高一数学分层抽样4

合集下载

高中数学 学案 分层抽样

高中数学 学案 分层抽样

2.1.3 分层抽样学 习 目 标核 心 素 养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点) 3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.1.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法. 2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层). 第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=各层总的个体数×抽样比. 第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本. 第五步,综合每层抽样,组成样本. 思考:什么情况下适用分层抽样?[提示] 当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样C [依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .按每层所含个体在总体中所占的比例抽样D .只要抽取的样本容量一定,每层抽取的个体数没有限制 C [分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4C [抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三 [三种抽样方法均为不放回抽样.]分层抽样的概念【例1】 下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 中,D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解] 因为不同年级的学生消费情况有明显差别,所以应采用分层抽样. 因为520∶500∶580=26∶25∶29. 所以将80分成26∶25∶29的三部分. 设三部分各抽取的个体数分别为26x,25x,29x, 由26x +25x +29x =80得x =1, 所以高三学生中应抽查29人.分层抽样的设计及应用1.怎样确定分层抽样中各层入样的个体数? [提示] 在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办? [提示] 可四舍五入取整,也可先将该层等可能地剔除多余个体. 3.分层抽样公平吗?[提示] 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n·N iN ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =nN.【例2】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本 [解] ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥. ∵10020=5, ∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1 200人,销售人员2 000人,车间工人6 000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解] 改革关系到每个人的利益,采用分层抽样较好.抽样比:461 200+2 000+6 000=1200.∵1 200×1200=6(人),2 000×1200=10(人),6 000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人. 因为各层中个体数目均较多,可以采用系统抽样的方法获得样本. 2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解] 从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D [①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按年龄分层抽样D .系统抽样C [因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解] (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体容量较大,样本容量也较大时,可采用系统抽样法. (4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.( )(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.( )(3)分层抽样中不含系统抽样和简单随机抽样.( )[答案](1)√(2)×(3)×2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3 600∶5 400∶1 800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.W。

