诺公设、欧几里德几何的各种定理等。
公式,比如圆的面积公式、三角形的三边关系公式等。
3. 微积分:
定义,微积分是研究极限、导数、积分和无穷级数等概念的数学分支。
定理,比如泰勒定理、罗尔定理、拉格朗日中值定理等。
公式,比如导数的定义公式、不定积分的公式等。
4. 概率论与统计学:
定义,研究随机现象规律性和统计规律性的数学分支。
定理,例如大数定律、中心极限定理等。
公式,例如期望、方差、正态分布概率密度函数等公式。
5. 线性代数:
定义,研究向量、矩阵、线性变换等代数结构和运算规则的数学分支。
定理,比如矩阵的秩-零化度定理、特征值分解定理等。
公式,比如矩阵乘法公式、逆矩阵公式等。
以上只是数学中的一小部分内容,每个分支都有大量的定义、定理和公式。
希望这些简要的介绍能够帮助你对数学有一个初步的了解。
如果你对特定的定义、定理或公式有更深入的了解,欢迎进一步提问。
定义、定理、引理、推论、定律

定义、定理、引理、推论、定律定义(Definition)定义是透过列出一个事件或者一个物件的基本属性来描述或规范一个词或一个概念的意义;被定义的事务或者物件叫做被定义项,其定义叫做定义项。
对于一种事物的本质特征或一个概念的内涵和外延所作的简要说明。
相当于数学上的对未知数的设定赋值,比如“设某未知数为已知字母x以便于简化计算,”对某个命名的词汇赋与一定的意义或形象,则有利于交流中的识别及认同。
命名和定义总是相伴而生,用已知的熟知的来解释和形容未知的陌生的事物并加以区别,这是一个理论界的真理。
命名和定义是理论的前提。
命名和定义是展开理论的前提。
定理(Theorem)是经过受逻辑限制的证明为真的陈述。
一般来说,在数学中,只有重要或有趣的陈述才叫定理。
证明定理是数学的中心活动。
一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。
猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。
猜想是定理的来源,但并非唯一来源。
一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理引理(Lemma)引理是数学中为了取得某个更好的结论而作为步骤被证明的命题,其意义并不在于自身被证明,而在于为达成最终目的作出贡献。
一个引理可用于证明多个结论。
引理和定理没有严格的区分。
推论(也称为系, 系理)(Inference)推论是指能够“简单明了地”从前述命题推出的论断。
推论往往在定理后出现; 如果命题 B 能够被简单明了的从命题 A 推导出,则称B 为A 的推论。
“推论”, “定理”, “命题”等术语的使用区别往往是比较主观的。
因为“简单明了”这个定义本来同作者及上下文相关。
当然,推论一般被认为不如定理重要。
定律(Law)为研究宇宙间不变的事实规律所归纳出的结论,不同于理论、假设、定义、定理,是对客观事实的一种表达形式,通过大量具体的客观事实经验累积归纳而成的结论。
数学定义定理公式大全

数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。
•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。
•空集:不含任何元素的集合,记作∅或{}。
•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。
1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。
•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。
•有理数:可以写成两个整数的比的数,记作Q。
•实数:包含有理数和无理数的数,记作R。
1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。
•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。
•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。
•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。
2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。
•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。
2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。
