第七讲环形跑道问题

合集下载

小学数学行程问题之环形跑道含答案

小学数学行程问题之环形跑道含答案

环形跑道知识框架本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S例题精讲【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】右图中C表示甲、乙第一次相遇地点.因为乙从B到C又返回B时,甲恰好转一圈回到A,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C点距B点180-90=90(米).甲从A到C用了180÷20=9(分),所以乙每分行驶90÷9=10(米).甲、乙第二次相遇,即分别同时从A,B出发相向而行相遇需要90÷(20+10)=3(分).【答案】3分【巩固】周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】如下图,记甲乙相遇点为C.当甲跑了AC的路程时,乙跑了BC的路程;而当甲跑了400米时,乙跑了2BC的路程.由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A点所需时间的12.即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A,乙到达B时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.【答案】1000米【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】首先是一个相遇过程,相遇时间:6(6555)0.05÷+=小时,相遇地点距离A点:550.05 2.75⨯=千米.然后乙车调头,成为追及过程,追及时间:6(6555)0.6÷-=小时,乙车在此过程中走的路程:550.633⨯=千米,即5圈余3千米,那么这时距离A点3 2.750.25-=千米.甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离A点0.25 2.753+=千米,而第4次相遇时两车又重新回到了A点,并且行驶的方向与开始相同.所以,第8次相遇时两车肯定还是相遇在A点,又11332÷=,所以第11次相遇的地点与第3次相遇的地点是相同的,距离A点是3000米.【答案】3000米【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

0第七讲 环形跑道问题fid

0第七讲  环形跑道问题fid

第七讲环形跑道问题【本讲内容重点需要同学们动手画图,分析找关系,总结里把图省略了】一、行程问题三要素环形跑道问题属于行程问题的一类。

行程问题中的三要素是:路程(S)、速度(V)、时间(t)三者关系是:S=V·t V=S÷t t=S÷V即,在行程问题中,只有知道S、V、t中的其中两个要素,一定能求出第三个!二、相遇问题公式:S和=V和·t遇注意:相遇时间是同时走的时间三、追及问题公式:S差=V差·t追注意:(1)同时不同地——路程差(2)同地不同时——路程差四、环形跑道问题环形跑道问题不过是把“行程”的过程搬到了环形跑道上进行,但仍然符合行程问题的公式。

1、确定方向:(1)反(向相向,背向)即为相遇问题,就有S和=V和·t遇(2)同向即为追及问题,就有S差=V差·t追2、确定起始点(1)同地:周期现象反向(相遇),第1次相遇,共合跑1圈第n次相遇,共合跑n圈同向(追及),第1次追上,共多跑1圈第n次追上,共多跑n圈(2)异地:第1次特殊,从第2次开始即为周期现象。

【例1】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?【解析】同时同地同向——追及问题,同时同地反向——相遇问题。

注意单位要统一,时间单位我们统一为秒。

速度差:300÷150=2(米/秒)速度和:300÷30=10(米/秒)快的速度:(10+2)÷2=6(米/秒)慢的速度:(10-2)÷2=4(米/秒)或6-2=4(米/秒)【例2】巍巍、铮铮两人骑自行车从环形公路上同一地点同时出发,背向而行。

这条公路长2400米,巍巍骑一圈需要10分钟,如果第一次相遇时巍巍骑了1440米。

请问:(1)巍巍的速度是多少米/分?(2)从出发到第一次相遇用时多少分钟?(3)铮铮骑一圈需要多少分钟?(4)再过多久他们第二次相遇?】(1)由“公路长2400米,巍巍骑一圈需要10分钟”,可知【解析】【解析巍巍的速度2400÷10=240(米/分)(2)“第一次相遇时巍巍骑了1440米”,那么可知巍巍用时1440÷240=6(分),这个也是他们第一次相遇时共同的用时。