9.1.2分层随机抽样(教案)- 高一下学期数学人教A版(2019)必修第二册

9.1.2分层随机抽样(教案)- 高一下学期数学人教A版(2019)必修第二册

第九章统计9.1 随机抽样9.1.2 分层随机抽样教学设计一、教学目标1. 结合实际问题情境,理解分层抽样的概念;2. 学会用分层抽样的方法从总体中抽取样本;3.理解分层抽样与简单随机抽样的区别与联系.二、教学重难点1. 教学重点分层抽样的概念及其步骤.2. 教学难点掌握分层抽样的实施步骤,会计算总体平均数.三、教学过程(一)新课导入探究:在树人中学高一年级的712名学生中,男生有326名、女生有386名.能否利用这个辅助信息改进简单随机抽样方法,减少“极端”样本的出现,从而提高对整个年级平均身高的估计效果呢?(学生分小组讨论,每组选出一位代表回答,教师引导出下面内容)(二)探索新知在上述问题中,影响身高的因素有很多,性别是其中的一个主要因素.高中男生的身高普遍高于女生的身高,而相同性别的身高差异相对较小.我们可以利用性别和身高的这种关系,把高一年级学生分成男生和女生两个身高有明显差异的群体,对两个群体分别进行简单随机抽样,然后汇总作为总体的一个样本.由于在男生和女生两个群体中都抽取了相应的个体,这样就能有效地避免“极端”样本.思考:对男生、女生分别进行简单随机抽样,样本量在男生、女生中应如何分配?为了使样本的结构与总体的分布相近,人数多的群体应多抽一些,人数少的群体应少抽一些.因此,按男生、女生在全体学生中所占的比例进行分配是一种比较合理的方式,即男生样本量=男生人数全体学生数×总样本量,女生样本量=女生人数全体学生数×总样本量.这样无论是男生还是女生,每个学生抽到的概率都相等.当总样本量为50时,可以计算出从男生、女生中分别应抽取的人数为n 男=326712×50≈23,n 女=386712×50≈27.按上述方法抽取一个容量为50的样本,其观测数据(单位:cm)如下:男生173.0 174.0 166.0 172.0 170.0 165.0 165.0 168.0 164.0 173.0 172.0 173.0 175.0 168.0 170.0 172.0 176.0 175.0 168.0 173.0 167.0 170.0 175.0女生163.0 164.0 161.0 157.0 162.0 165.0 158.0 155.0 164.0 162.5 154.0 154.0 164.0 149.0 159.0 161.0 170.0 171.0 155.0 148.0 172.0 162.5 158.0 155.5 157.0 163.0 172.0通过计算,得出男生和女生身高的样本平均数分别为170.6,160.6.根据男生、女生身高的样本平均数以及他们各自的人数,可以估计总体平均数为170.6326160.6386165.2712⨯+⨯≈.即估计树人中学高一年级学生的平均身高在165.2cm左右.上面我们按性别变量,把高一学生划分为男生、女生两个身高差异较小的子总体分别进行抽样,进而得到总体的估计.一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.1. 分层随机抽样的特点:(1)从分层随机抽样的定义可看出,分层随机抽样适用于总体由差异明显的几个部分组成的情况.(2)分层随机抽样是等可能抽样.用分层随机抽样从个体数为N的总体中抽取一个容量为n 的样本时,在整个抽样过程中,每个个体被抽到的可能性相等,都等于n N. (3)分层随机抽样是建立在简单随机抽样的基础之上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表注,更能充分反映总体的情况,在实践中的应用也更广泛.2.分层随机抽样的实施步骤:(1)根据己经掌握的信息,将总体分成互不相交的层; (2)根据总体中的个体数N 和样本量n 计算抽样比nk N=; (3)确定第i 层应该抽取的个体数目i i n N k ≈⨯(i N 为第i 层所包含的个体数),使得各i n 之和为n ;(4)在各个层中,按步骤(3)中确定的数目在各层中随机抽取个体,合在一起得到容量为n 的样本.在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用12,,,M X X X 表示第1层各个个体的变量值,用12,,,m x x x 表示第1层样本的各个个体的变量值;用12,,,N Y Y Y 表示第2层各个个体的变量值,用12,,,n y y y 表示第2层样本的各个个体的变量值,则第1层的总体平均数和样本平均数分别为121211,11MmmMi i i i x x x X X X X X x x MM m m ==++++++====∑∑. 第2层的总体平均数和样本平均数分别为121211,11NnNnii i i Y Y Y y y y Y Y y y NNn n ==++++++====∑∑. 总体平均数和样本平均数分别为1111,M Nm niii ii i i i X Yx yW w M Nm n====++==++∑∑∑∑.由于用第1层的样本平均数x 可以估计第1层的总体平均数X ,用第2层的样本平均数y 可以估计第2层的总体平均数Y ,因此可以用M x N y M Nx y M N M N M N⨯+⨯=++++估计总体平均数W .实际上,在个体之间差异较大的情形下,只要选取的分层变量合适,使得各层间差异明显、层内差异不大,分层随机抽样的效果一般会好于简单随机抽样,也好于很多其他抽样方法.分层随机抽样的组织实施也比简单随机抽样方便,而且除了能得到总体的估计外,还能得到每层的估计. (三)课堂练习1.现要完成下列两项调查:①从某社区70户高收入家庭、335户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.这两项调查宜采用的抽样方法是( ) A.①简单随机抽样,②分层随机抽样 B.①分层随机抽样,②简单随机抽样 C.①②都用简单随机抽样 D.①②都用分层随机抽样答案:B解析:在①中,由于购买能力与收入有关,应该采用分层随机抽样;在②中,由于个体没有明显差别,而且数目较少,应该采用简单随机抽样.故选B.2.某学校采购了10000只口罩,其中蓝色、粉色、白色的比例为5:3:2,若采用分层随机抽样的方法,取出500只分发给高一年级学生使用,则抽到白色口罩的只数为( ) A.300 B.250 C.200 D.100答案:D解析:由题意可知白色口罩有210000200010⨯=(只),则抽到白色口罩的只数为500200010010000⨯=(只),故选D. 3.某镇有,,A B C 三个村,它们的精准扶贫的人口数量之比为3:4:7,现在用分层随机抽样的方法从中抽出一个容量为n 的样本,其中A 村抽取了15人,则样本量n 为( ) A.50 B.60 C.70 D.80答案:C解析:设,,A B C 三个村人口数分别为3,4,7x x x ,则由题意可得334715x x x xn++=,解得70n =,故选C.4.某橘子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层随机抽样的方法共抽取10亩进行统计.如果所抽取的山地是平地的2倍多1亩,则这个橘子园的平地与山地的亩数分别为_________. 答案:36,84解析:设所抽取的平地的亩数为x ,则抽取的山地的亩数为21x +,2110x x ++=∴,得3x =,∴这个橘子园的平地的亩数为31203637⨯=+,山地的亩数为1203684-=.5.某大型企业针对改善员工福利的A,B,C三种方案进行了问卷调查,调查结果如下:(1)从所有参与调查的人中,用分层随机抽样的方法抽取n人,已知从支持A方案的人中抽取了6人,求n的值.(2)从支持B方案的人中,用分层随机抽样的方法抽取5人,这5人中年龄在35岁及以上的人数是多少?年龄在35岁以下的人数是多少?答案:(1)由题意得6100200200400800100100400n=++++++,解得40n=.(2)年龄在35岁以下的人数为54004 500⨯=,年龄在35岁及以上的人数为51001 500⨯=.(四)小结作业小结:1.分层随机抽样的概念及步骤;2.分层随机抽样中的平均数.作业:四、板书设计9.1.2 分层随机抽样1. 分层随机抽样的概念;2. 分层随机抽样的特点;3. 分层随机抽样的实施步骤;4. 分层随机抽样中的平均数.。

