小学奥数行程问题之追及问题
三年级下册数学试题-奥数:行程问题—追及(练习含答案)全国通用

直线型追及问题:(一前一后)造成追及的原因:⑴一个先走,一个后走⑵地理位置的原因路程差=速度差×追及时间时间归一性:即时间同步。
姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?A、B两人从甲地前往乙地。
B先出发1000秒,结果两人同时到达。
已知A的速度是每秒3米,B的速度是每秒2米。
甲、乙两地相距多少米?一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地。
在甲、乙两地的中点处快车追上慢车,甲、乙两地相距多少千米?拓展例1前铺知识点行程问题—追及甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙。
问:甲、乙二人的速度各是多少?兄弟两人骑自行车同时从学校出发回家。
哥哥每小时行15千米,弟弟每小时行10千米。
出发半个小时后哥哥因事返回学校,到学校后又耽搁了1小时,然后动身去追弟弟。
当哥哥追上弟弟时,距学校多少千米?两人在环形跑道中同时同地同向而行1.两个人每追及一次,路程差增加一个周长;反之,两个人路程差每增加一周,必定追及一次。
2.两个人每追及一次,每次所需要的时间均相等,即每次增加t。
幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时两人各跑了多少圈?在周长为400米的圆形跑道的一条直径的两端,甲、乙两人分别以每秒6米和每秒4米的速例5例4知识点例3例2度骑自行车同时同向出发(顺时针)沿圆周行驶,经过多长时间,甲第二次追上乙?测试题1.甲、乙两地相距240千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米。
两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?A.6 B.8 C.10 D.122.小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝、小红、小蓝二人的速度各是多少?A.10,6 B.6,10 C.6,8 D.8,63.王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华。
六年级奥数行程问题专题:追及问题的要点及解题技巧

六年级奥数专题:追及问题的要点及解题技巧一、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕""这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解。
二、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1。
两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2。
同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差奥数行程:追及问题例题及答案(一)例1。
一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。
每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A。
10 B。
8 C。
6 D。
4【解答】我们知道这个题目出现了2个情况,就是(1)汽车与骑自行车的人的追击问题,(2)汽车与行人的追击问题追击问题中的一个显著的公式就是路程差=速度差×时间我们知道这里的2个追击情况的路程差都是汽车的间隔发车距离。
含答案】四年级奥数行程问题精选练习(相遇、追及)

含答案】四年级奥数行程问题精选练习(相遇、追及)小牛老师工作室精华讲义:小学奥数行程问题知识点一:相遇问题1.两辆汽车同时从相距325千米的两地相对开出。
甲车速度为35千米/时,乙车速度为30千米/时。
当甲、乙两车相遇时,它们各行驶了多少千米?解答:两车相对速度为35+30=65千米/时。
根据相遇问题,它们行驶的总时间相等,所以它们各行驶了325/2=162.5千米。
2.高小帅家距离学校3000米。
小帅妈妈从家出发接小帅放学,小帅也要从学校回家。
他们同时出发。
小帅妈妈每分钟比小帅多走24米。
30分钟后两人相遇。
那么小帅的速度是多少?解答:设小帅速度为v,则小帅妈妈速度为v+24.根据相遇问题,它们行驶的总时间相等,所以小帅行驶了30v米,小帅妈妈行驶了30(v+24)米。
因为两人相遇,所以它们行驶的总路程为3000米,即30v+30(v+24)=3000,解得v=48米/分钟,即小帅的速度为48/60=0.8米/秒。
3.甲、乙两辆汽车分别从A、B两地相对而行。
已知甲车的速度为38千米/时,乙车的速度为40千米/时。
甲车先行2小时后,乙车才开始出发,乙车行驶5小时后两车相遇。
求A、B两地的距离。
解答:设A、B两地的距离为d。
则甲车行驶了d+2×38千米,乙车行驶了5×40千米。
因为它们相遇,所以它们行驶的总路程相等,即d+2×38+5×40=2×38+5×40+d,解得d=342千米。
4.两列城际列车从两城同时相对开出,其中一列车的速度为40千米/时,另一列车的速度为45千米/时。
在行驶途中,两列车先后各停车4次,每次停车15分钟。
这样经过7小时后两车相遇。
求两城的距离。
解答:设两城的距离为d。
则两车相对速度为40+45=85千米/时。
因为两车在行驶途中各停车4次,所以它们行驶的总时间为7小时-4×4×15分钟=6.4小时。
奥数 行程 多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程;即甲第1次如果走了N 米,以后每次都走2N 米;2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成;折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少;如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易;例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间;已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地;问:甲车的速度是乙车的多少倍【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇;如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米;问:甲、乙二人的速度各是多少【例 3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C 点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 5】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【巩固】甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇;他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇;求两次相遇地点的距离;【例 6】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米.