六年级奥数专题七环形跑道问题

六年级奥数专题七环形跑道问题

六年级奥数专题七环形跑道问题环形跑道问题教学⽬标1、掌握如下两个关系:(1)环形跑道问题同⼀地点出发,如果是相向⽽⾏,则每合⾛⼀圈相遇⼀次(2)环形跑道问题同⼀地点出发,如果是同向⽽⾏,则每追上⼀圈相遇⼀次2、遇见多⼈多次相遇、追及能够借助线段图进⾏分析3、⽤⽐例解、数论等知识解环形跑道问题知识精讲本讲中的⾏程问题是特殊场地⾏程问题之⼀.是多⼈(⼀般⾄少两⼈)多次相遇或追及的过程解决多⼈多次相遇与追击问题的关键是看我们是否能够准确的对题⽬中所描述的每⼀个⾏程状态作出正确合理的线段图进⾏分析.⼀、在做出线段图后,反复的在每⼀段路程上利⽤:路程和=相遇时间×速度和路程差=追及时间×速度差⼆、解环形跑道问题的⼀般⽅法:环形跑道问题,从同⼀地点出发,如果是相向⽽⾏,则每合⾛⼀圈相遇⼀次;如果是同向⽽⾏,环线型同⼀出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S【例 1】周⽼师和王⽼师沿着学校的环形林荫道散步,王⽼师每分钟⾛55⽶,周⽼师每分钟⾛65⽶.已知林荫道周长是480⽶,他们从同⼀地点同时背向⽽⾏.在他们第10次相遇后,王⽼师再⾛⽶就回到出发点.【例 2】上海⼩学有⼀长300⽶长的环形跑道,⼩亚和⼩胖同时从起跑线起跑,⼩亚每秒钟跑6⽶,⼩胖每秒钟跑4⽶,(1)⼩亚第⼀次追上⼩胖时两⼈各跑了多少⽶?(2)⼩亚第⼆次追上⼩胖两⼈各跑了多少圈?【巩固1】⼩张和⼩王各以⼀定速度,在周长为500⽶的环形跑道上跑步.⼩王的速度是200⽶/分.⑴⼩张和⼩王同时从同⼀地点出发,反向跑步,1分钟后两⼈第⼀次相遇,⼩张的速度是多少⽶/分?⑵⼩张和⼩王同时从同⼀点出发,同⼀⽅向跑步,⼩张跑多少圈后才能第⼀次追上⼩王?【巩固2】⼩明和⼩刚清晨来到学校操场练习跑步,学校操场是400⽶的环形跑道,⼩刚对⼩明说:“咱们⽐⽐看谁跑的快”,于是两⼈同时同向起跑,结果10分钟后⼩明第⼀次从背后追上⼩刚,同学们⼀定知道谁跑得快了,⼩明的速度是每分钟跑140⽶,那么如果⼩明第3次从背后追上⼩刚时,⼩刚⼀共跑了⽶.【巩固3】如图1,有⼀条长⽅形跑道,甲从A点出发,⼄从C点同时出发,都按顺时针⽅向奔跑,甲每秒跑5⽶,⼄每秒跑4.5⽶.当甲第⼀次追上⼄时,甲跑了多少圈?【巩固4】甲、⼄两⼈从400⽶的环形跑道上⼀点A背向同时出发,8分钟后两⼈第五次相遇,已知每秒钟甲⽐⼄多⾛0.1⽶,那么两⼈第五次相遇的地点与点A沿跑道上的最短路程是多少⽶?【巩固】在周长为200⽶的圆形跑道—条直径的两端,甲、⼄两⼈分别以6⽶/秒,5⽶/秒的骑车速度同时同向出发,沿跑道⾏驶.问:16分钟内,甲追上⼄多少次?【例 3】甲、⼄⼆⼈在操场的400⽶跑道上练习竞⾛,两⼈同时出发,出发时甲在⼄后⾯,出发后6分甲第⼀次超过⼄,22分时甲第⼆次超过⼄.假设两⼈的速度保持不变,问:出发时甲在⼄后⾯多少⽶?【巩固1】在400 ⽶的环⾏跑道上,A,B 两点相距100 ⽶.甲、⼄两⼈分别从A,B 两点同时出发,按逆时针⽅向跑步.甲甲每秒跑 5 ⽶,⼄每秒跑4 ⽶,每⼈每跑100 ⽶,都要停10 秒钟.那么甲追上⼄需要时间是多少秒?【例 4】有甲、⼄、丙3⼈,甲每分钟⾏⾛120⽶,⼄每分钟⾏⾛100⽶,丙每分钟⾏⾛70⽶.如果3个⼈同时同向,从同地出发,沿周长是300⽶的圆形跑道⾏⾛,那么多少分钟之后,3⼈⼜可以相聚在跑道上同⼀处?【巩固1】林琳在450⽶长的环形跑道上跑⼀圈,已知她前⼀半时间每秒跑5⽶,后⼀半时间每秒跑4⽶,那么她的后⼀半路程跑了多少秒?【巩固2】甲、⼄、丙在湖边散步,三⼈同时从同⼀点出发,绕湖⾏⾛,甲速度是每⼩时5.4千⽶,⼄速度是每⼩时4.2千⽶,她们⼆⼈同⽅向⾏⾛,丙与她们反⽅向⾏⾛,半个⼩时后甲和丙相遇,在过5分钟,⼄与丙相遇.那么绕湖⼀周的⾏程是多少?【例 5】甲和⼄两⼈分别从圆形场地的直径两端点同时开始以匀速按相反的⽅向绕此圆形路线运动,当⼄⾛了100⽶以后,他们第⼀次相遇,在甲⾛完⼀周前60⽶处⼜第⼆次相遇.求此圆形场地的周长?【巩固1】如图,A、B是圆的直径的两端,⼩张在A点,⼩王在B点同时出发反向⾏⾛,他们在C点第⼀次相遇,C离A点80⽶;在D点第⼆次相遇,D点离B点6O⽶.求这个圆的周长.【巩固2】如图,有⼀个圆,两只⼩⾍分别从直径的两端A与C同时出发,绕圆周相向⽽⾏.它们第⼀次相遇在离A点8厘⽶处的B点,第⼆次相遇在离C点处6厘⽶的D点,问,这个圆周的长是多少?第⼀次相遇第⼆次相遇DCBA【巩固3】两辆电动⼩汽车在周长为360⽶的圆形道上不断⾏驶,甲车每分⾏驶20⽶.甲、⼄两车同时分别从相距90⽶的A,B 两点相背⽽⾏,相遇后⼄车⽴即返回,甲车不改变⽅向,当⼄车到达B点时,甲车过B点后恰好⼜回到A点.此时甲车⽴即返回(⼄车过B点继续⾏驶),再过多少分与⼄车相遇?【例 6】池塘周围有⼀条道路。

