初中数学实数专项练习(二)含答案

合集下载

2020中考数学一轮复习基础达标训练题:实数2(附答案)

2020中考数学一轮复习基础达标训练题:实数2(附答案)

2020中考数学一轮复习基础达标训练题:实数2(附答案)1.在0.1、3π0.010010001…中无理数有( ) A .1个 B .2个 C .3个 D .4个2 )A .有平方根B .只有算术平方根C .没有平方根D .不能确定3在两个整数之间,下列结论正确的是( )A .2-3之间B .3-4之间C .4-5之间D .5-6之间4.若30m -+=,则mn 的立方根为( )A .-9B .9C .-3D .35.下列一组数2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A .0个B .1个C .2个D .3个 6.对于数133,规定第一次操作为13+33+33=55,第二次操作为53+53=250,如此反复操作,则第2019次操作后得到的数是( )A .25B .250C .55D .1337.下列实数中,无理数是( )A B .27 C .﹣0.2 D .08.下列实数中,属于无理数的是( )A .0B .3-C .3.1416D .207-9 )A .9.0﹣10之间B .8.5﹣9.0之间C .8.0﹣8.5之间D .7﹣8之间10.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,11.已知3+m ,3的小数部分为n ,则m n +的值为__.12.在3.14122,373π,0.2020020002…(每相邻两个2之间依次增加一个0)___________,无理数有_______________. 13.对于任意有理数a 、b ,规定:a ☆b=-b a 和a ★b=a b-1,那么[(-2)★3]☆1=______.14.若数轴上表示数a 的点在原点的左边,则化简2a ______.153=,则7-m 的立方根是________.16.在实数 ﹣3,225,π中,无理数是________.17.已知:在数轴上点A 数x 表示的点B 到点A 的距离为x 为______.18.比较大小:______-4.(填“>”、“=”、“<”)1958.(填“>”,“<”或“=”)20.计算:))2015201622⨯= ____.21.计算:(1)m 2n •(﹣2m 2n )3÷(﹣12m 2n )2;(2)2﹣2﹣(π﹣3.14)0+(﹣0.5)2018×22018.22互为相反数,且x-y+4的平方根是它本身,求x 、y 的值.23.计算:20()||243()225cos π---︒+-24.计算:(-4)2+(π-3)0-23-|-5|.25.(1-|-2|;(2)解不等式组:()()x x 1232x 33x 26⎧--⎪⎨⎪----⎩>>26.计算:(1)232111(2)83-+-⨯+ ;(2)23346()()a a a a a a --+-27.已知5x +19的立方根是4,求2x +7的平方根.参考答案1.C【解析】【分析】题干要求判别无理数,根据无理数的相关属性进行分析判断即可.【详解】3,0.010010001是无理数.故选C. 【点睛】本题考查无理数的判断,无理数包括开不尽方的数,圆周率π以及无限不循环小数. 2.C【解析】【分析】0,从而可判断出答案.【详解】0,故选C .【点睛】0,另外要掌握住负数没有平方根.3.B【解析】【分析】在哪两个整数之间【详解】解:∵22=4,32=9,∴23;∴3<4.故选:B .【点睛】此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.4.C【解析】【分析】3m -两个非负数相加等于0,则只有3-m=0和n+9=0.计算出m ,n 的值再计算mn 的立方根.【详解】∵30m -=∴3-m=0,n+9=0即m=3,n=-9即mn=-27,-273=-故应选:C.【点睛】本题考查了非负数的性质,常见的非负数有2a a ,两个非负数相加等于0时,则只有0+0=0这一种情况.5.C【解析】【分析】根据无理数与有理数的概念进行判断即可得.【详解】 解:2211-8,3,0,2,0.010010001...7223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有:0.010010001...2π,(相邻两个1之间依次增加一个0),共2个故选:C【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方③虽有规律但是无限不循环的数,如0.1010010001…,等. 6.D【解析】【分析】按照规则,每次操作即是对上一次操作得到的数的每个数字求立方和,求出第三次操作后的得数为133与开始相同,即每三次为一个循环.由于2019能被3整除,故2019次操作后与第三次操作后得数相同.【详解】解:第一次操作:13+33+33=55第二次操作:53+53=250第三次操作:23+53+03=133∴三次操作后是一个循环∵2019÷3=673,即2019被3整除∴2019次操作后的数与第三次操作后的得数相同,为133故选:D.【点睛】本题考查了规律探索下的实数计算,解题关键是读懂每次操作的具体做法,并准确计算出下一次操作的数,从而发现规律.7.A【解析】【分析】根据无理数的定义判断即可.【详解】解:因为有限小数、0故选A.【点睛】本题考查是无理数的定义,熟记无理数的定义和判断条件是解本题的关键.8.B【解析】【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,即可判定.【详解】A.0是整数,属于有理数,故本选项不合题意;B.3-=,是无理数,故本选项符合题意;C.3.1416是有限小数属于有理数,故本选项不合题意;D.207-是分数,属于有理数,故本选项不合题意.故选:B.【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题.9.B【解析】【分析】的大小解答即可.【详解】∵64<76<81,∴89.∵8.52=72.25,∴8.59.故选B.【点睛】的大小是解题的关键.10.D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n-1=-1;C 选项满足m≤n ,则y=2m-1=3;D 选项不满足m≤n ,则y=2n-1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.11.6【解析】【分析】33的范围,即可求出m 、n 的值,代入求出即可.