【例 7】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑;甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动;甲、乙两人在第几次相遇时A地最近最近距离是多少米【巩固】A、B两地相距950米;甲、乙两人同时由A地出发往返锻炼半小时;甲步行,每分钟走40米;乙跑步,每分钟行150米;则甲、乙二人第___ __次迎面相遇时距B地最近;【例 8】甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶;已知甲车的速度是 15千米/时,乙车的速度是25千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米;求A,B两地的距离;【巩固】欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米;两人同时从A点出发,到达B点后返回,已知他们第二次迎面相遇的地点距离AB的中点5米,AB之间的距离是________; 【例 9】甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜;已知甲、乙的速度分别为米/秒和米/秒;问:1比赛开始后多长时间甲追上乙2甲追上乙时两人共迎面相遇了几次【巩固】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次【例 10】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前途中能遇上几艘从纽约开来的轮船【巩固】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟课堂检测【随练1】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇;已知C离A有80米,D离B有60米,求这个圆的周长;【随练2】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【随练3】A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次【随练4】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次家庭作业【作业1】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米【作业2】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分【作业3】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远. 【作业4】湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回;两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米;问:两岛相距多远【作业5】在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇;甲、乙环行一周各需要多少分【作业6】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
小学数学奥数小升初常考题型行程问题-追及问题适合四年级五年级学生

1、哥哥弟弟从家去学校,中途要经过公园,家离公园4.8千米,哥哥出发时,弟弟已经到了公园。
弟弟每分走80米,哥哥骑车速度是每分240米。
问:哥哥几分钟后能追上弟弟?2、面包车以60千米/时的速度从甲城开出,2小时后,后面一辆小轿车以每小时84千米/时的速度从甲城开出沿着同一行驶路线追赶面包车,多少小时后小轿车追上面包车?3、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?4、两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑一段,棕色马再开始跑,5秒后就可以追上黄色马,黄马先跑了多远?5、甲、乙二人在同一条路上前后相距25千米。
他们同时向同一个方向前进。
甲在前,以每小时5千米的速度步行;乙在后,5小时可以追上甲。
乙的速度是多少?6、甲、乙两辆列车同时从相距150千米的A、B两城向C城驶出,乙车在前,甲车在后,行驶10小时后甲车才能追上乙车,甲车每小时行60千米,乙车每小时行多少千米?7、甲、乙两车同时从A地向B地开出,甲每小时行36千米,乙每小时行30千米,开出1小时后,甲车因有紧急任务返回A地,到达A 地后又立即向B地开出追上乙车,当甲追上乙车时,两车正好都到达B地,求AB两地的距离?8、小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明。
问爸爸出发几分钟后追上小明?爸爸追上小明时他们离家多远?9、甲、乙二人从同一城镇某车站同时出发,相背而行。
甲每小时行16千米,乙每小时行24千米。
2小时后,乙掉头去追甲,多久能追上甲?10、一排解放军从驻地出发去执行任务,每小时行5千米。
离开驻地1小时后,排长命令通讯员骑自行车回驻地取地图。
通讯员回到驻地后因事又耽搁了1小时,然后才返回。
小学奥数知识点趣味学习——行程问题之追及问题

小学奥数知识点趣味学习——行程问题之追及问题追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化。
由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.2、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题精讲:例1:甲、乙两人在相距16千米的A、B两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后,每小时速度是甲的3倍,几小时后乙能追上甲?【分析】此题是两人同向运动问题,乙追甲,利用追及问题的关系式,就可以解决问题。
解:16÷(3×4-4)=2(小时)答:2小时后乙能追上甲。
例2:名士小学一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【分析】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
人教版四年级下册数学奥数——追及问题课件(共20张PPT)
小结与提示 这道题中,求出兵兵多长时间可以追上平平是解题的突破口。
实践与应用
【练习3】 P149 甲、乙两城相距120千米,客车和货车由甲城开往乙城,客车每小时行
44千米,货车每小时行52千米,当客车开出16千米后,货车才出发,当货车 追上客车时,它们距乙城还有多远?
