0第七讲 环形跑道问题fid
小学四年级奥数-环形跑道问题

第七讲环形跑道问题【尖子班学案1】成才小学有一条200米长的环形跑道,包包昊昊同时从起跑线起跑包包每秒钟跑6米,昊昊每秒钟跑4米,问包包第一次追上昊昊时两人各跑了多少米?第一次追上昊昊时两人各跑了多少圈?分析:1、包包和昊昊同时从起跑线起跑2、包包追上昊昊多跑一周200米,需用时200÷(6-4)=100(秒)因此,追上昊昊时包包跑了6×100=600米,600÷200=3(圈),昊昊跑了4×100=400米,400÷200=2(圈).【尖子班学案2】分析:已知1、湖的周长300米,黑猫速度5米/秒,白猫速度7米/秒2、俩猫同时同地背向而行(相遇问题)3、距离和=300米,速度和=5+7=12(米)因此,俩猫第一次相遇的时间=300÷12=25(秒)2分钟=120秒,120秒内相遇次数为:120÷25=4(次) (20)【尖子班学案3】分析:已知1、跑道周长=400米,周长上A(右)、B(左)两点100米2、涛涛在A 点,昊昊在B 点,俩人同时相背而行,可知相遇时俩人的距离和为 400-100=300米3、相遇后涛涛继续前行,而昊昊转身回返(即与涛涛同向),当 涛涛回到原地A 点时,昊昊也同时到原地B 点。
由此可知,昊昊来、回走的距 离相同,那么涛涛从A 点出发到与昊昊相遇和相遇后回到A 点所走的距离也相同。
4、涛涛两次共走了一周(400米),则每次走半周200米,而昊昊每次走300-200=100米。
因此,涛涛走的速度是昊昊的2倍5、涛涛再次追上昊昊时,比昊昊多走300米,那么涛涛走了300×2=600米 因此一共走了400+600=1000(米)【尖子班学案4】分析:1、已知a 、b 、c 三人同时从A 点出发,a 、b 同向逆时而行,c 顺时而行。
a 的速度为80米/分b 的速度为65米/分,他们的速度为80-65=15(米/分)2、20分钟后c 与a 在C 点相遇,而b 刚走到B 点,此时a 、b 俩人B ADCa bc的距离差=BC=15×20=300(米)3、又过2分钟,c与b在D点相遇,在2分钟时间b、c俩人相遇的距离和为BC的长度=300米,则可知c与b相遇的速度和=300÷2=150(米/分)。
小学数学行程问题之环形跑道含答案

环形跑道知识框架本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S例题精讲【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】右图中C表示甲、乙第一次相遇地点.因为乙从B到C又返回B时,甲恰好转一圈回到A,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C点距B点180-90=90(米).甲从A到C用了180÷20=9(分),所以乙每分行驶90÷9=10(米).甲、乙第二次相遇,即分别同时从A,B出发相向而行相遇需要90÷(20+10)=3(分).【答案】3分【巩固】周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】如下图,记甲乙相遇点为C.当甲跑了AC的路程时,乙跑了BC的路程;而当甲跑了400米时,乙跑了2BC的路程.由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A点所需时间的12.即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A,乙到达B时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.【答案】1000米【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】首先是一个相遇过程,相遇时间:6(6555)0.05÷+=小时,相遇地点距离A点:550.05 2.75⨯=千米.然后乙车调头,成为追及过程,追及时间:6(6555)0.6÷-=小时,乙车在此过程中走的路程:550.633⨯=千米,即5圈余3千米,那么这时距离A点3 2.750.25-=千米.甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离A点0.25 2.753+=千米,而第4次相遇时两车又重新回到了A点,并且行驶的方向与开始相同.所以,第8次相遇时两车肯定还是相遇在A点,又11332÷=,所以第11次相遇的地点与第3次相遇的地点是相同的,距离A点是3000米.【答案】3000米【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
(完整版)环形跑道问题

环形跑道追及问题一、知识点基本公式:路程差=速度差×时间;路程差÷时间=速度差;路程差÷速度差=时间环形跑道,如果是同地同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈。
看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时,看地点是指是同地还是两地甚至更多。
追击问题中一个重要环节就是确定追上地点,从而找到路程差。
复杂题一定要画路径图,即怎么走的线路画出来,追击问题就找路程差。