•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。
•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。
2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。
大学数学数学分析的基本概念与定理

大学数学数学分析的基本概念与定理数学分析是大学数学的基础课程之一,它研究实数域上的函数及其性质,是数学学科的重要组成部分。
在学习数学分析的过程中,掌握一些基本的概念与定理是非常重要的。
本文将介绍数学分析中的一些基本概念与定理。
一、实数与数集在数学分析中,实数是指包括有理数和无理数在内的所有实数的集合,记作R。
实数具有完备性和有序性等基本性质。
数集是指一些数的集合,它可以是有限集也可以是无限集。
常见的数集有自然数集、整数集、有理数集和实数集等。
二、极限与收敛在数学分析中,极限是数列或函数的重要概念之一。
数列极限是指当n趋向于无穷大时,数列的项趋向于一个固定的数。
函数极限是指当自变量趋向于某个特定值时,函数的值趋向于一个固定的数。
收敛是指数列或函数具有极限的性质。
如果一个数列或函数存在极限,我们称它为收敛的;如果不存在极限,我们称它为发散的。
三、连续性与导数在数学分析中,连续性与导数是函数的重要性质。
连续性是指函数在定义域上没有间断点的性质,如果一个函数在某个点处连续,则在该点处左右极限存在且相等。
导数是函数的变化率的概念。
对于实数函数,如果该函数在某一点处的导数存在,则称该函数在该点可导。
导数的计算公式和性质是数学分析中的重要内容之一。
四、积分与微分方程积分是函数的逆运算。
在数学分析中,我们通过积分可以计算曲线下的面积、求定积分、解微分方程等。
微分方程是涉及未知函数及其导数的方程,是工程技术和物理学中常见的数学模型。
五、级数和函数项级数级数是数列之和的概念。
在数学分析中,级数是由一系列无穷多个数相加得到的结果。
常见的级数有等比级数和调和级数等。
函数项级数是将函数的无穷项和考虑进去的级数,它在实际问题中具有重要的应用。
六、基本定理与中值定理在数学分析中,基本定理起到了核心作用。
常见的基本定理有微积分基本定理、泰勒展开定理等。
中值定理是函数与导数之间的关系定理,包括拉格朗日中值定理、柯西中值定理等。
总结起来,数学分析包含了实数与数集、极限与收敛、连续性与导数、积分与微分方程、级数和函数项级数、基本定理与中值定理等基本概念与定理。
数学分析知识点

数学分析知识点数学分析是数学的一个重要分支,涵盖了许多基础概念和重要定理。
在学习数学分析的过程中,我们需要掌握一些关键的知识点,这些知识点对于理解和运用数学分析有着重要的作用。
下面将介绍一些数学分析的基本知识点。
一、极限与连续性1. 极限:极限是数学中一个非常重要的概念,它描述了函数在某一点的趋近情况。
对于一个函数f(x),当x趋向于某一点a时,如果f(x)的值趋近于某个常数L,那么我们称L为函数f(x)在点a处的极限,记作lim(f(x))=L。
2. 连续性:函数在某一点处连续是指该点的函数值等于极限值。
在实数域上,函数f(x)在区间[a, b]上连续是指f(x)在[a, b]上每一个点都连续。
二、导数与微分1. 导数:导数描述了函数在某一点处的变化率。
如果函数f(x)在x=a处可导,那么它的导数f'(a)表示f(x)在点a处的变化率。
2. 微分:微分是导数的几何化,是函数在某一点处的线性变化。
函数在点a处的微分df(a)是指函数在点a处的切线方程的增量。
三、积分与微积分基本定理1. 不定积分:不定积分是积分的一种形式,用于求函数的原函数。
如果函数F(x)是函数f(x)的原函数,那么我们记作F(x)=∫f(x)dx。
2. 定积分:定积分是积分的一种形式,用于计算函数在一个区间上的总量。
如果函数f(x)在区间[a, b]上连续,那么它在该区间上的定积分∫[a, b] f(x)dx表示f(x)在[a, b]上的总量。
四、级数与收敛性1. 级数:级数是一种无穷求和的形式,通常用于描述无穷个数的总和。
级数∑a_n=a_0+a_1+a_2+...+a_n表示从0到无穷大的项的和。
2. 收敛性:级数的收敛性用于描述级数总和的趋向情况。
如果级数∑a_n在无穷大时收敛到一个常数L,那么我们称该级数收敛。
以上介绍了数学分析中的一些基本知识点,这些知识点在数学分析的学习过程中扮演着重要的角色。
通过深入理解和掌握这些知识点,我们可以更好地理解和应用数学分析的概念和定理,从而提高数学分析的学习效率和水平。
数学分析的基本定理与推导

数学分析的基本定理与推导数学分析是数学的一个重要分支,它研究的是函数、极限、连续性、微积分等基本概念和定理。
本文将介绍数学分析中的一些基本定理以及它们的推导过程。
