14.1.4整式的除法---单项式除以单项式
整式的除法单项式除以单项式

负指数幂表示的是该数的倒数的正指数幂。因此,如果被除数或除数中的某个字母的指数 为负数,可以将其转化为倒数的正指数幂形式,再进行相除。
无法整除的情况
如果被除数无法被除数整除(即存在某个字母的指数在被除数中比在除数中小),则结果 将是一个带分数或无理数。此时,可以尝试将被除数和除数同时乘以某个适当的单项式, 使得被除数可以被除数整除。
法结果相乘。
02
理解不深入
对于某些复杂的问题,我的理解还不够深入,无法准确地把握问题的本
质和解题的关键。例如,在处理含有多个字母的单项式除法时,我有时
会感到困惑。
03
缺乏练习
我发现自己在单项式除以单项式的运算方面缺乏足够的练习,导致在考
试时无法迅速准确地完成题目。为了解决这个问题,我需要加强相关练
习,提高运算速度和准确性。
单项式与多项式区分
单项式
只包含一个项的整式,如$3x^2$, $5xy$等。
多项式
包含两个或两个以上项的整式,如 $x^2 + 2x + 1$,$3xy - 2y^2 + 5$ 等。
整式除法运算规则
01 除法运算定义
02 除法运算规则
03 按位相除
04 余数处理
05 结果表示
设$a(x)$和$b(x)$是两个多 项式,且$b(x) neq 0$,如 果存在一个多项式$q(x)$, 使得$a(x) = b(x) times q(x)$,则称$q(x)$为$a(x)$ 除以$b(x)$的商。
解析
本题涉及多个单项式的除法运算,需按照运算法则逐步进行。
解答
原式 = [(3a^2b^3c) / (2ab^2)] * [(4b) / (5abc)] = [(3/2) * (a^2/a) * (b^3/b^2) * c] * [(4/5) * b / (abc)] = [(3/2) * a * b * c] * [(4/5) * 1/(ac)] * 1/(ac) = (6/5) * b
整式的除法--单项式除以单项式

(3) (6xy2)2÷3xy =36x2y4 ÷3xy =12xy3
例2 计算: (1) 12(a-b)5÷3(a-b)2 , (2) (3y-x)3 ÷(x-3y)2 , (3) (2a2)4 ÷(a3)2
解: (1) 12(a-b)5÷3(a-b)2 =(12÷3)(a-b)5-2 =4(a-b)3
12.4整式的乘除
单项式除以单项式
回顾复习
1. 单项式与单项式相乘,只要将它们的系__数__、 _相__同__字__母__的__幂 分别相乘,对于只在一个 单项式中出现的字母,则连_同__它__的__指__数__一_ 起 _ _作为积的一个因式。 2、计算:
(1)(-4xy3) (-2x) =__8_x_2y_3__
例1 计算: (1) 24a3b2÷3ab2 , (2) -21a2b3c÷3ab , (3) (6xy2)2÷3xy .
解:(1) 24a3b2÷3ab2 =(24÷3)(a3÷a)(b2÷ b2) =8a3-1×1 =8a2
(2) -21a2b3c÷3ab =(-21÷3)a2-1b3-1c =-7ab2c
(2) amb• (-a3b2n) =__-a_m_+_3_b_2_n+1
3.同底数幂相除,底数_不__变___,指数_相__减__,
即 am an _a__m-_n__(a 0)
4. 103 102 ___,25 22 ___, a7 a3 ___(a 0)
试一试:
用你熟悉的方法计算:
(1.9×1027)÷( 5.98×1024),我们可以先将 1.9除以5.98,再将1027除以1024,最后将商相乘.
解: (1.9×1027)÷( 5.98×1024) =(1.9 ÷5.98) ×1027-24 ≈0.318×103
八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
整式的除法(基础)知识讲解

整式的除法(基础)【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化.【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷;(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭; (3)22[()()]()()x y x y x y x y +-÷+÷-;(4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算.【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=.(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭ 21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦ 21432n xy z -=-. (3)22[()()]()()x y x y x y x y +-÷+÷- 222()()()()x y x y x y x y =+-÷+÷-2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++ 2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数.举一反三:【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷; (3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】 解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==.(2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.2、金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最漂亮的一颗星.金星离地球的距离为4.2×107千米,从金星射出的光到达地球需要多少时间?(光速为3.0×105千米/秒)【答案与解析】解:t=秒,答:从金星射出的光到达地球需要1.4×102秒.【总结升华】本题考查了同底数幂的除法法则,关键是利用时间=路程÷速度这一公式,此题比较简单,易于掌握.类型二、多项式除以单项式 3、计算(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ ; (2)()()32271833x x x x -+÷-.【思路点拨】直接利用多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算.【答案与解析】 解:(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ 54325242323211224111124424482x x x x x x x x x x x x x⎛⎫=++÷ ⎪⎝⎭=÷+÷+÷=++ (2)()()32271833x x x x -+÷- ()()()32227318333961x x x x x x x x =÷--÷-+÷-=-+-【总结升华】本题考查多项式除以单项式的运算,熟练掌握运算法则是解题的关键,要注意符号的处理.4、计算:(1)324(67)x y x y xy -÷;(2)42(342)(2)x x x x -+-÷-;(3)22222(1284)(4)x y xy y y -+÷-;(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-.(2)42(342)(2)x x x x -+-÷- 42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭ 22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭ 22321533ab a b =-++. 【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化.举一反三:【变式1】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷.【答案】解: (1)原式223239421922792x y x x x y y x y ⎛⎫=-÷ ⎪⎝⎭ 52510428(927)93x y x y x y x xy =-÷=-.(2)原式2222[44(2)]6x y x xy y x =-+-+÷ 2222(4484)6x y x xy y x =-+-+÷2(58)6x xy x =-÷5463x y =-. 【变式2】计算:[(3a+b )2﹣b 2]÷3a . 解:[(3a+b )2﹣b 2]÷3a ,=(9a 2+6ab+b 2﹣b 2)÷3a ,=(9a 2+6ab )÷3a ,=3a+2b。
北师大版七下数学知识点总结