【详解】 解:132<<,435∴<<,21-<<-,132∴<<,33+的整数部分为m ,3的小数部分为n ,m 4∴=,n 312=-=-,m n 426∴+=+=故答案为:6【点睛】本题考查了估算无理数的大小的应用,能求出m 、n 的值是解此题的关键.12.1223.14,,0.12,37 2,,0.20200200023π【解析】【分析】分别根据实数的分类及有理数、无理数的概念进行解答【详解】 根据有理数及无理数的概念可知,在这一组数中是有理数的有1223.14,,0.12,37,0.20200200023π.故答案为:(1)1223.14,,0.12,37;(2,0.20200200023π.【点睛】本题考查的是实数的分类及无理数、有理数的定义,比较简单.13.-1【解析】【分析】根据a ☆b=-b a 和a ★b=a b-1,可以求得所求式子的值.【详解】解:∵a ☆b=-b a 和a ★b=a b-1, ∴[(-2)★3]☆1=[(-2)3-1]☆1=4☆1=-14=-1,故答案为:-1.【点睛】此题考查有理数的混合运算,解题关键在于掌握其计算方法14.-a【解析】【分析】根据二次根式的性质,可化简二次根式,根据绝对值的性质,可得答案.【详解】若数轴上表示a 的点在原点的左边,2a+,故答案为:−a.【点睛】此题考查实数与数轴,二次根式的性质与化简,解题关键在于掌握运算法则利用二次根式的性质化简.15.-1【解析】【分析】先求出m的值,然后代入7-m求出立方根.【详解】3=,解得m=8,则7-m=7-8=-1,【点睛】本题主要考查了解二次根式和立方根的定义,求出m值是解题的关键.16.π【解析】【分析】首先将各数化到最简形式,然后再根据无理数的概念进行判定即可.【详解】,是有理数;﹣3是整数,也是有理数;225=3.142857142857…,是无限循环小数,是有理数;π 是无限不循环小数是无理数;故答案为:π .【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题.17.2-8-【解析】【分析】先求出点A表示的数,再求点B表示的数x,注意考虑两种情况:要求的点在已知点A的左侧或右侧.【详解】解:∵在数轴上点A,∴点A表示的数是-5,∴到点A的距离为的点B表示的数x为:x= -5-().故答案为:.【点睛】本题考查数轴的知识,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.18.<【解析】【分析】先将4的大小关系即可确定答案.【详解】∵4=>>,4∴4<-,故答案为:<.【点睛】本题考查了实数的比较大小,将实数化成统一的形式是解题的关键.19.>【解析】【分析】的分子分母同乘以2,比较与5的大小即可. 【详解】= (2228525,==58>∴548> 故答案为:>【点睛】本题考查的是实数的比较大小,利用分数的基本性质对无理数进行变形,并用平方法比较其分子部分是解答的方法和关键.20.2【解析】【分析】根据实数的运算及幂的运算公式即可求解.【详解】))2015201622⨯=)))20152015222⨯⨯=))2015222⎡⎤⎣⎦⨯=[])201512-⨯=2故填:2.【点睛】此题主要考查实数的运算,解题的关键是熟知幂的运输公式.21.(1)﹣32m4n2;(2)1 4【解析】【分析】(1)先计算单项式的乘方,再计算乘法,最后计算除法即可得;(2)先计算负整数指数幂、零指数幂、利用积的乘方变形,再计算积的乘方,最后计算加减可得.【详解】(1)原式=m2n•(﹣8m6n3)÷(14m4n2)=﹣8m8n4÷14m4n2=﹣32m4n2;(2)原式=14﹣1+(﹣0.5×2)2018=14﹣1+1=14.【点睛】本题考查了整式的混合运算,解题的关键是掌握整式混合运算顺序和运算法则及零指数幂、负整数指数幂、积的乘方的运算法则.22.x=6,y=10.【解析】【分析】根据已知得出方程y-1=-(3-2x),x-y+4=0,求出两方程组成的方程组的解即可.【详解】互为相反数,∴y-1=-(3-2x),∵x-y+4的平方根是它本身,∴x-y+4=0,即13240y x x y-=-+⎧⎨-+=⎩,解得:x=6,y=10.【点睛】本题考查了相反数、平方根、解二元一次方程组的应用,关键是能根据题意得出方程组. 23.3【解析】【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:20()||243()225cos π---︒+-,4(2212=--⨯+,421=-,3=.【点睛】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.24.4【解析】【分析】先根据有理数的乘方、绝对值的性质、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】原式=16+1-8-5=4.【点睛】本题考查了实数的运算,掌握有理数的乘方、绝对值的性质、0指数幂及特殊角的三角函数值是解题的关键.25.(1)-3;(2)-6<x <6.【解析】【分析】(1)首先化简三次根式,计算二次根式的乘法,去掉绝对值符号,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式的公共部分就是不等式组的解集.【详解】(1)原式=-3+2-2=-3;(2)()()x x 12323326x x ⎧--⎪⎨⎪----⎩>①>②,解不等式①得:x >-6,解②得:x <6,所以不等式组的解集是:-6<x <6.【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集;也考查了实数的运算.26.(1)-1;(2)5a【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据幂的运算公式即可求解.【详解】(1)232111(2)83-+-⨯+ =111(8)3283-+-⨯-⨯+=1112---+=-1;(2)23346()()a a a a a a --+-=577a a a +-=5a【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及幂的运算法则.27.【解析】【分析】由已知根据立方根的定义可得到5x+19=43,继而可求得x 的值,进而可以求2x+7的平方根.【详解】∵5x +19的立方根是4,∴5x+19=43,即64=5x +19,解得x=9,∴2x +7=25,∴2x +7的平方根为=±5. 【点睛】本题考查了立方根的定义,平方根的定义,是一个基础的问题,熟练掌握相关定义及求解方法是解题的关键.。