定理一:极限的定义与性质极限是数学分析中最基础的概念之一,可以用来描述函数在某一点的趋势。
设函数$f(x)$在$x_0$的某个去心邻域内有定义,如果对于任意给定的正数$\epsilon$,存在正数$\delta$,使得当$0<|x-x_0|<\delta$时,有$|f(x)-A|<\epsilon$成立,则称函数$f(x)$在$x_0$处的极限为$A$,记作$\lim_{x \to x_0}f(x)=A$。
定理二:函数的四则运算定理设函数$f(x)$和$g(x)$在$x_0$的某个邻域内有定义,且$\lim_{x \tox_0}f(x)=A$,$\lim_{x \to x_0}g(x)=B$,则有以下四则运算定理:1. $\lim_{x \to x_0}(f(x)+g(x))=A+B$2. $\lim_{x \to x_0}(f(x)-g(x))=A-B$3. $\lim_{x \to x_0}(f(x) \cdot g(x))=A \cdot B$4. $\lim_{x \to x_0}\left(\frac{f(x)}{g(x)}\right)=\frac{A}{B}$(其中$B \neq 0$)定理三:函数的复合运算定理设函数$f(x)$在$x_0$的某个邻域内有定义,$g(x)$在$f(x_0)$的某个邻域内有定义,且$\lim_{x \to x_0}f(x)=A$,$\lim_{y \tof(x_0)}g(y)=B$,则有$\lim_{x \to x_0}g(f(x))=B$。
定理四:函数的单调性定理设函数$f(x)$在$(a,b)$上可导,则有以下结论:1. 若对于任意$x_1,x_2 \in (a,b)$,当$x_1<x_2$时,有$f(x_1)<f(x_2)$,则称$f(x)$在$(a,b)$上单调递增;2. 若对于任意$x_1,x_2 \in (a,b)$,当$x_1<x_2$时,有$f(x_1)>f(x_2)$,则称$f(x)$在$(a,b)$上单调递减;3. 若对于任意$x_1,x_2 \in (a,b)$,当$x_1<x_2$时,有$f(x_1) \leq f(x_2)$,则称$f(x)$在$(a,b)$上单调不减;4. 若对于任意$x_1,x_2 \in (a,b)$,当$x_1<x_2$时,有$f(x_1) \geq f(x_2)$,则称$f(x)$在$(a,b)$上单调不增。
数学分析中的重要定理

数学分析中的重要定理数学分析是数学的一个重要分支,研究的是函数、极限、连续性、微分和积分等概念及其性质。
在数学分析的学习过程中,有一些重要的定理对于理解和应用分析学的基本原理至关重要。
本文将介绍数学分析中的几个重要定理,包括泰勒定理、柯西—施瓦茨定理和拉格朗日中值定理。
首先,我们来介绍泰勒定理。
泰勒定理是分析学中的一个基本定理,它描述了函数在某个点附近的局部行为。
根据泰勒定理,如果一个函数在某个点处具有无穷阶可导性,那么它可以在该点的邻域内用一个无穷级数表示。
这个无穷级数称为泰勒级数,它的系数与函数在该点处的各阶导数有关。
泰勒定理在数学分析中有广泛的应用,可以用来近似计算函数的值,研究函数的性质等。
其次,我们来介绍柯西—施瓦茨定理。
柯西—施瓦茨定理是分析学中的一个重要定理,它描述了复变函数的积分性质。
根据柯西—施瓦茨定理,如果一个函数在某个闭合曲线内解析,那么它在该曲线内的积分等于零。
这个定理可以用来计算复变函数的积分,研究复变函数的性质等。
柯西—施瓦茨定理在复变函数论中有广泛的应用,是复分析的基础之一。
最后,我们来介绍拉格朗日中值定理。
拉格朗日中值定理是微分学中的一个重要定理,它描述了函数在某个区间内的平均变化率与该区间内某点的瞬时变化率之间的关系。
根据拉格朗日中值定理,如果一个函数在某个区间内连续且可导,那么在该区间内存在一个点,使得该点的瞬时变化率等于该区间内的平均变化率。
这个定理可以用来证明函数的性质,研究函数的增减性等。
拉格朗日中值定理在微分学中有广泛的应用,是微分学的基础之一。
综上所述,泰勒定理、柯西—施瓦茨定理和拉格朗日中值定理是数学分析中的几个重要定理。
它们分别描述了函数的局部行为、复变函数的积分性质和函数的平均变化率与瞬时变化率之间的关系。
这些定理在数学分析的学习和应用中起着重要的作用,对于理解和应用分析学的基本原理具有重要意义。
通过深入学习和理解这些定理,我们可以更好地掌握数学分析的基本概念和方法,为进一步研究和应用分析学打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 数项级数 1、级数的收敛性
定义1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式
⋅⋅⋅++⋅⋅⋅++n u u u 21 (1)
称为数项级数或无穷级数(也常简称级数),其中n u 称为数项级数(1)的通项.