六年级奥数专题七 环形跑道问题

六年级奥数专题七 环形跑道问题

环形跑道问题教学目标1、掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题知识精讲本讲中的行程问题是特殊场地行程问题之一.是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析.一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键.环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S【例 1】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米.已知林荫道周长是480米,他们从同一地点同时背向而行.在他们第10次相遇后,王老师再走米就回到出发点.【例 2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【巩固1】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【巩固2】小明和小刚清晨来到学校操场练习跑步,学校操场是400米的环形跑道,小刚对小明说:“咱们比比看谁跑的快”,于是两人同时同向起跑,结果10分钟后小明第一次从背后追上小刚,同学们一定知道谁跑得快了,小明的速度是每分钟跑140米,那么如果小明第3次从背后追上小刚时,小刚一共跑了米.【巩固3】如图1,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米.当甲第一次追上乙时,甲跑了多少圈?【巩固4】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【巩固】在周长为200米的圆形跑道—条直径的两端,甲、乙两人分别以6米/秒,5米/秒的骑车速度同时同向出发,沿跑道行驶.问:16分钟内,甲追上乙多少次?【例 3】甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分甲第一次超过乙,22分时甲第二次超过乙.假设两人的速度保持不变,问:出发时甲在乙后面多少米?【巩固1】在400 米的环行跑道上,A,B 两点相距100 米.甲、乙两人分别从A,B 两点同时出发,按逆时针方向跑步.甲甲每秒跑 5 米,乙每秒跑4 米,每人每跑100 米,都要停10 秒钟.那么甲追上乙需要时间是多少秒?【例 4】有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚在跑道上同一处?【巩固1】林琳在450米长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒?【巩固2】甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇.那么绕湖一周的行程是多少?【例 5】甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?【巩固1】如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.【巩固2】如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行.它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,问,这个圆周的长是多少?第一次相遇第二次相遇DC BA【巩固3】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?【例 6】 池塘周围有一条道路。