最新初中数学实数知识点总复习含答案(2)

最新初中数学实数知识点总复习含答案(2)

最新初中数学实数知识点总复习含答案(2)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2的整数部分.3的平方根是( )A.2 B C.±2 D.【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D.【点睛】正确化简是解题的关键,本题比较容易出错.4.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.5.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到34655<<,即可求得答案. 【详解】 解:∵3464=,35125=∴6465125<< ∴34655<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.6.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.9.下列说法正确的是()A.﹣81的平方根是±9 B.7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7B正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.如图,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()A.3B.3C.3D.3【答案】A【解析】【分析】由于A,B两点表示的数分别为-13OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,33,∴3C点在原点左侧,∴C表示的数为:3故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.11.25的算数平方根是A5B.±5 C.5D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】=,255∴25的算术平方根是:5.故答案为:5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.12.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S【答案】A【解析】【分析】 33的点可能是哪个.【详解】∵132, 3的点可能是点P .故选A .【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.14.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.15.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.16.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C.【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.。

初三实数运算练习题及答案

初三实数运算练习题及答案

初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。

1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。

(常考题)人教版初中数学七年级数学下册第二单元《实数》检测题(有答案解析)(2)

(常考题)人教版初中数学七年级数学下册第二单元《实数》检测题(有答案解析)(2)