【例题2】 甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙 在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。A、B两地间的 路长多少米?
【思路导航】
从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人 共行(30+50)×10=800米。这800米就是乙、丙相遇比甲多行的路程。乙每分 钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟。 因此,AB两地间的路程为(50+40)×80=7200米。
我来解答: 600÷30=20(米/分) 160-20=140(米/分) 答:乙每分钟跑140米。
小结与提示 在追及问题中,可以根据追及距离和追及时间求出甲、乙两人的速度差。
实践与应用
【练习4】 P150 学校操场环形跑道周长为400米,小明每分钟跑120米,小强每分钟跑
200米,两人同时同地同向出发,经过多少分钟两人相遇?
第19讲 追及问题
小学奥数 四年级
追及问题也是行程问题中的一种,它研究两个物体的同向运动,出发地点不同(或者从 同一地点不同时间出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近, 最后快者追上慢者。在解答这类题时,关键要明确速度差的会义(即单位时间内快者追上慢者 的路程)。 追及问题的数量关系式:
小学奥数行程问题之追及问题
小学奥数行程问题之追及问题本文介绍了奥数第七讲行程问题中的追及问题,给出了解决追及问题的基本关系式和公式,并通过三个例子进行了讲解。
在解决追及问题时,需要注意追赶者和被追赶者所用时间相等的不变量,以及“追及距离”和“追赶者追上被追赶者所走的距离”这两个量之间的区别。
通过例子的讲解,学生可以熟练掌握追及问题的三个公式,并灵活运用公式求解问题。
例子中涉及了同时出发的同向而行的追及问题和先后出发的追及问题,需要画出线段图进行分析,求解速度差和追及时间,最终得出答案。
1、哥哥和弟弟同时在学校上学。
弟弟先走,以每分钟80米的速度,3分钟后,哥哥以每分钟200米的速度骑车向学校骑去。
问哥哥几分钟后能追上弟弟?2、姐妹在同一小学上学。
妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学。
结果两人同时到达学校。
求家到学校的距离有多远?追及问题的基本公式为:路程差=速度差×追及时间,速度差=路程差÷追及时间,追及时间=路程差÷速度差。
教学目标为掌握不同形式的追及问题的解题思路和基本规律。
教学重点为通过图形分析追及问题,难点为找准解决环形路程的追及问题的突破口。
例4为一条环形跑道长400米的问题。
甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米。
两人同时同地同向出发,经过多少分钟两人相遇?甲乙的速度差为50米每分钟,甲追上乙所用的时间为8分钟,因此经过8分钟两人相遇。
例5为在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶。
问2小时内,甲追上乙多少次?路程差为200米,甲追上乙一次所用的时间为4小时,因此2小时内甲追上乙的次数为1次。
2小时本文主要介绍了环形跑道的追及问题和和差问题的综合运用。
文章中给出了两个例子,分别是在圆形跑道上,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?以及在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?文章给出了详细的解题方法和答案,并提供了课后练和小结。
小学奥数四年级数学追及问题例题练习小升初常考行程问题
例1:甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶10千米,乙每小时行驶15千米,问:乙经过多长时间能追上甲?路程差÷速度差=追及时间乙追上甲时比甲多走了10千米。
10÷(15-10)=2(小时)答:乙经过2小时能追上甲。
练习1、甲、乙二人分别从相距48干米的两地同时向西而行,甲每小时行36干米,乙每小时行20千米。
问几小时后甲追上乙?2、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例2:甲和乙从A地到B地,甲每小时行54千米,乙每小时行63千米,甲先行一会儿后,乙才出发,12小时后追上甲,问乙出发时距甲多少千米?速度差×追及时间=路程差(63-54)×12=108(千米)答:乙出发时距甲108千米。
练习1、甲、乙二人从A地到B地,乙先行,甲每小时行38千米,乙每小时行24千米。
5个小时甲追上了乙,问甲出发时乙距甲多少干米?2、甲、乙两人从A地到B地,甲在前,乙在后,甲每分钟走50米,乙每分钟走65米,两人同时出发,10分钟后乙追上甲,问出发时甲乙相距多远?例3:甲和乙驾驶两架飞机同时从一个机场起飞,向同一方向飞行,甲起飞时乙已飞出300千米,乙每小时行300千米,甲2小时后追上乙,甲每小时飞行多少千米?速度差:300÷2=150(千米/时))300+150=450(千米/时)答:甲每小时飞行450千米。
练习1、妹妹从家出发去学校上学,以每分钟50米的速度步行,6分钟后哥哥也从家出发去同一所学校,经过15分钟哥哥追上妹妹。
问哥哥每分钟走多少米?2、骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例4:甲和乙驾驶两辆汽车从A地到B地,甲每小时行54千米,乙每小时行63千米,甲先行2小时后,乙才出发,问乙出发后几小时追上甲?路程差:2×54=108(千米)108÷(63-54)=12(小时)答:乙出发后12小时追上甲。