高一数学必修第二册 2019(A版)_【典型例题】随机抽样:分层抽样(解析版)

高一数学必修第二册 2019(A版)_【典型例题】随机抽样:分层抽样(解析版)

随机抽样:分层抽样【例1】(2020·全国高三专题练习)某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A.28B.32C.40D.64【答案】D【解析】∵高中一年级有400人,高中二年级有320人,高中三年级有280人,∴取一个容量为200人的样本,则高中二年级被抽取的人数为,故选D.【举一反三】1.(2020·全国高三专题练习)某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示,电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A.25,25,25,25 B.48,72,64,16C.20,40,30,10 D.24,36,32,8【答案】D【解析】法一:因为抽样比为10020000=1200,所以每类人中应抽取的人数分别为 4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66982+++×100=24,96982+++×100=36,86982+++×100=32,26982+++×100=8.故选:D2.(2020·全国高三专题练习)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100 B.150C.200 D.250【答案】A【解析】根据已知可得:70100 350015003500nn=⇒=+,故选择A。

2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.3分层抽样

2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.3分层抽样

2.1.3分层抽样问题导航(1)什么叫分层抽样?(2)分层抽样适用于什么状况?(3)分层抽样时,每个个体被抽到的机会是相等的吗?1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后依据肯定的比例,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所把握的各种信息,并充分考虑保持样本结构与总体结构的全都性,这对提高样本的代表性格外重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.1.推断下列各题.(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样;()(2)在分层抽样时,每层可以不等可能抽样;()(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.()解析:(1)由于分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规章进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍旧要等可能抽样.(3)与层数及分层无关.答案:(1)×(2)×(3)×2.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽取1100的居民家庭进行调查,这种抽样是()A.简洁随机抽样B.系统抽样C.分层抽样D.分类抽样解析:选C.符合分层抽样的特点.3.一个班共有54人,其中男、女比为5∶4,若抽取9人参与教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能是相同的,由于男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16164.分层抽样的操作步骤是什么?解:总体分层;依据比例独立抽取.1.分层抽样的特点(1)适用于总体由有明显差别的几部分组成的状况.(2)抽取的样本更好地反映了总体的状况.(3)是等可能性抽样,每个个体被抽到的可能性都是nN.2.分层抽样的公正性假如总体中个体的总数是N,样本容量为n,第i层中个数为N i,则第i层中要抽取的个体数为n i=n·N iN.每一个个体被抽取的可能性是n iN i=1N i·n·N iN=nN,与层数无关.所以对全部个体来说,被抽取的可能性是一样的,与层数及分层无关,所以分层抽样是公正的.3.分层抽样需留意的问题(1)分层抽样中分多少层、如何分层要视具体状况而定,总的原则是每层内样本的差异要小,不同层之间的样本差异要大,且互不重叠.(2)抽取比例由每层个体占总体的比例确定.(3)各层抽样按简洁随机抽样或系统抽样进行.分层抽样的概念某中学有老年老师20人,中年老师65人,青年老师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是()A.抽签法B.系统抽样C.分层抽样D.随机数法[解析]各部分之间有明显的差异是分层抽样的依据.[答案] C方法归纳各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是机敏的,可用简洁随机抽样,也可接受系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公正性.1.(1)某市有四所重点高校,为了解该市高校生的课外书籍阅读状况,则接受下列哪种方法抽取样本最合适(四所高校图书馆的藏书有肯定的差距)( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法解析:选D. 由于学校图书馆的藏书对同学课外书籍阅读影响比较大,因此实行分层抽样.(2)某校高三班级有男生800人,女生600人,为了解该班级同学的身体健康状况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是( )A .简洁随机抽样法B .抽签法C .随机数表法D .分层抽样法解析:选D.总体中个体差异比较明显,且抽取的比例也符合分层抽样.分层抽样的应用(2022·高考湖北卷)甲、乙两套设备生产的同类型产品共4 800件,接受分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[解析] 设乙设备生产的产品总数为x 件,则甲设备生产的产品总数为(4 800-x )件.由分层抽样特点,结合题意可得5080=4 800-x4 800,解得x =1 800.[答案] 1 800[互动探究] 将本例条件“若样本中有50件产品由甲设备生产”换为“已知甲、乙两套设备生产的同类型产品数量之比为5∶3”,求样本中抽取的由甲、乙设备生产的数量分别是多少件?解:设样本中抽取的由甲、乙设备生产的数量分别是x ,y 件,则x =80×55+3=50,y =80×35+3=30.故样本中抽取的由甲、乙设备生产的数量分别是50,30件. 方法归纳在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .2.(1)为了调查城市PM 2.5的状况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选B.依据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.(2)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10三种抽样方法的考查选择合适的抽样方法抽样,并写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取10个入样; (2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样; (3)有甲厂生产的300个篮球,抽取10个入样; (4)有甲厂生产的300个篮球,抽取30个入样. [解] (1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的一张小纸条上,揉成小球,制成号签. ③把号签放入一个不透亮 的袋子中,充分搅拌均匀. ④从袋子中逐个抽取10个号签,并记录上面的号码. ⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样.