2017届高考数学一轮复习教案(理科)第十章 圆锥曲线
高三数学一轮复习教案:圆锥曲线

圆锥曲线复习【复习指导】1、掌握椭圆、双曲线和抛物线的定义、标准方程及几何性质;2、圆锥曲线的应用。
【重点难点】重点:椭圆、双曲线和抛物线的定义、标准方程及几何性质难点:圆锥曲线的应用【教学过程】一、知识梳理1、焦点在x轴上的椭圆、双曲线、抛物线的定义、图像和性质:同样,类比得到焦点在y轴的椭圆、双曲线、抛物线的图像和性质。
xyF 1F 2O1M小试牛刀:(1)已知椭圆1162522=+y x 上一点P 到椭圆的一个焦点的距离为3,则点P 到另一个焦点的距离( )A 2B 3C 5D 7(2)已知双曲线19-2522=y x 上一点P 到椭圆的一个焦点的距离为12,则点P 到另一个焦点的距离( )A 2B 22C 2或22D 4或22(3)如果方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( )A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)(4)方程12--422=+t y t x 所表示的曲线为C ,有下列命题: ①若曲线C 为椭圆,则4t 2<<;②若曲线C 为双曲线,则2t 4t <>或; ③曲线C 不可能为圆;④若曲线C 为焦点在y 轴的双曲线,则4t >。
以上命题正确的是 。
(5)抛物线的焦点是双曲线369-422=y x 的左顶点,则抛物线的标准方程为 。
二、典例示范类型一 圆锥曲线的定义及其应用例一 求与圆1)3(22=+-y x 及9)3(22=++y x 都外切的动圆圆心M 的轨迹方程.变式训练: 点B(-4,0),C(4,0)且△ABC 的周长是18,则△ABC 的顶点A 的轨迹方程。
类型二 圆锥曲线的标准方程与几何性质例二 (1)求焦点为(0,6)且与双曲线1-222 y x 有相同渐近线的双曲线方程;思考:若将焦点为(0,6)该为焦距为12,求标准方程。
(2)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点P (m,-3)到焦点的距离等于5,求m的值,并写出抛物线方程、准线方程及焦点坐标。
高考数学圆锥曲线复习策略.docx

高考数学圆锥曲线复习策略一.圆锥曲线高考大纲文科(1)掌握椭圆的定义、几何图形、标准方程和简单的几何性质(范围、对称性、顶点、离心率)(2)了解双曲线的定义、几何图形、标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线)(3)了解抛物线的的定义、儿何图形、标准方程,知道其简单的儿何性质(范围、对称性、顶点、离心率)(4)理解数形结合的思想。
(5)了解圆锥曲线的简单应用。
理科.(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、儿何图形、标准方程及简单儿何性质.(范围、对称性、顶点、离心率)(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、顶点、离心率、渐近线).(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.锥曲线知识网络'对称轴兀轴 住占 八、、八、、标准方程y 2=2P x\顶点 离心率 准线 (卩>0)二.试题趋势近年來圆锥1111线在高考中比较稳定,解答题往往以屮档题或以押轴题形式出现,主要考察学 生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。
但圆锥曲线在新 课标中化归到选学内容,要求有所降低,估计2011年高考对本讲的考察,主要考察热点有:(1) 圆锥Illi 线的定义及标准方程; (2) 与圆锥曲线有关的轨迹问题;(3) 与圆锥曲线有关的最值、定值问题;(4) 与平面向量、导数等知识相结合的交汇试题(1)圆锥曲线的定义及标准方程;1. (2010北京文理)(13)已知双曲线二—1的离心率为2,焦点与椭圆—= 1的a 2b 225 9焦点相同,那么双Illi 线的焦点坐标为 _______ ;渐近线方程为 ________ o定义::椭圆l + IF2PI=2a(2a >1 F.F 2 I)标准方程召+令(a > b > 0)2 f 2a =b +对称轴 兀轴,长轴长为2d y 轴,短轴长为2b隹占 八、、八、、定义::< 双曲线{lIFfl —IF2PII=2a(2a<F }F 2 I)2 2 标准方程才*卄严轴卜轴,实轴长为2d 对称轴彳I 》轴,虚轴长为"隹占八、、JW\(Q 〉O,b 〉O )彳顶点21 2 a +b =c离心率 渐近线定义• 抛物线 <・\MF\=d答案:(±4,0)= 02 ,22.(2010天津文数)(13)已知双Illi线罕―仝=1«〉0上〉0)的一条渐近线方程是a b厶y = ^x ,它的一个焦点与抛物线r =16x的焦点相同。
高三数学一轮复习必备:圆锥曲线方程及性质