北师大版七下数学知识点总结北师大版七年级下册数学知识点总结。
一、整式的乘除。
1. 同底数幂的乘法。
- 法则:a^m· a^n=a^m + n(m、n为正整数)。
例如2^3×2^4=2^3 + 4=2^7。
- 推广:a^m· a^n· a^p=a^m + n+p(m、n、p为正整数)。
2. 幂的乘方。
- 法则:(a^m)^n=a^mn(m、n为正整数)。
例如(3^2)^3=3^2×3=3^6。
3. 积的乘方。
- 法则:(ab)^n=a^nb^n(n为正整数)。
例如(2×3)^2=2^2×3^2=4×9 = 36。
4. 同底数幂的除法。
- 法则:a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
例如5^6÷5^3=5^6 - 3=5^3。
- 零指数幂:a^0=1(a≠0)。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p为正整数)。
5. 整式的乘法。
- 单项式乘单项式:系数相乘,同底数幂相乘。
例如3x^2·2x^3=(3×2)x^2 + 3=6x^5。
- 单项式乘多项式:m(a + b)=ma+mb。
例如2x(x + 3)=2x^2+6x。
- 多项式乘多项式:(a + b)(c + d)=ac+ad+bc+bd。
例如(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x + 6。
6. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如6x^5÷2x^3=(6÷2)x^5 - 3=3x^2。
- 多项式除以单项式:(a + b)÷ m=(a)/(m)+(b)/(m)。
例如(4x^2+2x)÷2x =4x^2÷2x+2x÷2x = 2x + 1。
二、相交线与平行线。
1. 相交线。
人教版八年级数学上册集体备课(教案)14.1.4.3整式的除法

例6:计算.
(1)(2a2b2c)4z÷(-2ab2c2)2;(2)(3x3y3z)4÷(3x3y2z)2÷( x2y6z).
解析:掌握整式的除法的运算法则是解题的关键,有乘方的先算乘方,再算乘除,根据同底数幂相除,底数不变,指数相减.
探究点四:多项式除以单项式
【类型一】直接利用多项式除以单项式进行计算
(二)当堂测评:
《长江全能学案》
重难点
学法指导
启发诱导,实例探究,讲练结合,小组合作
学习过程
学习内容
二次备课
一、激趣导入,呈现目标
情境导入
1.教师提问:同底数幂的乘法法则是什么?
2.多媒体展示问题,让学生尝试完成.
一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?
学生认真分析后完成计算:需要滴数:1012÷109.
3.教师讲解:以前我们只学过同底数幂的乘法的计算方法,那么像这种同底数幂的除法该怎样计算呢?
2、自主探究,交流展示
探究点一:同底数幂的除法
【类型一】直接同底数幂的除法进行运算
例1:计算:(1)(-xy)13÷(-xy)8;(2) (x-2y)3÷(2y-x)2;(3)(a2+1)6÷(a2+1)4÷(a2+1)2.
【类型三】化简求值
例9:先化简,后求值.[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2015,y=2014.
解析:熟练掌握去括号,合并同类项,整式的除法的法则是解本题的关键.
四、反思小结当堂测评
14.1.4整式的除法(第2课时)课件教案