①确定抽取个数.由于1030=13,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个).②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本. (3)总体容量较大,样本容量较小,宜用随机数表法. ①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机地确定一个数作为开头,如(教材P 103附表)第8行第29列的数“7”开头.任选一个方向作为读数方向,比如向右读.③从数“7”开头向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段,其中每一段包含30030=10个个体.②在第一段000,001,002,…,009这十个编号中用简洁随机抽样抽出一个(如002)作为起始号码.③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.方法归纳(1)简洁随机抽样、系统抽样和分层抽样是三种常用的抽样方法,在实际生活中有着广泛的应用.(2)三种抽样的适用范围不同,各自的特点也不同,但各种方法间又有亲密联系.在应用时要依据实际状况选取合适的方法.(3)三种抽样中每个个体被抽到的可能性都是相同的.扫一扫进入91导学网()三种抽样方法的比较3.(1)某饮料公司在华东、华南、华西、华北四个地区分别有200个、180个、180个、140个销售点.公司为了调查产品销售的状况,需从这700个销售点中抽取一个容量为100的样本,记这项调查为①;在华南地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务状况,记这项调查为②.则完成①、②这两项调查宜接受的抽样方法依次是()A.分层抽样法、系统抽样法B.分层抽样法、简洁随机抽样法C.系统抽样法、分层抽样法D.简洁随机抽样法、分层抽样法解析:选B. 当总体中个体较多时宜接受系统抽样;当总体中的个体差异较大时,宜接受分层抽样;当总体中个体较少时,宜接受简洁随机抽样.依题意,第①项调查应接受分层抽样法、第②项调查应接受简洁随机抽样法.故选B.(2)调查某班同学的平均身高,从50名同学中抽取5名,抽样方法是________,假如男女身高有显著不同(男生30人,女生20人),抽样方法是________.解析:从50名同学中抽取5名,总体中个体数不多,接受简洁随机抽样;总体中个体差异比较明显,接受分层抽样.答案:简洁随机抽样分层抽样(3)下列问题中,接受怎样的抽样方法较为合理?①从10台电冰箱中抽取3台进行质量检查;②某学校有160名教职工,其中老师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.解:①抽签法,由于总体容量较小,宜用抽签法.②分层抽样,由于学校各类人员对这一问题的看法可能差异较大,用分层抽样.易错警示分层抽样的应用某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本,假如接受系统抽样和分层抽样方法抽取,不用剔除个体;假如样本容量增加1个,则在接受系统抽样时,需要在总体中先剔除1个个体,则样本容量为________.[解析]总体容量N=36.当样本容量为n时,系统抽样间隔为36n∈N+,所以n是36的约数;分层抽样的抽样比为n36,求得工程师、技术员、技工的抽样人数分别为n6,n3,n2,所以n应是6的倍数,所以n=6或12或18或36.当样本容量为n+1时,总体中先剔除1人时还有35人,系统抽样间隔为35n+1∈N+,所以n只能是6.[答案] 6[错因与防范]由36n,n6,n3,n2∈N+求n时,n的值有遗漏;35n+1∈N+易错写成36n+1∈N+.为猎取各层入样数目,需先正确计算出抽样比k=样本容量总体容量,若k与某层个体数的积不是整数时,可先将该层等可能性剔除多余个体.4.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长状况,接受分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.15解析:选C.抽样比为150∶30 000=1∶200,则样本中松树苗的数量为4 000×1200=20.故选C.1.某高校共有同学5 600人,其中有专科生1 300人、本科生3 000人、争辩生1 300人,现接受分层抽样的方法调查同学利用因特网查找学习资料的状况,抽取的样本为280人,则应在专科生、本科生与争辩生这三类同学中分别抽取( )A .65人、150人、65人B .30人、150人、100人C .93人、94人、93人D .80人、120人、80人解析:选A.依据分层抽样按比例抽取的特点,有5 600280=1 300x =3 000y =1 300z ,解得x =z =65,y =150,即专科生、本科生与争辩生应分别抽取65、150、65,故选A.2.某地共有10万户居民,从中随机调查了1 000户拥有彩电的调查结果如下表:彩电 城市 农村 有 432 400 无48120若该地区城市与农村住户之比为4∶6,估量该地区无彩电的农村总户数约为( )A .0.923万户B .1.385万户C .1.8万户D .1.2万户 解析:选B.无彩电的农村总户数约为10×610×120520≈1.385万户.3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n =________.解析:由分层抽样的特点,得n ×22+3+5=16,所以n =80.答案:804.某校对全校男、女同学共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________.解析:入样比例=2001 200=16,则男生应抽105人,设男生为x 人,所以105x =16⇒x =630.答案:630[A.基础达标]1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一班级有12名女排运动员,要从中选出3名调查学习负担状况,记作②.那么完成上述两项调查应接受的抽样方法是( )A .①用简洁随机抽样法;②用系统抽样法B .①用分层抽样法;②用简洁随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法解析:选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入状况亲密相关,所以应接受分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“公平”的,所以应接受简洁随机抽样法.2.已知某单位有职工120人,其中男职工90人,现接受分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .无法确定解析:选B.分层抽样中抽样比肯定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.3.(2022·高考重庆卷)某中学有高中生3 500人,学校生1 500人,为了解同学的学习状况,用分层抽样的方法从该校同学中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A.法一:由题意可得70n -70=3 5001 500,解得n =100,故选A.法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2021·中山高一检测)某校选修乒乓球课程的同学中,高一班级有30名,高二班级有40名,现用分层抽样的方法在这70名同学中抽取一个样本,已知在高一班级的同学中抽取了6名,则在高二班级的同学中应抽取的人数为( )A .6B .8C .10D .12解析:选B.设高二班级抽取x 人,则有630=x40,解得x =8,故选B.5.(2021·潍坊高一检测)某学校在校同学2 000人,为了同学的“德、智、体”全面进展,学校进行了跑步和登山竞赛活动,每人都参与而且只参与其中一项竞赛,各班级参与竞赛的人数状况如下表:高一班级高二班级高三班级跑步人数 a b c 登山人数xyz其中a ∶b ∶c =2∶5∶3,全校参与登山的人数占总人数的14.