一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上C .在线段OC 上D .在线段OB 上2.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是43.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>4.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 5.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .4 6.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-7.在下列各数中是无理数的有( )0.111-453π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732 A .3个B .4个C .5个D .6个8.下列有关叙述错误的是( ) A 2B 2是2的平方根C .122<<D 2是分数 9.下列等式成立的是( ) A .1±1B 4=±2C 3216- 6D 39310.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C .42=±D .()515-=-11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n12.估计511-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题13.计算: (1)3168--. (2)()23540.255(4)8⨯--⨯⨯-.14.求出x 的值:()23227x +=15.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.16.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=17.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”212的小数部分,你同意小刚的表示方法吗?2的整数部分是1,将这个数减去其整数部分,差就是小数部分.459<<,即253<<,5252也就是说,任何一个无理数,都可以夹在两个相邻的整数之间. 根据上述信息,请回答下列问题:(113______,小数部分是_______;(2)107+107a b <+<,则a b +=_____; (3404x y =+,其中x 是整数,且01y <<.求:x y -的相反数. 18.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.19.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的; 信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如253<<,是因为459<<;根据上述信息,回答下列问题:(1)13的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______; (3)103+也是夹在相邻两个整数之间的,可以表示为103a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数. 20.若4<a <5,则满足条件的整数 a 分别是_________________.三、解答题21.计算:(1)37|2|27--+-(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭22.已知290x ,310y +=,求x y +的值.23.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.24.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值. 25.计算:3011(2)(20043)22-+--b a-的平方根.26.已知a的整数部分,b的小数部分,求代数式(1【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据A、C、O、B四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M与5表示的点B之间的距离,|m−c|表示点M与数c表示的点C之间的距离,|m-5|=|m−c|,∴MB=MC.∴点M在线段OB上.故选:D.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.2.B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A选项:4-没有平方根,故A错误;-=,4的算术平方根为2,故B正确;B选项:()224-=,4的平方根为2±,故C错误;C选项:()224D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.3.D解析:D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】c==--=,解:∵3a==-,b=,()22>>,∴c b a故选:D.【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.4.B解析:B【分析】根据是数的运算,A点表示的数加两个圆周,可得B点,根据数轴上的点与实数一一对应,可得B点表示的数.【详解】解:A点表示的数加两个圆周,可得B点,π-,所以,21故选:B.【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A点沿数轴向右滚动,A点表示的数加两个圆周.5.C解析:C【分析】根据平方根的概念从而得出a的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a的一个平方根,a=,∴4∴4的算术平方根是2,故选:C.【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.6.D解析:D【分析】根据算术平方根、立方根的定义逐项判断即可得.【详解】A0,没有意义,此项错误;B3==,此项错误;C2=,此项错误;D1=-,此项正确;2故选:D.【点睛】本题考查了算术平方根、立方根,熟练掌握算术平方根、立方根是解题关键.7.B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8.D解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB是2的平方根,此项叙述正确;C、12<<,此项叙述正确;D故选:D.【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键.9.A解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A.书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A.【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.11.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.12.B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B . 【点睛】二、填空题13.(1)6;(2)【分析】(1)首先计算算术平方根立方根然后进行加减计算即可;(2)首先计算乘方乘法最后进行加减计算即可【详解】解:(1)=4-(-2)=6(2)===【点睛】本题考查了实数的混合运算解析:(1)6;(2)70. 【分析】(1)首先计算算术平方根、立方根,然后进行加减计算即可; (2)首先计算乘方、乘法,最后进行加减计算即可. 【详解】解:(1 =4-(-2) =6. (2)()23540.255(4)8⨯--⨯⨯-=()()5160.255648⨯--⨯⨯-=1080-+=70. 【点睛】本题考查了实数的混合运算,正确理解算术平方根、立方根性质及乘方法则,确定运算顺序是关键.14.x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可. 【详解】解:∵3(x +2)2=27, ∴(x +2)2=9, ∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.2a-c 【分析】根据数轴得到a<b<0<c 由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c ∴a-c<0a+b<0∴=-b-(c-a )+(a+b)=-b-c+a+解析:2a-c 【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可. 【详解】由数轴得a<b<0<c , ∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b) =-b-c+a+a+b =2a-c. 【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式.16.(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可. 【详解】(1)2(3)40x +-=,移项得:2(3)4x +=, ∴32x +=±, ∴1x =-或5x =-;(2)33(21)240x ++=,整理得:3(21)8x +=-, ∴212x +=-,∴32x =-. 【点睛】本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.17.(1)3;(2)25;(3)【分析】(1)由3<<4可得答案;(2)由2<<3知12<10+<13可求出ab 的值据此求解可得;(3)得出即可得出xy 从而得出结论【详解】解:(1)∵9<13<16∴3解析:(1)3 3-;(2)25;(3)()8x y --=. 【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论.【详解】解:(1)∵9<13<16 ∴34,∴3;故答案为:3. (2)∵4<7<9, ∴2<3∴12<<13 ∴a=12,b=13 ∴a+b=12+13=25, 故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.18.【分析】分别根据平方根立方根的定义可以求出甲数乙数进而即可求得题目结果【详解】甲数是的平方根甲数等于;乙数是的立方根乙数等于∵甲乙两个数的积是故答案:【点睛】此题主要考查了立方根平方根的定义解题的关解析:2±. 【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.19.(1)3;;(2)21;;(3)23;(4)【分析】(1)先找到可找到即可找出的整数部分与小数部分(2)根据因为即可找出的整数部分与小数部分(3)找到在哪两个整数之间再加10即可(4)先确定找到由是解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.20.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数,∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题21.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3 =2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.2或4【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案.【详解】∵290x∴3x =±∵310y +=∴1y =- ∴当3x =,1y =-时,x y +=312-=当3x =-,1y =-时,x y +=314--=.【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.23.(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(1=18(cm ),答:正方形纸板的边长为18厘米;(2=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.24.(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=- ∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 25.8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.26.3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<,∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键.。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(2)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(2)