学生-行程问题之环形跑道问题

学生-行程问题之环形跑道问题

行程问题之环形跑道问题2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?求此圆形场地的周长?举一反三1、如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点6O 米.求这个圆的周长.2、如图,有一个圆,两只小虫分别从直径的两端A 与C 同时出发,绕圆周相 向而行.它们第一次相遇在离A 点8厘米处的B 点,第二次相遇在离C 点处6厘米的D 点,问,这个圆周的长是多少?第一次相遇第二次相遇DC BA3、A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?二、环形跑道——变道问题【例 1】如图是一个跑道的示意图,沿ACBEA 走一圈是400米,沿ACBDA 走一圈是275米,其中A 到B 的直线距离是75米.甲、乙二人同时从A 点出发练习长跑,甲沿ACBDA 的小圈跑,每100米用24秒,乙沿ACBEA 的大圈跑,每100米用21秒,问:⑴ 乙跑第几圈时第一次与甲相遇? ⑵ 发多长时间甲、乙再次在A 相遇?三、环形跑道——变速问题【例 1】(难度等级※※)甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

《环形跑道问题》课件

《环形跑道问题》课件

确定相遇的地点和时间
确定环形跑道的 长度
计算两个运动员 的速度
计算两个运动员 相遇的时间
确定两个运动员 相遇的地点
计算相对速度和相对距离
相对速度:两 个物体在同一 直线上,以同 一方向运动, 速度之差即为
相对速度
相对距离:两 个物体在同一 直线上,以同 一方向运动, 距离之差即为
相对距离
计算方法:利 用速度公式和 距离公式,结 合实际情况进
PPT,a click to unlimited possibilities
汇报人:PPT
目录
环形跑道的含义
环形跑道是一种封闭的、圆形的跑道,通常用于田径比赛和训练。
环形跑道的直径和周长通常为400米,但也有其他尺寸的环形跑道。
环形跑道的表面通常由塑胶、煤渣、草地等材料构成,以提供良好的摩擦力和缓 冲性能。 环形跑道的弯道部分通常有一定的倾斜角度,以帮助运动员在转弯时保持平衡和 速度。
加强管理: 定期检查 跑道状况, 及时维修 和维护
提高运动员 素质:加强 运动员的体 能训练和技 巧训练,提 高应对挑战 的能力
加强科研投 入:研究新 的跑道材料 和技术,提 高跑道性能 和运动员表 现
未来环形跑道问题的发展趋势和展望
技术进步:随着科技的发展,环形跑道的设计和建造技术将不断提高,提高跑道 的性能和寿命。

优点:可以提 高运动员的成 绩和表现,提 高赛事的观赏

缺点:可能会 对运动员的身 体健康产生一 定的影响,需 要做好防护措

解决环形跑道问题中的挑战的方法
加强安全 措施:设 置安全护 栏、警示 标志等
提高跑道 质量:使 用高质量 的材料和 施工工艺
优化跑道 设计:合 理规划跑 道布局, 避免弯 过急或过 缓

(完整版)第七讲环形跑道问题

(完整版)第七讲环形跑道问题

第七讲环形跑道问题一.知识点总结基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。

相遇问题(相向):相遇时间=路程和÷速度和追及问题(同向):追及时间=路程差÷速度差注:不只是追及问题中我们用路程差÷速度差=追及时间,实际在很多两人同时行进一段时间,不同的速度必然会造成路程不同,我们都可以用这个公式:路程差÷速度差=所行时间。