为了了解同学对本次活动的满足程度,从中抽取一个200人的样本进行调查,则高三班级参与跑步的同学中应抽取( )A .15人B .30人C .40人D .45人解析:选D.全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200=150,c =150×310=45(人).6.某学校高一、高二、高三班级的同学人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个班级的同学中抽取一个容量为50的样本,则应从高二班级抽取________名同学.解析:抽取比例与同学比例全都.设应从高二班级抽取x 名同学,则x ∶50=3∶10.解得x =15.答案:157.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应当抽取________辆,________辆,________辆.解析:由于461 200+6 000+2 000=1200,所以这三种型号的轿车依次应当抽取1 200×1200=6辆,6 000×1200=30辆,2 000×1200=10辆.即这三种型号的轿车依次应当抽取6辆、30辆、10辆进行检验.答案:6 30 108.某地区有农夫、工人、学问分子家庭共计2 015家,其中农夫家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上)①简洁随机抽样;②系统抽样;③分层抽样.解析:为了保证抽样的合理性,应对农夫、工人、学问分子分层抽样,在各层中接受系统抽样和简洁随机抽样,抽样时还要先用简洁随机抽样剔除多余的个体.答案:①②③ 9.(2021·莱州高一检测)某校高一班级500名同学中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了争辩血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB 型的抽样过程.解:由于40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人).AB 型的4人可以这样抽取:第一步,将50人随机编号,编号为1,2, (50)其次步,把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签. 第三步,把得到的号签放入一个不透亮 的袋子中,充分搅拌均匀. 第四步,从袋子中逐个抽取4个号签,并记录上面的编号. 第五步,依据所得编号找出对应的4人即可得到样本.10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参与其中一组.在参与活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参与活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满足程度,现用分层抽样的方法从参与活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c , 则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x =10%,解得b =50%,c =10%, 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B.力量提升]1.某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若接受分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有( )A .6条B .8条C .10条D .12条解析:选A.设抽取的青鱼与鲤鱼共有x 条,依据分层抽样的比例特点有20+4080+20+40+40+20=x 20,所以x=6.2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁同学问卷中抽取60份,则在15~16岁同学中抽取的问卷份数为( )A .60B .80C .120D .180解析:选C.11~12岁回收180份,其中在11~12岁同学问卷中抽取60份,则抽样比为13.∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁同学中抽取的问卷份数为360×13=120(份),故选C.3.某校高一班级有x 名同学,高二班级有y 名同学,高三班级有z 名同学,接受分层抽样抽取一个容量为45的样本,高一班级被抽取20人,高二班级被抽取10人,高三班级共有同学300人,则此学校共有同学________人.解析:高三班级被抽取了45-20-10=15(人),设此学校共有同学N 人,则45N =15300,解得N =900.答案:900 4.(2021·泰安质检)某企业三月中旬生产A ,B ,C 三种产品共3 000件,依据分层抽样的结果,企业统计员制作了如下的统计表格:由于不当心,表格中A 、C A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件).答案:8005.某校有在校高中生共1 600人,其中高一班级同学520人,高二班级同学500人,高三班级同学580人.假如想通过抽查其中的80人来调查同学的消费状况,考虑到不同班级同学的消费状况有明显差别,而同一班级内消费状况差异较小,问应接受怎样的抽样方法?高三班级同学中应抽查多少人?解:因不同班级的同学消费状况有明显差别,所以应接受分层抽样.由于520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x ,25x ,29x ,由26x +25x +29x =80,解得x =1.所以高三班级同学中应抽查29人.6.(选做题)某中学进行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名学校生、4 000名高中生中进行问卷调查,假如要在全部答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份学校生的答卷中抽取一个容量为48的样本,假如接受简洁随机抽样,应如何操作? (3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取得到所需的样本?解:(1)由于这次活动对教职员工、学校生和高中生产生的影响不相同,所以应当实行分层抽样的方法进行抽样.∵样本容量为120,总体个数为500+3 000+4 000=7 500(名),则抽样比为1207 500=2125.∴500×2125=8(人),3 000×2125=48(人),4 000×2125=64(人),∴在教职员工、学校生、高中生中抽取的个体数分别是8、48、64.分层抽样的步骤是:第一步,分为教职员工、学校生、高中生共三层.其次步,确定每层抽取个体的个数:在教职员工、学校生、高中生中抽取的个体数分别是8、48、64. 第三步,各层分别按简洁随机抽样的方法抽取样本. 第四步,综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简洁随机抽样有两种方法:抽签法或随机数表法.若用抽签法,则要做3 000个号签,费时费劲,因此接受随机数表法抽取样本,步骤是:第一步,编号:将3 000份答卷都编上号码:0 001,0 002,…,3 000. 其次步,在随机数表上随机选取一个起始位置.第三步,规定读数方向:向右连续取数字,以4个数为一组,遇到右边线时接下一行左边线连续向右连续取数,若读取的4位数大于3 000,则去掉,假如遇到相同号码则只取一个,这样始终到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,故应先使用简洁随机抽样法从4 000名同学中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第一部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开头,每隔62个号码抽取一个,这样得到一个容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