问题一:黑白两只猫在周长为70米的环形跑道上赛跑,黑猫的速度是每秒5米,白猫的速度是每秒7米,两只猫从同一地点同向出发,经过多少秒白猫追上黑猫?练习一:黑白两只猫在周长为70米的环形跑道上赛跑,黑猫的速度是每秒5米,白猫的速度是每秒7米,两只猫从同一地点同向出发,经过多少秒白猫追上黑猫?在3分钟内共追上几次?练习二:幸福村小学有一条长200米的环形跑道,铮铮和包包同时从起跑线起跑,铮铮每秒钟跑6米,包包每秒钟跑4米,问铮铮第一次追上包包时两人各跑多少米,第2次追上包包时两人各跑多少圈?问题二:甲、乙两人绕周长为1000米的圆形广场竞走,甲在A地出发,乙在B 地出发,甲乙都是按照顺时针的方向竞走,已知甲每分钟走125米,乙每分钟走250米,乙追上甲需要多少分钟?B练习一:甲、乙两人绕周长为1000米的圆形广场竞走,甲在A地出发,乙在B 地出发,甲乙都是按照顺时针的方向竞走,已知甲每分钟走125米,乙每分钟走250米,乙第二次追上甲需要多少分钟?A B问题三:甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在乙在甲后面250米,乙追上甲需要多少分钟?练习一:甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?练习二:微微铮铮在400米的环形跑道上,微微以300米/分的速度从起点跑出,1分钟后,铮铮从起点同向跑出,又经过5分钟,微微追上铮铮。
学生-行程问题之环形跑道问题

行程问题之环形跑道问题2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?求此圆形场地的周长?举一反三1、如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点6O 米.求这个圆的周长.2、如图,有一个圆,两只小虫分别从直径的两端A 与C 同时出发,绕圆周相 向而行.它们第一次相遇在离A 点8厘米处的B 点,第二次相遇在离C 点处6厘米的D 点,问,这个圆周的长是多少?第一次相遇第二次相遇DC BA3、A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?二、环形跑道——变道问题【例 1】如图是一个跑道的示意图,沿ACBEA 走一圈是400米,沿ACBDA 走一圈是275米,其中A 到B 的直线距离是75米.甲、乙二人同时从A 点出发练习长跑,甲沿ACBDA 的小圈跑,每100米用24秒,乙沿ACBEA 的大圈跑,每100米用21秒,问:⑴ 乙跑第几圈时第一次与甲相遇? ⑵ 发多长时间甲、乙再次在A 相遇?三、环形跑道——变速问题【例 1】(难度等级※※)甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
《环形跑道问题》课件

确定相遇的地点和时间
确定环形跑道的 长度
计算两个运动员 的速度
计算两个运动员 相遇的时间
确定两个运动员 相遇的地点
计算相对速度和相对距离
相对速度:两 个物体在同一 直线上,以同 一方向运动, 速度之差即为
相对速度
相对距离:两 个物体在同一 直线上,以同 一方向运动, 距离之差即为
相对距离
计算方法:利 用速度公式和 距离公式,结 合实际情况进
PPT,a click to unlimited possibilities
汇报人:PPT
目录
环形跑道的含义
环形跑道是一种封闭的、圆形的跑道,通常用于田径比赛和训练。
环形跑道的直径和周长通常为400米,但也有其他尺寸的环形跑道。
环形跑道的表面通常由塑胶、煤渣、草地等材料构成,以提供良好的摩擦力和缓 冲性能。 环形跑道的弯道部分通常有一定的倾斜角度,以帮助运动员在转弯时保持平衡和 速度。
加强管理: 定期检查 跑道状况, 及时维修 和维护
提高运动员 素质:加强 运动员的体 能训练和技 巧训练,提 高应对挑战 的能力
加强科研投 入:研究新 的跑道材料 和技术,提 高跑道性能 和运动员表 现
未来环形跑道问题的发展趋势和展望
技术进步:随着科技的发展,环形跑道的设计和建造技术将不断提高,提高跑道 的性能和寿命。
本
优点:可以提 高运动员的成 绩和表现,提 高赛事的观赏
性
缺点:可能会 对运动员的身 体健康产生一 定的影响,需 要做好防护措
施
解决环形跑道问题中的挑战的方法
加强安全 措施:设 置安全护 栏、警示 标志等
提高跑道 质量:使 用高质量 的材料和 施工工艺
优化跑道 设计:合 理规划跑 道布局, 避免弯 过急或过 缓
行程问题之环形跑道演示课件.ppt

甲A
7米/秒
100米
D 分析:
甲乙相距200米(相差距离)。 且甲第一次追及乙要多拐两个弯。 即要多休息5+5=10秒钟。
100米 乙 甲走的路程-乙走到路程=200米
B
5米/秒
C
解:设甲纯跑步时间为x秒。则乙跑步的时间为x+10秒。
7x-5(x+10)=200 x=125
甲跑的路程是:125×7=875(米)
A
1
2
C ●
…●
D
3
●
B
• 分析:
• 甲乙爬虫第一次相遇时,它们位于2号环形道的上方。 它们共爬行了3个“半环形”。
• 第二次相遇时它们共爬行了5个“半环形”。
• 则相遇时间是:210÷2×5÷(20+15)=15(分)
• 即:甲爬虫爬行了:20×15=300(米)
精选文摘
19
9.甲用40秒可绕一环形跑道跑一圈,乙同时 反方向跑,每隔15秒与甲相遇一次。问乙 跑完一圈用多少秒?