环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈。

这个等量关系往往成为我们解决问题的关键。

二.做题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时看地点是指是同地还是两地甚至更多。

看方向是同向、背向还是相向看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断。

追击问题中一个重要环节就是确定追上地点,从而找到路程差。

比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差。

这个是追击问题经常用到的,同过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来。

相遇问题就找路程和,追击问题就找路程差三.例题解析1.直接利用公式型竞赛班例题1(尖子班例题1):在300米的环形跑道上,如果同向而跑快者2分30秒追上慢者,如果背向而跑两者半分钟相遇,求两人的速度。

解析:注意如果题目没有第几次追上或相遇,都默认为是第一次追上或相遇。

“第几次追上就多跑几圈”,快者第一次追上慢者,就是比慢者多跑一圈,即用2分30秒比慢者多跑300米,那么快比慢1秒钟多跑(速度差):300÷150=2米“第几次相遇就合跑几圈”,第一次相遇就合跑一圈,即用半分钟合跑300米,1秒钟两人合跑(速度和):300÷30=10米慢者:(10-2)÷2=4米/秒快者:4+2=6米/秒“和差算法”:小的数=(和-差)÷2大的数=(和+差)÷2竞赛班学案1:在环形跑道上,两人背靠背跑,每隔4分钟相遇一次:同向跑每隔20分钟相遇一次,已知环形跑道周长1600米,求两人的速度?解析:两人速度差1600÷20=80米/分两人速度和1600÷4=400米/分慢者:(400-80)÷2=160米/分快者:160+80=240米/分竞赛班例题3:幸福村小学有一条长200米的环形跑道,铮铮和包包同时从起跑线起跑,铮铮每秒钟跑6米,包包每秒钟跑4米,问铮铮第一次追上包包时两人各跑多少米,第2次追上包包时两人各跑多少圈?解析:(1)铮铮第一次追上包包,总共比包包多跑一圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑一圈200你呢?200÷(6-4)=100秒注:熟了之后直接用公式路程差÷速度差=所行时间铮铮:6×100=600米包包:4×100=400米或600-200=400米(2)笨方法:铮铮第二次追上包包,总共比包包多跑二圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑二圈400你呢?400÷(6-4)=200秒。

学而思四年级第七讲(环形跑道)

学而思四年级第七讲(环形跑道)

第七讲 环形跑道问题一、行程问题三要素环形跑道问题属于行程问题的一类。

对于行程问题,同学们一定要马上反应出路程(S)、速度(V)、时间(t)三个要素之间的关系——S=V·tV=S÷t t=S÷V ……公式变形即,在行程问题中,只有知道S、V、t中的其中两个要素,一定能求出第三个!二、行程问题基本型1、相遇问题关键词:同时、反向公式: S和 = V和 ·t遇2、追及问题关键词:同时、同向公式: S差 = V差 ·t追注:我们判断是相遇还是追及主要就是看方向,但要注意的是不管是相遇还是追及,其过程一定是二人同时进行的,所以抓住“同时”也很重要。

当题目中不是同时发生的,要学会如何转化为“同时”。

三、环形跑道问题环形跑道问题不过是把“行程”的过程搬到了环形跑道上进行,它仍然符合行程问题的公式。

但要注意S与跑道有关系。

做题时,我们要注意1、确定方向:(1)反向即为相遇问题,就有S和 = V和 ·t遇(2)同向即为追及问题,就有S差 = V差 ·t追2、确定起始点(1)同地:周期现象反向(相遇), 第1次相遇,共合跑1圈第2次相遇,共合跑2圈……第n次相遇,共合跑n圈同向(追及), 第1次追上,共多跑1圈第2次追上,共多跑2圈……第n次追上,共多跑n圈(2)异地:第1次特殊,从第2次开始即为周期现象四、例题解析课前回顾 小张和小王各以一定速度,在周长为500米的环形跑道上跑步,小王的速度是200米/分,(1)小张和小王同时从同一地点出发反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一地点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解析:(1)同时同地反向,是相遇问题。

S和 = V和 ·t遇500米 1分钟第一次相遇,即合跑一圈,即合跑500米,S和、t遇都知道,那么就可求速度和,得500÷1=500(米/分)小张的速度: 500-200=300(米/分)(2)同时同地同向,是追及问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲环形跑道问题
一.知识点总结
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定运动过程中的位置和方向。