高一数学必修3 抽样方法(3)——分层抽样 教案

高一数学必修3 抽样方法(3)——分层抽样 教案
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分。
(2)确定比例:计算各层的个体数与总体的个体数的比。
(3)确定各层应抽取的样本容量。
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。
注:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.实际抽样多采用不放回抽样,我们介绍的三种抽样都是不放回抽样,而放回抽样则在理论研究中用得较多.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
由于样本的容量与总体的个体以在各年级抽取的个体数依次是 , , ,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便。
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。
解:(略)
2.练习:课本第42页第2、3题、第47页第1、2、3题.
1.复习简单随机抽样、系统抽样的概念、特征以及适用X围.

抽样方法(分层抽样与系统抽样)

抽样方法(分层抽样与系统抽样)


学号
姓名
自评
组评
师评
1.2分层抽样与系统抽样
学案编号:03主备课人:陈元军
审核人:终审定案:高一数学组
预习案
学习目标
1.两种抽样方法的步骤和使用范围;
两种抽样方法的具体应用.
一、自主学习阅读课本12至14页内容
新知自学:
1.分层抽样一般地,在抽样时,将总体按其分成若干类型(有时称为层),然后在每层中按照随机抽取一定的样本,这种抽样的方法叫分层抽样(类型抽样).
2.从编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹编号可能是()
A.5,10,15,20,25 B.3,13,23,33,43
C.1,2,3,4,5 D.2,4,8,16,32
3.下列抽样中不是系统抽样的是()
(4)将这人组到一起,即得到一个样本。
2.系统抽样:
一般地,要从容量为N的总体中抽取容量为n的样本,将总体中的个体进行编号,等距分组,在第一组按照简单随机抽样抽取第一个样本,然后按照分组的间隔(抽样距)抽取其它样本这种抽样的方法叫做系统抽样(等距抽样或机械抽样)。
系统抽样的一般步骤:
(1)采用随机的方式将总体中的个体编号(为方便起见,有时可直接利用个体所带有的号码,如准考证号、学号等);
C.分层抽样,简单随机抽样,简单随机抽样
探究案
探究一分层抽样
1.某大学数学系共有本科生4 000人,其中一、二、三、四年级学生的人数比为4∶3∶1∶2,要用分层抽样的方法从所有本科生中,抽取一个容量为200的样本。应如何抽取?
解:抽取人数与总数的比是200:4000=,