应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)
应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)考试中,数量关系一直是比较难的一类题目,尤其是其中的行程问题,更是让广大考生头疼,他的特点是考察的小题型特别多,需要分类总结规律。
今天我们分享的是多人多次相遇追及问题,有一定复杂度,但只要分解成多个两人的相遇追及问题,就能找到突破口解题。
如果你对前一篇基础内容“相遇及追及”还想再巩一遍,欢迎翻看。
【一、题型要领】1. 多人多次相遇【基本概念】通常有3个或更多的人,他们的出发地可能一样,也可能不一样,他们有同向而行,也有反向而行,中间就会产生多人多次相遇或追及的情况,需根据题意画出示例图进行理解【基本公式】解决这类题目,要抓住最基本的公式,即路程= 速度* 时间当相遇时,路程和= 速度和* 相遇时间当追及时,路程差= 速度差* 追及时间【解题关键】根据题意能够画出多人相遇和追及的示意图,将复杂的多人相遇问题转化为多个简单的相遇和追及问题。
【二、重点例题】例题1【题目】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。
现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
那么,东西两村之间的距离是多少米?【分析】分析整个过程可以得到下图,蓝色部分是甲和乙相遇时三人的情形,甲和乙在A点,丙在C点。
绿色部分是甲和丙相遇时三人的情形,甲和丙在B 点。
路程AC有两个含义,一是甲和丙在6分钟内相向而行共同行走的路程,二是在甲和乙相遇时的乙和丙的路程差,通过这层转化即可计算东西两村的距离【解】AC的距离= (100 + 75)* 6 = 1050(米)甲和乙相遇时花费的时间= 1050 ÷ (80 - 75)= 210(分钟)东西两村的距离= (100 + 80)* 210 = 37800(米)【答】东西两村相距37800米例题2【题目】甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数第七讲行程问题(一)——追及问题四年级奥数教案第七讲行程问题(一)——追及问题解决追及问题的基本关系式是:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。
大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。
就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)二、新授课:【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速度差150÷(75-60)=10(分钟)答:10分钟后乙追上甲。
【小结】提醒学生熟练掌握追及问题的三个公式。
【例2】骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?【思路分析】这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间:速度差:450÷3=150(千米)自行车的速度: 150+60=210(千米)答:骑自行车的人每分钟行210千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。
【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速度差。
解:(1)两车路程差为:54×2=108(千米)(2)第二辆车追上所用时间:108 ÷(63-54)=12(小时)答:第二辆车追上第一辆车所用的时间为12小时。
【小结】这道追及问题是不同时的,要先算出追及路程。
【及时练习】1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?2、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?三、课堂小结:追及问题的基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差四、作业:思维训练五、课后反思:第二课时教学时间:教学内容:环形跑道的追及问题教学目标:掌握不同形式的追及问题的解题思路和基本规律教学重点:通过图形分析追及问题教学难点:找准解决环形路程的追及问题的突破口教学过程:一、复习:追及问题的三个基本公式。
二、新授课:【例4】一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【分析与解】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
解:①甲乙的速度差:300-250=50(米)②甲追上乙所用的时间:400÷50=8(分钟)答:经过8分钟两人相遇。
【及时练习】两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?【例5】在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?【分析与解】此题属于追及问题,首先明确路程差和速度差,开始甲、乙在圆径的两端,其路程差为圆周长的一半,400÷2=200(米),当甲追上乙后,如果再想追上乙必须比乙多行圆的一周的路程,即一周400米为路程差,根据不同的路程差,我们可以求出甲追上乙一次,所用的时间,在总时间中去掉第一次的追及时间再看剩下的时间里包含几个“甲追上乙所用的时间”就可以求出2小时内甲追上乙的次数。