相遇问题(相向):相遇时间=路程和÷速度和
追及问题(同向):追及时间=路程差÷速度差
注:不只是追及问题中我们用路程差÷速度差=追及时间,实际在很多两人同时行进一段时间,不同的速度必然会造成路程不同,我们都可以用这个公式:路程差÷速度差=所行时间。

环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈。

这个等量关系往往成为我们解决问题的关键。

二.做题方法:
(1)审题:看题目有几个人或物参与;
看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时
看地点是指是同地还是两地甚至更多。

看方向是同向、背向还是相向
看事件指的是结果是相遇还是追及
相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断。

追击问题中一个重要环节就是确定追上地点,从而找到路程差。

比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差。

这个是追击问题经常用到的,同过路程差求速度差
(2)简单题利用公式
(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来。

相遇问题就找路程和,追击问题就找路程差
三.例题解析
1.直接利用公式型
竞赛班例题1(尖子班例题1):在300米的环形跑道上,如果同向而跑
快者2分30秒追上慢者,如果背向而跑两者半分钟相遇,求两人的速度。

解析:注意如果题目没有第几次追上或相遇,都默认为是第一次追上或相遇。

“第几次追上就多跑几圈”,快者第一次追上慢者,就是比慢者多跑一圈,即用2分30秒比慢者多跑300米,
那么快比慢1秒钟多跑(速度差):300÷150=2米
“第几次相遇就合跑几圈”,第一次相遇就合跑一圈,即用半分钟合跑300米,1秒钟两人合跑(速度和):300÷30=10米
慢者:(10-2)÷2=4米/秒
快者:4+2=6米/秒
“和差算法”:小的数=(和-差)÷2
大的数=(和+差)÷2
竞赛班学案1:在环形跑道上,两人背靠背跑,每隔4分钟相遇一次:同向跑每隔20分钟相遇一次,已知环形跑道周长1600米,求两人的速度?
解析:两人速度差1600÷20=80米/分
两人速度和1600÷4=400米/分
慢者:(400-80)÷2=160米/分
快者:160+80=240米/分
竞赛班例题3:幸福村小学有一条长200米的环形跑道,铮铮和包包同时从起跑线起跑,铮铮每秒钟跑6米,包包每秒钟跑4米,问铮铮第一次追上包包时两人各跑多少米,第2次追上包包时两人各跑多少圈?
解析:
(1)铮铮第一次追上包包,总共比包包多跑一圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑一圈200你呢?200÷(6-4)=100秒注:熟了之后直接用公式路程差÷速度差=所行时间
铮铮:6×100=600米
包包:4×100=400米或600-200=400米
(2)笨方法:铮铮第二次追上包包,总共比包包多跑二圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑二圈400你呢?400÷(6-4)=200秒。

铮铮:6×200=1200米1200÷200=6圈
包包:4×200=800米800÷200=4圈
聪明方法:第一问求出铮铮第一次追上包包时两人的路程,
直接铮铮:600÷200=3圈3×2=6圈
包包:6-2=4圈
竞赛班例题2(尖子班例题2):环形公路长2400米,铮铮和微微同时从同一地点出发,微微骑一圈需要10分钟,如果第一次相遇时微微骑了1440米。

问铮铮骑一圈的时间?再过多久他们第二次相遇?
解析:(1)微微骑一圈需要10分钟,可知微微的速度2400÷10=240米/分第一次相遇时微微骑了1440米,可知相遇时间1440÷240=6分钟
第一次相遇时两人合跑一圈2400米,铮铮骑2400-1440=960米
铮铮速度960÷6=160米/分
铮铮骑一圈的时间2400÷160=15分钟
(2)“再过多久”,指从第一次相遇开始计时,每隔6分钟相遇一次。