高一数学必修件抽样

高一数学必修件抽样
案例二
评估某种新药物的治疗效果。可以将患者按病情严重程度分成不同的层,然后在每一层中随机抽取一定数量的患 者进行试验。通过分层抽样,可以确保试验组和对照组在病情严重程度上具有可比性,从而更准确地评估药物的 治疗效果。
05
整群抽样方法及应用
整群抽样原理及适用场景
原理
整群抽样是指将总体分成若干群,然后随机抽取部分群,再对抽中的群进行全 面调查的抽样方法。
适用场景
适用于总体内部差异较大,且群间差异较小的情况。例如,在教育学中,可以 按照学校、班级等群体进行整群抽样。
实现整群抽样方法
确定总体分群方式
根据研究目的和实际情况,确定将总 体分成多少个群,以及每个群的大小 和特征。
随机抽取部分群
对抽中的群进行全面调查
对抽中的每一个群进行全面调查,收 集所需的数据和信息。
特点
系统抽样具有操作简单、易于实施的特点。同时,由于抽样 间隔固定,使得样本在总体中的分布较为均匀,从而提高了 样本的代表性。
实现系统抽样方法
确定总体个数N和样本容量n。
计算抽样间隔k,若N能被n整除,则k=N/n;若不能整除,则通过随机方法确定首 个样本,再按照等距原则进行抽样。
按照抽样间隔k,从总体中依次抽取样本,直至达到样本容量n。
实例分析:系统抽样在市场调研中应用
了解消费者对某产品的满意度。
输入 标题
调研对象
该产品的所有消费者。
调研目的
调研方法
通过对样本数据的分析,得出消费者对该产品的整体 满意度,并据此提出改进意见和建议。
调研结果
采用系统抽样方法,首先确定总体个数N和样本容量n ,然后计算抽样间隔k。通过随机方法确定首个样本 后,按照等距原则依次抽取样本进行调研。