一、选择题1.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②2.观察下列各等式: 231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S5.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 6.在实数﹣34,0,9,215中,是无理数的是( ) A .﹣34 B .0 C .9 D .2157.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,④8,⑤39. A .1个B .2个C .3个D .4个 8.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 9.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间 10.在 1.4144-,2-,227,3π,23-,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .411.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3-B .7C .11D .13 12.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3± 13.下列各数中是无理数的是( )A .227B .1.2012001C .2πD .81 14.下列等式成立的是( )A .1±=±1B .4=±2C .3216-=6D .39=3 15.估计511-的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题16.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-17.把下列各数填在相应的横线上1.4,2020,2-,32-,0.31,038-π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______18.|2|π-=________.19________,2的相反数是________.20.若2x =,29y =,且0xy <,则x y -等于______.21.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.22.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.23_____,1-12π的绝对值是 __. 24.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________. 25.已知1a -的平方根是2±,则a 的值为_______.26的平方根是 _______ ;38a 的立方根是 __________. 三、解答题27.计算:2(3)2--28.已知290x ,310y +=,求x y +的值. 29.求下列各式中x 的值: (1)()214x -=;(2)3381x =-.30.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______。

人教版初中数学七年级下册《实数》测试题(含答案)

人教版初中数学七年级下册《实数》测试题(含答案)

第六章《题一、单选题(每小题只有一个 1.25的平方根是() A .±5B .﹣5C .5D .25 2.下列式子中,正确的是() A .3838B .3.60.6C . (3)3D .36623.要使代数式x 2有意x 的取是()A .x ≠2B .x ≥2C .x>2D .x ≤2 4.下列说法正确的是() A .一个数的平方根有两个,它们互为相反数 B .一个数的立方根不是正数就是负数 C .负数没有立方根 D.如果一个数的立方根是这个,那么这个数一定是-1或0或15.在下列各数322 2,3,8,,,36,0.1010010001 3(两个1之间,依次增 加1个0),其中无理数有() A .6个B .5个C .4个D .3个 6.下列说法正确的是() A .正有理数和负有理数统称为有理数 B .符号不同的两个数互为相反数 C.绝对值等于它的相反数的正数 D .两数相加,和一定大于任何一个加数 7.下列各组数中互为相反数的是() A .-2与(-2)2B .-2与38C .2与(-2) 2D .|-2|与2 8.估计56﹣24的值应在() A .5和6之间B .6和7之间C .7和8之间D .8和9之间 9.如图,若A 是实数a 在数轴上对应的点,则关于a ,a ,1的大小关系表示 正确的是()A .a1aB .aa1C .1aaD .1aa10.一个正数的两个平方根分别是2a 1与a 为() A .-1B .1C .-2D .2 11.比较2,5,37的大小,正确的是() A .3725B .2537 C .2375D .5372 12.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形 ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;按此规 律继续翻转下去,则数轴上数2020所对应的点是() A .点AB .点BC .点CD .点D二、填空题13.计算:(3)2=________;364 125=________. 14.52的相反数是__________,-36的绝对值是__________. 15.若x +x 有意义,则x +1___________. 16.已知a 、b为两个连续的整数,且a 11b ,则ab__________. 17.已知913与913的小数部分分别是a 和b ,则a b_____________。

(压轴题)初中数学八年级数学上册第二单元《实数》测试卷(答案解析)(2)

(压轴题)初中数学八年级数学上册第二单元《实数》测试卷(答案解析)(2)