5.4×0.5-4.2×0.5=0.6(千米)
小王和小李5分钟共走了0.6千米。 小王和小李从出发到相遇共用:30+5=35(分钟)
绕湖一周的路程:
0.6×(35÷5)=4.2(千米)
精选文摘
29
简便计算
循环小数转化为分数
· · · · · · · · · 0.01+0.12+0.23+0.34+0.45+0.56+0.67+0.78+0.89
甲环形一周用时: 14×2=28(分钟)
精选文摘
28
• 8.小张、小王、小李同时从湖边同一地点出发,绕湖而行。 小张速度是5.4千米/时,小王的速度是4.2千米/时,他们 两人同方向行走,小李与他们反方向行走,半小时后小张 与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一 周的行程是多少千米? 分析:半小时后小王落后小张:
七年级数学环形跑道问题优秀课件

甲乙同时同地同向而行〔甲快,乙慢〕,当甲第一 次追上乙时,肯定比乙多跑了一圈。由追及问题, 我们有
甲总路程-乙总路程=环形跑道周长
甲、乙二人在一条400米长的环形跑道上 练习跑步,甲的速度是4m/s,乙的速度是 6m/s。
两人同地背向出发,假设乙先跑5s,还要经 过多长时间两人首次相遇?
1
行程问题
行程问题涉及数量关系
路程=速度×时间 速度=路程÷时间
时间=路程÷速度
例题
分
析
例1如以下图:小明、小华 分别在300米环形跑道上练 习跑步与竞走,小明每分 钟走55米,小华每分钟走 45米,两人由同一点背向 出发,问几分钟后,小明 与小华第一次相遇?
小明
小华
相等关系: 小明跑的路程 + 小华走的路程 = 环形跑 道一周长
解:设xs后,甲与乙第 乙跑的路程―甲跑的路程=环形跑道一周
一次相遇.
的长
根据题意列方程得:
解:设xs后,甲与乙第一次相
4x+6x=400
遇.
解方程得:x=40
6x-4x=400 解得:x=200
答:
40s后,小明与小华第一次相遇
答:200s后,甲与乙第一次相 遇。
甲乙同时同地背向而行〔甲快,乙慢〕,当甲与乙 第一次相遇时,甲乙共同跑了一圈。由相遇问题, 我们有
解:设x分钟后,小明与小华第一次相遇. 根据题意列方程得:
55x+45x=300 解方程得1:00xx==3300
答: 3分钟后,小明与小华第一次相遇。
例题
例2如以下图:小明、小华分 别在400米环形跑道上练习跑 步与竞走,小明每分钟跑320 米,小华每分钟走120米,两 人同时由同一点同向出发,问 几分钟后,小华与小明第一次 相遇?