14.1.4 整式的除法(二)教学目标:1、知识点:①多项多除以多项式的运算法则及其应用;②多项式除以单项式的算理。
2、能力:理解多项式除以单项式的除法算理,发展有条理地思考及其表达能力。
3、情感与价值观:经历探索多项式除以单项式的过程,培养教学学习能力,获得成功的体验。
教学重点:多项式除以单项式的运算法则及其应用,探求多项式的算法,培养创新能力。
教学难点:对多项式除以单项式的算法的理解及其应用。
教学过程:一、创设情景,引入新课。
(电脑幻灯)任意给一个数,按下列程序计算下去,写出输出结果:输入x是多项式除以单项式。
二、计算下列各题,说说你的理由(课题:多项式除以单项式)1、(ad+bd )÷d2、(2a b+3ab) ÷a3、(x 3y -2xy) ÷(xy)解法1:多项式除以一个单项式,可以看成多项式乘以这个单项式的倒数,再用这个倒数去乘以多项式的各项,所得结果相加(1)(ad+bd )÷d=(ad+bd)×d 1=ad ·d 1+bd ·d 1=d bd dad +=a+b (2)(2a b+3ab)÷a=(2a b+3ab)×a 1=2ab ·a 1+3ab ·a 1=a ab a b a 32+=ab+3b (3)(x 3y -2xy )÷(xy)=(x 3y -2xy)×xy 1=(x 3y )·xy 1-(2xy)·xy1=2y -2 解法2:利用乘法和除法互为逆运算(1)中(ad+bd )÷d 是多少?试着想一下:( )×d=ad+bd ,反用乘法分配律可得出(a+b )×d=ad+bd ,所以(ad+bd )÷d=a+b ,同理(2)困(ab+3b )×a=2a b+3ab ,所以(2a b+3ab )+a=ab+3b ,(3)因(2y -2)·(xy )=x 3y -2xy ,所以(x 3y -2xy )÷(xy)= 2y -2 共同分析得出:(1)(ad+bd )÷d=a+b=(ab)÷d+(bd)÷d(2)(2a b+3ab )÷a=ab+3b=(2a b)÷a+(3ab)÷a(3)(x 3y -2xy )÷(xy)= 2y -2=(x 3y )÷(xy)-(2xy)÷(xy)2、法则:多项式除以多项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梳理与理解:
商式=系数 • 同底数幂 • 被除式里单独有的幂 底数不变 指数相减
被除式的系数 除式的系数
保留在商式里 作为一个因式
1.把图中左边括号里的每一个式子分别除 以2x2y,然后把商式写在右边括号里.
4x3y
−12x4y3 −16x2yz 1 2 xy 2
2x
÷2x2y
−6x2y2 −8z
B
)
A: m 6, n 1
B: m 5, n 1
C: m 6, n 0
D: m 5, n 0
1 2 3. 已知 a b mab 2a,则m等于 ( D ) 2
A:
2
B:
2
1 C: 2
1 D: 4
作业
14.1.4整式的除法
---单项式除以单项式
回顾 & 思考 ☞
1、用字母表示幂的运算性质: (1)
a a
m
n
=a m n ; (2) (a m )n= ; . (5)
n
a
mn
(3) (ab)n= a n b n ; ;
(4) a m
a n= a m n
2n n
a 0=
1 ; (a ≠ 0)
1 4
2.例题讲解 例1 计算: a 3b 2 (3ab2 ) 24 解:24 a b (3ab )
3 2 2
[24 (3)]( a a)(b b )
3 2 2
8a
31
8a .
2
1
请想一想: b
2
b 1 是如何来的?
2
3、计算:
1 2 3 2 2 4 (1)- x y ÷ (- x y ) 3 2 2 (2)-ax4y3÷( ax) 3
(3) (6x2y3)2÷(-3xy2)2
先确定商的符号.
注意运算顺序先乘方再除法.
4、计算:
(1) 45(x y ) 5x y 1 3 1 4 5 3 3 (2)16x y ( xy) x y 2 2
3 2 2 5 4
5、先化简,再求值:
24 x y 3x y 21x y 7 x 36 x y 6 x y
法则: 单项式相除,把系数、同底数幂
分别相除作为商的因式,对于只在被除 式中出现的字母,则连同它的指数一起 作为商的一个因式。
单项式与单项式 相乘 系数 相同字母 系数×系数=积的 系数 按同底数幂相乘 单项式与单项式 相除 系数÷系数=商的系 数 按同底数幂相除
单独存在的 字母及指数不变留 字母及指数不变留 商中 字母及指数 积中
3 2 2 2 5 3
4 2
1 其中 x 2, y . 2
1 1 2 (1) 2ab c ab c 2 4
2
(× )
1 2 3 2 1 2 (2) a b c (5abc) b (√ ) 5 125
1 3 2 2. 已知 x y x y 4 x ,则( 4
m n
2、快速抢答:
(1)a a a (2) 2x² ∙3xy² 6x³ z² yz² = y³ (3) a² 3ab )=3a³ b∙( b²
回顾 & 思考 ☞
2×3=6
2a×3a=( 6a )
2
单项式与单项式相乘法则: ①系数×系数=积的系数 ②相同字母:按同底数幂相乘
③单独存在的字母及指数:不变留积中
单项式除以单项式
4a c 3a 12a c
3 2
5
2
5 2
12a c 3a
2 2
4a c
3
2
思考?
4是怎么来的?
和 又是怎么计算出来的?
a
3
c
自主探究
1、计算: 3÷2a=( 2 ) ⑴8a 4a ⑵6x3y÷3xy=(
2x
2
)
⑶12a3b2x3÷3ab=(4a 2bx3 ) 2、观察上面3个算式及结果, 尝试说出单项式除以单项式的 运算方法。