高一数学抽样试题答案及解析

高一数学抽样试题答案及解析

高一数学抽样试题答案及解析1.有下列调查方式:①某学校为了了解高一学生的作业完成情况,从该校20个班中每班抽1人进行座谈;②某班共有50人,在一次期中考试中,15人在120以上,30人在90~120分,5人低于90分.现在从中抽取10人座谈了解情况,120分以上的同学中抽取3人,90~120分的同学中抽取6人,低于90分的同学中抽取1人;③从6名家长志愿者中随机抽取1人协助交警疏导交通.这三种调查方式所采用的抽样方法依次为A.分层抽样,系统抽样,简单随机抽样B.简单随机抽样,系统抽样,分层抽样C.分层抽样,简单随机抽样,系统抽样D.系统抽样,分层抽样,简单随机抽样【答案】D【解析】系统抽样适用于元素个数很多且均衡的总体;分层抽样适用于总体由差异明显的几部分组成的情况;简单随机抽样适用于总体个体性质相似,无明显层次,总体容量较小;因此①是系统抽样;②是分层抽样;③是简单随机抽样.【考点】随机抽样的特点.2.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件、80件、60件.为了解它们的产品质量是否存在显著差别,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9B.10C.12D.13【答案】D【解析】因为丙车间共有产品60件其中抽取了3件,所以抽样比为;所以在其它两个车间抽取的件数分别为,所以样本容量n=13.【考点】分层抽样.3.为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图所示),据此可估计该校上学期200名教师中,使用多媒体辅助教学的次数在[15,25)内的人数为_________ .【答案】80人【解析】由茎叶图可知:在抽取的20名教师中使用多媒体辅助教学的次数在[15,25)内的频数是8,所以其频率为:,据此我们估计该校的200名授课教师中使用多媒体辅助教学的次数在[15,25)内的概率为0.4,所以该校的200名授课教师中使用多媒体辅助教学的次数在[15,25)内的人数约为:2000.4=80人;故应填入:80人.【考点】茎叶图.4.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7B.25C.15D.35【答案】C【解析】青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为,故选C.【考点】分层抽样方法.5.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本.已知女生抽了85人,则该校的男生数是人.【答案】690【解析】由样本容量为200,女生抽了85人,则男生抽了115人,因为分层抽样是按比例抽样,故该校男生人数为.【考点】分层抽样概念的理解与数据统计的基本能力.6.某学校有教师200人,男学生1200人,女生1000人,用分层抽样的方法从全体学生中抽取一个容量为n的样本,若女生抽取80人,则n=_____________【答案】176【解析】由分层抽样的定义得:,解得.【考点】随机抽样.7.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样【答案】D【解析】由于54,81,36的公因数为9,并且由于抽取样本研究的问题与年龄有关,因此最适合抽取样本的方法是先从老年人中剔除一人,然后采用分层抽样,故选D.【考点】随机抽样.8.某学校有教师160人,其中高级、中级和初级职称的教师分别有32人、64人和64人.为了了解教师的身体状况,用分层抽样方法抽取了一个容量为的样本.若所抽取的样本中中级职称教师有16人,则的值为A.32B.36C.38D.40【答案】D【解析】解:根据分层抽样的原理,各层的抽样比是相等的,由题设中级教师64人,抽取了16人,抽样比为,所以,样本容量所以,应选D.【考点】分层抽样9.某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生()A.100人B.80人C.60人D.20人【答案】B【解析】要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,根据一、二、三、四年级的学生比为5:4:3:1,利用二年级的所占的比数除以所有比数的和再乘以样本容量.解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,一、二、三、四年级的学生比为5:4:3:1,∴二年级要抽取的学生是 ×260=80,故选B【考点】分层抽样点评:本题考查分层抽样的方法,解题的关键是看清每个个体被抽到的概率,而本题在解题时有点特殊10.若许昌学院共有在校大学生16050名,其中专科生4500人,本科生9750人,研究生1800人,现在需要采用分层抽样的方法调查学生的家庭情况,已知从专科生抽取了60人,则需要从本科生、研究生两类学生分别抽取多少人()A.130 ,24B.260,24C.390,48D.130,36【答案】A【解析】每个个体被抽到的概率为=本科生要抽取研究生要抽取【考点】分层抽样方法.点评:本题考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,本题是一个基础题.11.从四个公司按分层抽样的方法抽取职工参加知识竞赛,其中甲公司共有职工96人.若从甲、乙、丙、丁四个公司抽取的职工人数分别为12,21,25,43,则这四个公司的总人数为A.101B.808C.1212D.2012【答案】B【解析】根据已知条件可知,因为分层抽样的等比例行,那么根据已知中甲公司的职工人数,以及从甲公司抽取的人数得到比例为12:96=1:8可知乙、丙、丁四个公司的人数分别是,因此可知四个公司的总人数为168+200+344+96=808,故选B.【考点】本试题考查了分层抽样的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第3课时)§2.1 抽样方法(3)——分层抽样
教学目标
(1)理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;
(2)掌握简单随机抽样、系统抽样、分层抽样的区别与联系.
教学重点、难点
正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。

教学过程
一、问题情境:
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生1000,800,700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100:2500=1:25,
所以在各年级抽取的个体数依次是1000
25,800
25
,700
25
,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各
层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分。

(2)确定比例:计算各层的个体数与总体的个体数的比。

(3)确定各层应抽取的样本容量。

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。

注:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.实际抽样多采用不放回抽样,我们介绍的三种抽样都是不放回抽样,而放回抽样则在理论研究中用得较多.
四、数学运用
1.例题:
例1.(1)工厂生产的某种产品用传输带将产品送入包装车间,检验人员从传送带上每隔5分钟抽一件产品进行检验,问这是一种什么抽样法?
(2)已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程?
解:(1)这是将总体分成均衡的若干部分,再从每一部分按照预先订出的规则抽取一个个体,得到所需要的样本,故它是系统抽样.
(2)因总体来自三个不同车间,故适宜用分层抽样法,
因抽取产品数与产品总数之比为40:400=1:10,
所以,各车间抽取产品数量分别为15件、13件、12件,
具体抽样过程在各车间产品中用随机抽样的方法依次抽取(过程略).
例2.一电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的总人数为
12000人,其中持各种态度的人数如下表所示:
打算从中抽取60人进行详细调查,如何抽取? 解:抽取人数与总的比是60:12000=1:200,
则各层抽取的人数依次是175.12,835.22,63.19,36.5, 取近似值得各层人数分别是12,23,20,5. 然后在各层用简单随机抽样方法抽取.
答:用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
例3.下列问题中,采用怎样的抽样方法较为合理? (1) 从10台电冰箱中抽取3台进行质量检查;
(2) 某电影院有32排座位,每排有40个座位 ,座位号为140 。

有一次报告会坐满了
听众,报告会结束后,为听取意见,需留下32名听众进行座谈;
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。

分析:(1)总体容量较小,用抽签法或随机数表法都很方便。

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。

解:(略)
2.练习:课本第42页第2、3题、第47页第1、2、3题.
五、回顾小结:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系。

六、课外作业:
课本第49页第1、2、3、8题。

相关文档
最新文档