行程问题之环形跑道

环形路上的行程问题1、环形运动问题:环形周长=〔大速度+小速度〕×相遇的时间环形周长=〔大速度-小速度〕×相遇的时间环形运动的追及问题和相遇问题:同时同向起点运动,第一次相遇,速度快的比速度慢的多跑一圈。
在环形跑道上同时同向,速度快的在前,慢的在后。
不是封闭的跑道追及问题,速度慢的在前,快的在后。
1.两名运发动在沿湖的环形跑道上练习长跑,甲分钟跑250米,乙每分钟跑200米,两人人同时同地同向出发,45分钟后甲追上了乙,如果两人同时同地反向而跑,经过多少钟后两人相遇?2.甲,乙两运发动在周长为400米的环形跑道上同向竞走,乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处,问几分钟后,甲第1次追上乙?3.如图,A、B是圆的直径的两端,小军在A点,小勇在B点,同时出发相向而行,他俩第1次在C点相遇,C离A点50米;第2次在D点相遇,D点离B点3O米.求这个圆的周长是多少米?4.在一个长800米的环行湖边上,小明,小张两人同时从同一点出发,反向跑步,5分钟两人第一次相遇,小明每分钟跑100米,张静每分钟跑多少米?如果两人同时从同一点出发,同向跑步,多少分钟后小明能追上张静?(湘麓P29)5.有一条长400米的环形跑道,甲乙二人同时同地出发,反向而行,1分钟后第一次相遇,假设二人同时同地出发,同向而行,那么10钟后第一次相遇,假设甲比乙快,那第甲乙二人的速度分别是多少米?(湘麓P29)6.跑马场一周之长为1080。
甲乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过45分钟,甲追上乙,如果甲的速度分钟减少50米,乙的速度每分钟增加30米,从同一地点同时背向而行,那么经过3分钟两人相遇。
求原来甲,乙两人每分钟各行多少米?(湘麓P30)※7.在300米的环形跑道上,甲,乙两从同时从起跑线出发反向而跑,甲每秒跑4米,乙每秒跑6米,当他们第一次相遇在起跑点时,他们已在途中想遇多少次?(湘麓P30)8.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲环形跑道问题
【本讲内容重点需要同学们动手画图,分析找关系,总结里把图省略了】
一、行程问题三要素
环形跑道问题属于行程问题的一类。
行程问题中的三要素是:
路程(S)、速度(V)、时间(t)
三者关系是:S=V·t V=S÷t t=S÷V即,在行程问题中,只有知道S、V、t中的其中两个要素,一定能求出第三个!
二、相遇问题
公式:S和=V和·t遇
注意:相遇时间是同时走的时间
三、追及问题
公式:S差=V差·t追
注意:(1)同时不同地——路程差
(2)同地不同时——路程差
四、环形跑道问题
环形跑道问题不过是把“行程”的过程搬到了环形跑道上进行,但仍然符合行程问题的公式。
1、确定方向:
(1)反(向相向,背向)即为相遇问题,就有S和=V和·t遇(2)同向即为追及问题,就有S差=V差·t追
2、确定起始点
(1)同地:周期现象
反向(相遇),第1次相遇,共合跑1圈
第n次相遇,共合跑n圈
同向(追及),第1次追上,共多跑1圈
第n次追上,共多跑n圈
(2)异地:第1次特殊,从第2次开始即为周期现象。
【例1】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?
【解析】同时同地同向——追及问题,同时同地反向——相遇问题。
注意单位要统一,时间单位我们统一为秒。
速度差:300÷150=2(米/秒)
速度和:300÷30=10(米/秒)
快的速度:(10+2)÷2=6(米/秒)
慢的速度:(10-2)÷2=4(米/秒)或6-2=4(米/秒)
【例2】巍巍、铮铮两人骑自行车从环形公路上同一地点同时出发,背向而行。
这条公路长2400米,巍巍骑一圈需要10分钟,如果第一次相遇时巍巍骑了1440米。
请问:(1)巍巍的速度是多少米/分?
(2)从出发到第一次相遇用时多少分钟?
(3)铮铮骑一圈需要多少分钟?
(4)再过多久他们第二次相遇?
】(1)由“公路长2400米,巍巍骑一圈需要10分钟”,可知【解析】
【解析
巍巍的速度2400÷10=240(米/分)
(2)“第一次相遇时巍巍骑了1440米”,那么可知巍巍用时1440÷240=6(分),这个也是他们第一次相遇时共同的用时。
(3)求出了巍巍走的时间,由于铮铮和巍巍走的时间相同,所以也是6分钟,而巍巍走了1440米,那么铮铮则走2400-1440=960米
速度是960÷6=160(米/分),铮铮骑一圈用时2400÷160=15(分)(4)第一次相遇即合骑一圈,用了6分钟,第二次相遇即再合骑一圈,还是要用6分钟。
或是用2400÷(240+160)=6分钟。
【例3】昊昊和涛涛在操场上比赛跑步,昊昊每分钟跑250米,涛涛每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么昊昊第一次超过涛涛需要多少分钟?昊昊第二次超过涛涛需要多少分钟?昊昊第三次超过涛涛需要多少分钟?有什么规律呢?