所以答案还是6
竞赛班学案2:黑白两只猫在周长为300米的环形跑道上赛跑,黑猫的速度是每秒5米,白猫的速度是每秒7米,两只猫从同一地点背向出发,经过多少秒第一次相遇?在2分钟内共相遇几次?
解析:第一次相遇,合跑一圈300米,时间300÷(5+7) =25秒
每隔25秒相遇一次,2×60÷25=4次………20秒
2.“陷阱题”-----出发点不是同起点,注意题目中的时间是从哪开始计时的,尤其注意“再,又过多长时间”和“多长时间后”
竞赛班例题5:在400米的环形跑道上,甲乙两人分别从A,B两点同时出发,同向而行。

4分钟后甲第一次追上乙,又经过10分钟甲第二次追上乙。

甲的速度是每秒3米,乙的速度是多少?求A,B两地相距多少米?
解析:
“又经过10分钟”指的是从一次追上开始计时到第二次,在这10分钟甲比乙多跑一圈400米,得知甲一分钟比乙多跑(速度差)400÷10=40米/分甲的速度3×60=180米/分
AB的距离就是甲第一次追上乙比乙多跑的路程:4×40=160米
尖子班例题5:微微铮铮在400米的环形跑道上,微微以300米/分的速度从起点跑出,1分钟后,铮铮从起点同向跑出,又经过5分钟,微微追上铮铮。

问铮铮的速度?再过多少分钟才能第二次追上铮铮?
解析:
1分钟后微微跑出1×300=300米,而跑道才400米,所以微微在铮铮后面100米处。

两人速度差100÷5=20米/分
微微第二次追上铮铮,比他多跑一圈400米,一分钟多跑20米,
所以400÷20=20分钟
尖子班例题4:甲乙两人在400米操场上比赛,两人同时出发,出发时甲在乙后面,出发后6分钟甲第一次超过乙,22分钟后甲第二次超过乙,出发时甲在乙后面多少米?
解析:
“22分钟后”指从出发时开始计时,从第一次甲超过乙开始计时到第二次用的时间22-6=16分钟,这段时间甲比乙多跑一圈400米,那么甲一分钟比乙多跑的(速度差)400 ÷16=25米/分
甲在乙后面:25×6=150米
2.利用合走全程求个人路程
竞赛例题4:有一个圆,两只小虫分别从直径的两端A和C同时出发,绕圆周相向而行。

他们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点6厘米处的D点,问这个圆周的周长?
解析:
合走半个圆周,A虫走8厘米。

那么合走一个圆周,A虫走8×2=16厘米。


BC+6=16,所以BC=16-6=10厘米,半个圆周=8+10=18厘米,
一个圆周为18×2=36厘米
尖子班例题6:A,B是圆的直径的两端,小张在A点,小王在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

已知C离A有80米,D离B 有60米,求这个圆的周长。

解法同理,自己练习一下啊!
2.复杂题----分段分析
竞赛班例题6:学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程想重,甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针跑,两人同时从跑道的交点A出发,当他们第二次相遇时,甲共跑多少米?
解析:
甲乙只可能在大跑道的右侧相遇
当甲到B点时,乙还没到B点,所以第一次相遇在C点,两人合跑一个大跑道400÷(6+4)=40秒,C离B的距离:6×40-200=40米。

当乙从C到A点时,(100+40)÷4=35秒,甲从C点走的路程6×35=210米,C到A的距离是200-40=160米,所以甲已经在A点的左侧D点,
D离A的距离210-160=50米
当甲从D点出发,乙从A点出发,两人在大跑道的右侧第二次相遇,
合跑的路程400-50=350米,350÷(6+4)=35秒
甲在这三段总共跑的时间40+35+35=110秒
甲共跑6×110=660米
竞赛班学案4:一个环形跑道甲乙两人分别从A,B两点同时出发,反向而行。

6分钟后两人相遇,再过4分钟甲到达B点,又经过8分钟两人再次相遇,甲乙两人跑一周各需要多长时间?
解析:
乙从B出发到再次相遇点,乙用了6+4+8=18分钟,
由图甲4分钟走的路程=乙6分钟走的路程。

甲从再次相遇点到B点用的时间4×(18÷6)=12分钟
甲走一圈时间8+12=20分钟
乙走一圈时间6×(20÷4)=30分钟。

相关文档
最新文档