一、选择题1.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+ 2.81的平方根是( )A .81B .9-C .9D .9± 3.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2 4.下列计算正确的是( ) A 235+=B 623=C 23(3)86-=-D 321-= 5.下列各数中,介于6和7之间的数是( )A 72+B 45C 472D 356.与数轴上的点一—对应的数是( ) A .分数或整数B .无理数C .有理数D .有理数或无理数 7.下列实数227,3π,3.14159,939-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个8.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( )A .45cm cm -之间B .67cm cm -之间C .78cm cm -之间D .89cm cm -之间9.如图,点A 表示的数可能是( )A .21+B .6C .11D .17 10.已知|a+b ﹣1|+220a b +-=,则(a ﹣b )2017的值为( )A .1B .﹣1C .2015D .﹣201511.下列计算结果,正确的是( ) A .2(3)-=-3 B .2+5=7 C .23-3=1D .2(5)=5 12.下列说法正确的是( )A .5是有理数B .5的平方根是5C .2<5<3D .数轴上不存在表示5的点二、填空题13.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 14.如果2|3|0a b ++-=,那么b a =________.15.已知2(4)6y x x =--+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.若236A ⨯=,则A =_____________.18.如图,在长方形ABCD 内,两个小正方形的面积分别为2,18,则图中阴影部分的面积等于_______.19.若3109,b a =-且b 的算术平方根为4,则a =__________.20.36,3,2315,则第100个数是_______.三、解答题21.(1)计算:()2325205125-(2)先化简,再求值:2111xy y x y x y ⎛⎫÷+ ⎪++-⎝⎭,其中2x =,3y =.22.求下列各式中x 的值.(1)2x 2=72;(2)(x +1)3+3=﹣61.23.计算:127333-+ 24.计算:1202003118( 3.14)225.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 26.先化简,再求值:2(2)()()a b a b a b --+-,其中12a =-,2b =【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设木块的长为x ,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x 的值,由AD=2x 可得答案.【详解】解:设木块的长为x ,根据题意,知:(x-2)2=19,则2x -= ∴2x =22x =-<(舍去)则24BC x ==,故选:C .【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.2.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D .【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.3.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=, 此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 4.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】2与3A 选项错误;6626322===B 选项正确; 23(3)8321-=-=,所以C 选项错误;2与3D 选项错误;故选答案为B .【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.5.B解析:B【分析】根据夹逼法逐项判断即得答案.【详解】解:A 、479<<4275∴<<,故本选项不符合题意; B 、∵364549<<6457∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B .【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.6.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D .【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.7.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】本题考查了无理数.解题的关键是熟练掌握无理数的概念. 8.A解析:A【分析】【详解】解:∵正方体的水晶砖,体积为380cm ,∴3, ∵<< ∴45<<,故选:A .【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.9.C解析:C【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A 表示的数在3、4之间,A 、因为12<<,所以213<<,故本选项不符合题意;B <<23<<,故本选项不符合题意;C <,所以34<<,故本选项符合题意;D <<,所以45<<,故本选项不符合题意;故选:C .