【解析】同时、同地、同向——追及问题
第一次超过800米,追及时间:800÷(250-210)=20(分)
第二次超过2×800米,追及时间:2×800÷(250-210)=40(分)或是从第一次到第二次追上,路程差又是800米,所以还要追20分钟,一共20+20=40分钟。
第三次超过3×800米,追及时间:3×800÷(250-210)=60(分)或是从第二次到第三次追上,路程差又是800米,所以还要追20分钟,一共40+20=60分钟。
规律:每超过一次就是多跑一圈,每次的单次追及时间都是一样的,,规律:每超过一次就是多跑一圈,每次的单次追及时间都是一样的都是20分钟。
【例4】甲乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分钟甲第一次超过乙,22分钟后甲第二次超过乙,假设两人速度保持不变,出发时,甲在乙后面多少米?【解析】同时同向——追及问题
第一次超过,甲比乙多走的是两人出发是的路程差,用时6分钟。
从第一次追上开始到第二次超过,甲比乙多走1圈400米,用了22-6=16分钟(此处是易错点),
由此可以求出速度差是400÷16=25(米/分)
所以可知原来甲与乙相差路程:25×6=150(米)
【例6】如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点60米.求这个圆的周长.】第一次相遇,两人合起来走了半个周长;第二次相遇,两个【解析
【解析】
人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是803240
×=(米).
−=(米),180 2 360
×=(米),24060180
【提高班学案】小张和小王各以一定速度,在周长为500米的环形跑道上跑步,小王的速度是200米/分,(1)小张和小王同时从同一地点出发反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一地点出发,同一方向跑步,小张跑
多少圈后才能第一次追上小王?
【解析】(1)同时同地反向,是相遇问题。
第一次相遇,即合跑一圈500米,速度和,得500÷1=500(米/分)小张的速度:500-200=300(米/分)
(2)同时同地同向,是追及问题。
第一次追上,即小张比小王多跑一圈,即S差是500米,
追及时间:500÷(300-200)=5(分)
小张共跑了多少米:300×5=1500(米)
小张跑了多少圈:1500÷500=3(圈)
【尖子学案2】黑白两只小猫在周长为300米的湖边赛跑,黑猫速度为每秒5米,白猫的速度为每秒7米,若两只小猫同时从同一地点出发,背向而行
(1)多少秒后两只小猫第一次相遇?
(2)如果它们继续不停跑下去,2分钟内一共相遇多少次?
【解析】同时同地背向——相遇问题
(1)相遇时间:300÷(5+7)=25(秒)
(2)同地出发,每次相遇就是一种周期现象。
所以总时间是:2×60=120(秒)
120÷25=4(次)……20(秒)
说明2分钟内共相遇4次。
注意:还多跑了20秒,但这20秒还没有相遇。
【提高班学案】如图,A、B是圆的直径的两端,两只小蚂蚁分别从A,B两点同时出发反向行走,它们在C点第一次相遇,C离A点8米;在D点第二次相遇,D点离B点6米.求这个圆的周长.】第一次相遇,两人合起来走了半个周长;第二次相遇,两个【解析
【解析】
人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是8×3=24(米),24-6=18(米),182=36(米).
【尖子班学案3】周长为400米的圆形跑道上,有相距100米的A B
、两点.涛涛、昊昊两人分别从A B
、两点同时相背而跑,两人相遇后,昊昊即转身与涛涛同向而跑,当涛涛跑到A时,昊昊恰好跑到B.如果以后涛涛、昊昊的速度和方向都不变,那么涛涛追上昊昊时,涛涛一共跑了多少米?
【解析】昊昊从B到相遇点再返回,路程相同,所以涛涛从A到相遇点、再从相遇点回到A的距离也相同,都是4002200
÷=(米),第一次相遇涛涛跑200米,昊昊跑100米.这时2人从相遇点开始同向跑,涛涛多跑一圈追上昊昊,所以涛涛一共跑了2002004001001000
()
+×÷=(米).图如下:。