数项级数(1)也常写作:
∑∞
=1
n n
u
或简单写作
∑n
u
.
数项级数(1)的前n 项之和,记为
n n
k k n u u u u S +⋅⋅⋅++==∑=211
, (2)
称它为数项级数(1)的第n 个部分和,也简称部分和.
定义 2 若数项级数(1)的部分和数列{}n S 收敛于S (即S S
n
n =∞
→lim ),则称数项级
数(1)收敛,称S 为数项级数(1)的和,记作
⋅⋅⋅++⋅⋅⋅++=n u u u S 21或∑=n u S .
若{}n S 是发散数列,则称数项级数(1)发散.
定理12.1(级数收敛的柯西准则)级数(1)收敛的充要条件是:任给正数ε,总存在正整数N ,使得当m >N 以及对任意的正整数,都有
p m m m u u u ++++⋅⋅⋅++21<ε. (6)
定理12.2 若级数∑n
u
与
∑n
υ
都收敛,则对任意常数,,d c 级数
()∑+n n
d cu
υ亦收
敛,且
()∑∑∑+=+.
n n n n
d u c d cu
υυ
定理12.3 去掉、增加或改变级数的有限个项并不改变级数的收敛性.
定理12.4 在收敛级数的项中任意加括号,即不改变级数的收敛性,也不改变级数的和。
正向级数
定理12.5 正项级数
∑n
u
收敛的充要条件:部分和数列{}n S 有界,即存在某个正数M ,
对一切正整数n 有n S <M .
定理12.6(比较原则) 设∑n
u
与
∑n
υ
是两个正项级数,如果存在某个正数N ,对
一切n >N 都有,n n u υ≤,则
(i )若级数
∑n
υ
收敛,则级数
∑n
u
也收敛;
(ii )若级数∑n
υ
发散,则级数
∑n
υ
也发散.
推论 设
⋅⋅⋅++⋅⋅⋅++⋅⋅⋅++⋅⋅⋅++n n u u u υυυ2121,
()()43
是两个正项级数,若
,
lim l u n
n
n =∞
→υ
则
(i )当+∞<<l 0时,级数(3)、(4)同时收敛或同时发散; (ii )当0=l 且级数(4)收敛时,级数(3)也收敛; (iii )当+∞=l 且级数(4)发散时,级数(3)也发散.
定理12.7(达朗贝尔判别法,或称比式判别法) 设∑n
u
为正项级数,且存在某正整
数0N 及常数().10<<q q
(i )若对一切,0N n >成立不等式
,1
q u u n n ≤+
则级数
∑n
u
收敛.
(ii )若对一切,0N n >成立不等式
,11
≥+n n u u
则级数∑n
u
发散.
推论1(比式判别法的极限形式) 若
∑n
u
为正项级数,且
,
lim
1
q u u n
n n =+∞→
则
(i )当1<q 时,级数
∑n
u
收敛;
(ii )当1>q 或+∞=q 时,级数
∑n
u
发散.
推论2 设
∑n
u
为正项级数.
(i )若
11
______
lim <=+∞→q u u n
n n ,则级数收敛; (ii )若
11
______
lim >=+∞→q u u n
n n ,则级数发散. 定理12.8(柯西判别法,或称根式判别法) 设∑n
u
为正项级数,且存在某正数0N 及
常数l ,
(i )若对一切,0N n >成立不等式
,1<≤l u n
n
则级数
∑n
u
收敛;
(ii )若对一切,0N n >成立不等式
,
1≥n
n u
则级数
∑n
u
发散.