【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键. 10.A解析:A【详解】解:由题意得122a b a b +=⎧⎨+=⎩解得:10a b =⎧⎨=⎩()()20172017101a b ∴-=-=故选A . 11.D解析:D【分析】利用二次根式的性质对A 、D 进行判断;根据二次根式的加减法对B 、C 进行判断.【详解】解:A 、原式=3,所以A 选项错误;B B 选项错误;C 、原式C 选项错误;D、原式=5,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A错误;B、5的平方根是B错误;C∴23,故C正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.二、填空题13.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.【分析】因为一个数的算术平方根为非负数一个数的绝对值为非负数由几个非负数的和为零要求每一项都为零即=0∣b-3∣=0由此求出ab 即可解答【详解】解:∵∴=0∣b-3∣=0∴∴故答案为:-8【点睛】本解析:8-【分析】因为一个数的算术平方根为非负数,一个数的绝对值为非负数,由几个非负数的和为零,=0,∣b -3∣=0,由此求出a 、b 即可解答.【详解】解:∵|3|0b -=, ∴=0,∣b -3∣=0,∴2a =-,3b =, ∴()328b a =-=-.故答案为:-8.【点睛】本题考查了算术平方根和绝对值的非负性,整数指数幂,求出a ,b 的值是解题关键. 15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:2021 2022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=111111112021 11223342021202220222022 -+-+-++-=-=.故答案为:2021 2022.【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.17.【分析】利用实数的除法法则计算即可【详解】解:∵∴A=故答案为:【点睛】本题主要考查了实数的运算熟练掌握实数的除法法则是解题关键解析:【分析】利用实数的除法法则计算即可.【详解】解:∵A=∴A==故答案为:【点睛】本题主要考查了实数的运算,熟练掌握实数的除法法则是解题关键.18.4【分析】由两个小正方形的面积分别为218得出其边长进而即可求出阴影部分的面积【详解】∵两个小正方形的面积分别为∴小正方形的边长为大正方形边长为3∴阴影部分的长为3-=2宽为∴阴影部分的面积=2×=解析:4【分析】由两个小正方形的面积分别为2,18,得出其边长,进而即可求出阴影部分的面积.【详解】∵两个小正方形的面积分别为2,18,∴∴阴影部分的长为,∴阴影部分的面积,故答案是4【点睛】本题主要考查二次根式的运算及其应用,熟练掌握二次根式的四则运算,是解题的关键. 19.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.20.【分析】原来的一列数即为于是可得第n 个数是进而可得答案【详解】解:原来的一列数即为:∴第100个数是故答案为:【点睛】本题考查了数的规律探求属于常考题型熟练掌握二次根式的性质找到规律是解题的关键解析:【分析】,于是可得第n 进而可得答案.【详解】, ∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键. 三、解答题21.(1)2;(2【分析】(1)先去绝对值,再利用二次根式的性质及立方根化简得出结果;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】解:(1)原式)12525=+⨯=; (2)原式()()()122x y x y x y y x y x xy+--=⨯=+;将x ,y =原式. 【点睛】本题考查了实数的运算及分式的化简求值,正确掌握相关运算法则是解题的关键. 22.(1)x =6或x =﹣6;(2)x =﹣5【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)2x 2=72x 2=36,故x =±6,则x =6或x =﹣6;(2)(x +1)3+3=﹣61(x +1)3=﹣64,x +1=﹣4∴x =﹣5.【点睛】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.23.【分析】二次根式的加减混合运算,先化简二次根式,然后合并同类二次根式进行计算.【详解】==【点睛】本题考查二次根式的加减运算,掌握运算法则正确计算是解题关键.24.-2【分析】直接利用乘方,零指数幂的性质,负整数指数幂的性质,二次根式的性质分别化简得出答案.【详解】 解:1202003118( 3.14)2121(2)=-+-+-2=-【点睛】本题主要考查了实数运算,熟悉相关性质,能正确化简各数是解题关键.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤;故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨,619999999999=÷÷÷÷÷÷÷=⑧,∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.254b ab -,1022+【分析】由平方差公式和完全平方公式进行化简,然后把12a =-,2b =案.【详解】解:原式()222222222444454a ab b a ba ab b a b b ab =-+--=-+-+=-; 当12a =-,2b = 原式1524210222⎛⎫=⨯-⨯-=+ ⎪⎝⎭ 【点睛】本题考查了实数的运算法则,整式的混合运算,解题的关键是熟练掌握运算法则,正确的进行化简.。