解:2小时=120分甲第一次追上乙所用的时间:400÷2÷(60-50)=20(分)甲第二次开始每追乙一次所用的时间:400÷(60-50)=40(分)甲从第二次开始追上乙多少次:(120-20)÷40=2次……20秒甲共追上乙多少次:2+1=3(次)答:甲共追上乙3次。
【小结】这类环形跑道的追及问题一定要明确路程差和速度差。
【及时练习】在周长为300米得圆形跑道一条直径的两端,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?【例6】在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?同向行驶,甲乙相遇,说明甲必须比乙多跑一圈,即400米才能与乙相遇,400米正好是两人的路程差,除以甲追赶乙所用的3分20秒,可知甲、乙的速度差。
背向行驶,甲、乙相遇,说明甲、乙必须合走一圈即400米,400米正好上两人的路程总和除以40秒相遇时间,可知甲、乙的速度和。
这样已知甲、乙的速度和及速度差,可将此题转化或和差关系的应用题,这样可求出甲、乙的速度分别是多少?解:3分20秒=200秒甲、乙的速度和:400÷40=10(米)甲、乙的速度差:400÷200=2(米)甲的速度为每秒多少米?(10+2)÷2=6(米)乙的速度为每秒多少米?(10-2)÷2=4(米)答:甲的速度为每秒6米,乙的速度为每秒4米。
【小结】这类题目是相遇问题和追及问题的结合,以及和差问题的综合运用。
【及时练习】甲、乙两地相距450米,A、B两人从两地同时相向而行,经过5分钟相遇,已知A每分钟比B 每分钟慢6米,求A、B两车的速度各是多少米?三、课后练习:反向而行同向而行1、一圆形跑道周长300米,甲、乙两人分别从A、B两端同时出发,若反向而行1分钟相遇,若同向而行5分钟,甲可追上乙,求甲、乙两人的速度。
2、甲、乙两人在环形跑道上练长跑,两人从同一地点同时同向出发,已知甲每秒跑6米,乙每秒跑4米,经过20分钟两人共同相遇6次,问这个跑道多长?3、甲、乙两人环绕周长400米的跑道跑,如果他们从同一地点背向而行,经过2分钟相遇,如果从同一地点同向而行,经过20分钟甲追上乙,求甲、乙两人每分钟的速度各是多少?四、课后反思:第三课时教学时间:教学内容:追及问题教学目标:掌握复杂的追及问题教学重点:教学难点:教学过程:一、新授课:【例7】一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?分析要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。
【分析与解】解:①赶上队头所需要时间:350÷(3-2)=350(秒)②返回队尾所需时间:350÷(3+2)=70(秒)③一共用多少分钟?350+70=420(秒)=7(分)答:一共要用7分钟。
【及时练习】一支队伍长450米,以每秒3米的速度前进,一个通讯员骑车以匀速从队尾赶到队头用了50秒。
如果他再返回队尾,还需要多少秒?【例8】某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。
李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒?【分析与解】要求一共要用多少分钟,首先必须求出队伍的长度。
解:①这支路队伍长度:(202÷2-1)×0.5=50(米) ②赶上队头所需要时间:50÷(5-3)=25(秒)③返回队尾所需时间:50÷(5+3)=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒。
【及时练习】有966名解放军官兵排成6路纵队参加抗洪抢险。
队伍行进速度是每秒3米,前后两排的间隔距离是1.2米。
现有一通讯员从队头赶往队尾用了16秒钟。
如果他再从队尾赶到队头送信还需要多少时间?【例9】甲、乙、丙三人从A地出发到B地。
乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?设丙的速度为1米/分钟. (1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=1.25(米/分钟); (2)当甲追乙时,乙已先出发走了20分钟,这时甲乙的距离差为1.25×20=25(米),甲乙的速度差为25÷100=0.25(米); 甲的速度为1.25+0.25=1.5(米); (3) 当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离1×(10+20)=30米,速度差为1.5-1=0.5(米/分钟),追及时间为30÷0.5=60(分钟)。
【及时练习】小明、小峰和小光三人都从甲地到乙地,早上6时小明、小峰两人一起从甲地出发,小明每小时走5千米,小峰每小时走4千米,小光上午8时从甲地出发,傍晚6时,小光、小明同时到达乙地。
小光什么时候追上小峰?三、课后练习1、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,甲在乙前100米,问多少分钟后,甲可以追上乙?2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?3、自行车队出发12分钟后,通讯员骑摩托车去追他们,在距离出发点9千米处追上了自行车队。
然后,通讯员立刻返回出发点,随后又返回去追上了自行车队,再追上时恰好离出发点18千米,试求自行车队和摩托车的速度。