推论1(根式判别法的极限形式) 设
∑n
u
为正项级数,且
,
lim
l u n
n n =∞
则
(i )当1<l 时,级数
∑n
u
收敛;
(ii )当1>l 时,级数
∑n
u
发散.
推论2 设
∑n
u
为正项级数,且
,
lim
______
l u n
n n =∞
→
则当
(i )1<l 时级数收敛; (ii )1>l 时级数发散.
定理12.9 设f 为[)+∞,1上的非负减函数,那么正项级数()∑n f 与反常积分()⎰+∞
1
dx
x f 同时收敛或同时发散.
定理12.10(拉贝判别法) 设
∑n
u
为正项级数,且存在某正整数
N
及常数
r ,
(i )若对一切N
n 0
>
,成立不等式
,
111>≥⎪⎪⎭⎫
⎝⎛+-r u u n n n
则级数
∑n
u
收敛;
(ii )若对一切N
n 0
>
,成立不等式
,
111≤⎪⎪⎭⎫
⎝⎛+-n n u u n
则级数
∑n
u
发散;
推论(拉贝判别法的极限形式) 设
∑n
u
为正项级数,且极限
r
u u n n n n =⎪⎪⎭⎫ ⎝⎛+-∞→11lim
存在,则
(i )当1>r 时,级数
∑n
u
收敛;
(ii )当1<r 时,级数∑n
u
发散.
2、一般项数级数
定理12.11(莱布尼茨判别法) 若交错级数
()⋅⋅⋅+-+⋅⋅⋅+-+-+n n u u u u u 1
43211 (),,2,1,0⋅⋅⋅=>n u n (1)满足下述两个条件:
(i )数列{}n u 单调递减; (ii )
,0lim =∞
→n
n u
则级数(1)收敛.
推论 若级数(1)满足莱布尼茨判别法的条件,则收敛级数(1)的余项估计式为.1+≤n n u R 定理12.12 绝对收敛的级数一定收敛.
定理12.13 设级数⋅⋅⋅++⋅⋅⋅++n u u u 21绝对收敛,且其和等于S ,则任意重排列后所得到的级数也绝对收敛亦有相同的和数. 级数的乘积
设有收敛级数
,
,2121B v v v v
A u u u u n n
n n
=⋅⋅⋅++⋅⋅⋅++==⋅⋅⋅++⋅⋅⋅++=∑∑
()()
32 把级数(2)与(3)中的每一项所有可能的乘积列成下表:
这些乘积j i v u 可以按各种方法排成不同的级数.
定理12.4(柯西定理) 若级数(2)(3)都绝对收敛,则对(4)中的所有乘积j i v u 按任意顺序排列所得的级数
∑n
w
也绝对收敛,且其和等于.AB
引理(分部求和公式,也称阿贝耳变换) 设()n i v i i ,,2,1,⋅⋅⋅=ε为两组实数,若令
k k v v v +⋅⋅⋅++=21σ (),,,2,1n k ⋅⋅⋅=则有如下分部求和公式成立:
()()().111232121
1
n n n n n n
i i i v σεσεεσεεσεε
ε+-+⋅⋅⋅+-+-=--=∑
推论(阿贝耳引理) 若
(i )n εεε,,,21⋅⋅⋅是单调数组;
(ii )对任一正整数()n k k ≤≤1有A k ≤σ(这里k k v v +⋅⋅⋅+=1σ),则记
(4)
{}k k
εεmax =时,有.31
A v n
k k k εε≤∑=
定理12.5(阿贝耳判别法) 若{}n a 为单调有界数列,且级数
∑n
b
收敛,
则级数
⋅⋅⋅++⋅⋅⋅++=∑n n n
n b a b a b a b
a 2211(5)收敛.
定理12.6(狄利克雷判别法) 若数列{}n a 单调递减,且,0lim =∞
→n
n a
又级数∑n b 的部分
和数列有界,则级数(5)收敛.
第十三章 函数列与函数项级数 1、
第十四章 幂级数 第十五章 傅里叶级数
第十六章 多元函数的极限与连续 第十七章 多元函数微分学 第十八章 隐函数定理及其应用 第十九章 含参量积分 第二十章 曲线积分 第二十一章 重积分 第二十二章 曲面积分
第二十三章 流形体上微积分初阶段。