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(含答案解析)(2)

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(含答案解析)(2)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .142.2x -,则x+y 的值为( ) A .-3 B .3 C .-1 D .1 3.下列各式计算正确的是( )A 31-B 38= ±2C 4= ±2D .94.下列计算正确的是( )A 235+=B 623=C 23(3)86-=-D 321-=5.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( ) A .20或16 B .20C .16D .186.计算))202020203232⨯的结果为( )A .-1B .0C .1D .±17.下列计算中,正确的是( ) A .((22253532=-=B .(3710101010= C .a ba c a bc =D .(3232321=-=8.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( ) A .-1B .-2C .-1或-2D .1或29.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x yxy +=C .()235a a -=-D .81111911=10.已知:23-,23+,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等11.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④12.已知﹣1<a <0,化简2211()4()4a a a a+---+的结果为( ) A .2aB .﹣2aC .2a-D .2a二、填空题13.计算:12466-的结果是_____.14.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).15.用“<”连接2的平方根和2的立方根_________.16.13的整数部分为a ,13的小数部分为b ,那么2(2)b a +-的值是________. 17.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则[17]=___. 18.如图,已知圆柱体底面圆的半径为aπ,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)19.2(1)10a b -+=,则20132014a b +=___________. 20.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.三、解答题21.计算:348273(33)13⎛--÷++- ⎪⎝⎭. 22.计算:(1)(π﹣2020)0﹣233+-84+|1﹣3|. (2)12273+﹣()()3-232+.23.张老师在与同学进行“蚂蚁怎样爬路程最短”的课题研究时设计了以下两个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图①,正方体的棱长为5cm ,一只蚂蚁欲从正方体底面上的点A 处沿着正方体表面爬到点1C 处;(2)如图②,正四棱柱的底面边长为5cm ,棱长为6cm ,一只蚂蚁欲从正四棱柱底面上的点A 处沿着棱柱表面爬到1C 处.24.计算:(116(8)2-÷;(2)2112(4)1223⎛⎫-÷--⨯-⎪⎝⎭. 25.计算:20116(2019)|52732π-⎛⎫--- ⎪⎝⎭. 26.38642--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据2ndf 键是功能转换键列算式,然后解答即可. 【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.2.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.3.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.4.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B . 【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.5.B解析:B 【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论. 【详解】由题意可知:x-4=0,y-8=0, ∴x=4,y=8,当腰长为4,底边长为8时, ∵4+4=8, ∴不能围成三角形, 当腰长为8,底边长为4时, ∵4+8>8, ∴能围成三角形, ∴周长为:8+8+4=20, 故选:B . 【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.6.C解析:C 【分析】利用二次根式的运算法则进行计算,即可得出结论. 【详解】解:))2020202022⨯202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.7.D解析:D 【分析】根据二次根式的性质逐一判断即可; 【详解】2228=-=-A 错误;=B 错误;=a C 错误;321=-=,故D 正确;故答案选D . 【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.8.A解析:A 【分析】利用题中的新定义化简已知方程,求解即可. 【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意. 故选:A . 【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键.9.D解析:D 【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案. 【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确; 故选:D . 【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.10.C解析:C 【解析】 因为1a b ⨯==,故选C. 11.D解析:D 【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可. 【详解】∵1的立方根为1,∴①错误; ∵4的平方根为±2,∴②正确; ∵−8的立方根是−2,∴③正确;∵116的算术平方根是14,∴④正确; 正确的是②③④, 故选:D . 【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II 卷(非选择题)请点击修改第II 卷的文字说明12.A解析:A 【分析】先把被开方数化为完全平方式的形式,再根据a 的取值范围去根号再合并即可. 【详解】===∵-1<a <0,∴2110a a a a--=>,10a a +<∴原式1111()2a a a a a a a a a⎡⎤=---+=-++=⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了二次根式的化简,能够熟练运用完全平方公式对被开方数进行变形,是解答此题的关键.二、填空题13.【分析】化简成最简二次根式后合并同类二次根式即可【详解】==2-=故答案为:【点睛】本题考查了最简二次根式同类二次根式熟练进行最简二次根式的化简是解题的关键. 【分析】化简成最简二次根式,后合并同类二次根式即可. 【详解】=6,故答案为. 【点睛】本题考查了最简二次根式,同类二次根式,熟练进行最简二次根式的化简是解题的关键.14.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA 之间的距离为圆的周长=πA 点在原点的左边∴A解析:-π 右 【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答. 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周, ∴OA 之间的距离为圆的周长=π,A 点在原点的左边. ∴A 点对应的数是-π. ∵π>3.14, ∴-π<-3.14.故A 点表示的数是-π.若点B 表示-3.14,则点B 在点A 的右边. 故答案为:-π,右. 【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.15.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析: 【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案. 【详解】解:2的平方根为,2 ∴,故答案为:. 【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.16.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案. 【详解】 解:3134<<,3a ∴=,3b ∴=-, ()))22223231311b a ∴+-=+-=-=-故答案为:11- 【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.17.4【分析】根据无理数的估算可得即可求解【详解】解:∵∴∴故答案为:4【点睛】本题考查无理数的估算掌握无理数的估算方法是解题的关键解析:4 【分析】根据无理数的估算可得4175<<,即可求解. 【详解】解:∵161725<<, ∴4175<<,∴174⎡⎤=⎣⎦,故答案为:4. 【点睛】本题考查无理数的估算,掌握无理数的估算方法是解题的关键.18.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB= 解析:2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求. 【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求, 在Rt △ABC 中,AB=π•aπ=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a 2+4a . 【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图.19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.【分析】根据题目所给计算方法令再两边同时乘以求出用求出的值进而求出的值【详解】解:令则∴∴则故答案为:【点睛】本题考查了同底数幂的乘法利用错位相减法消掉相关值是解题的关键 解析:2019112-【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.三、解答题21.3【分析】先根据二次根式的乘除、立方根的定义进行计算,再根据运算法则计算即可求解.【详解】3(31⎛+- ⎝()(3331⎛-÷+ ⎝⎭ ()131+12+3【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键. 22.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()1221--+=121+=2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.23.(1);(2)【分析】(1)将正方体的右侧面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1即可;(2)分两种情况讨论:①将正四棱柱的右面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1,②将正四棱柱的上面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1比较两种方法之下的AC 1,确最短的即可.【详解】(1)将正方体的右侧面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径, 如图所示,2211AC AC CC =+22(55)555(cm)=++=);(2)分两种情况讨论:①将正四棱柱的右面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,如答图所示,有222211106AC AC CC =+=+136(cm)=.②将正四棱柱的上面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,如答图所示222211511146(cm)AC AB BC =+=+=.因为146136>,所以最短路程为136cm ,即最短路程为234cm .本题考查正方体中最短路径,底面是正方形的四棱柱最短路径,都应用两点之间线段最短,找出最短路径,用勾股定理来解决路径长,在进行实数大小比较是解题关键.24.(1)0;(2)1-【分析】(1)先进行开方运算,再进行除法运算,然后进行减法运算;(2)先进行乘方运算,再利用乘法的分配律进行计算,再计算除法,最后进行加减运算.【详解】解:(1)原式44=-=0;(2)原式11 4(4)121223 =-÷--⨯+⨯14(4)126=-÷--⨯164=-+12=-1=-【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.25.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.26.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.=-+-解:原式282=4【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档