~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
高考理科第一轮复习课件(7.10圆锥曲线的综合问题)

得(3+4k2)x2+8k2x+4k2-12=0.
由于Δ>0,设A(x1,y1),B(x2,y2),则有
8k 2 4k 2 12 x1 x 2 , x1 x 2 , 2 2 3 4k 3 4k AB
得x2+ky2-4y=0.
当k=0时,方程为x2=4y表示抛物线;
当k=1时,方程表示以(0,2)为圆心,2为半径的圆;
当k>0且k≠1时,方程表示椭圆;
当k<0时,方程表示焦点在x轴上的双曲线.
(2)当k=0时,轨迹T的方程为x2=4y.
设A(xA,yA),B(xB,yB),M(xM,yM),N(xN,yN). 由题意设直线AB的方程为y=k1x+1, 联立x2=4y有:x2-4k1x-4=0,
3 4
②是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,
求出点M的坐标;若不存在,说明理由;
③若点M的横坐标为 2 ,直线l: kx 与抛物线C有两个不 y
同的交点A,B,l与圆Q有两个不同的交点D,E,求当
1 ≤k≤2 2
1 4
时,|AB|2+|DE|2的最小值.
【思路点拨】(1)利用椭圆的两个顶点(a,0)与(0,b)一个在圆
(2)两大解法:①从特殊入手,求出定值,再证明这个值与变
量无关.
②引进变量法:其解题流程为
x 2 y2 【变式训练】已知椭圆 2 2 1(a b 0) 的左焦点F1(-1, a b
0),长轴长与短轴长的比是 2 3. ∶ (1)求椭圆的方程. (2)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n, 求证: 1
高三数学第一轮复习 圆锥曲线(小结)教案

芯衣州星海市涌泉学校圆锥曲线一.课前预习: 1.设抛物线22y x =,线段AB 的两个端点在抛物线上,且||3AB =,那么线段AB 的中点M到y轴的最短间隔是〔B 〕2.椭圆22221x y a b+=(0)a b >>与x 轴正半轴、y 轴正半轴分别交于,A B 两点,在劣弧AB 上取一点C ,那么四边形OACB 的最大面积为〔B 〕3.ABC ∆中,A 为动点,1(,0)2B -,1(,0)2C ,且满足1sin sin sin 2C B A -=,那么动点A 的轨迹方程是〔D 〕4.直线1y x =+与椭圆221mx ny +=(0)m n >>相交于,A B 两点,假设弦AB 中点的横坐标为13-,那么双曲线22221x y m n -=的两条渐近线夹角的正切值是43.5.,,A B C 为抛物线21y x =-上三点,且(1,0)A -,AB BC ⊥,当B 点在抛物线上挪动时,点C 的横坐标的取值范围是(,3][1,)-∞-+∞.二.例题分析:例1.双曲线C :22221x y a b-=(0,0)a b >>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足||,||,||OA OB OF 成等比数列,过点F 作双曲线在第一、三象限内的渐近线的垂线l ,垂足为P , 〔1〕求证:PA OPPA FB ⋅=⋅;〔2〕假设l 与双曲线C 的左、右两支分别交于点,D E ,求双曲线C 的离心率e 的取值范围. 〔1〕证明:设l :()ay x c b=--,由方程组()a y x c bb y xa ⎧=--⎪⎪⎨⎪=⎪⎩得2(,)a ab P c c ,∵||,||,||OA OB OF 成等比数列,∴2(,0)a A c,∴(0,)abPA c =-,2(,)a ab OP c c =,2(,)b ab FP c c =-,∴222a b PA OP c ⋅=-,222a b PA FP c ⋅=-,∴PA OPPA FB ⋅=⋅.〔2〕设1122(,),(,)D x y E x y ,由2222()1a y x cb x y a b ⎧=--⎪⎪⎨⎪-=⎪⎩得444222222222()()0a ac a c b x x a b b b b -+-+=, ∵120x x ⋅<,∴42222422()0a b a b c a b b-+<-,∴22b a >,即222c a >,∴e >所以,离心率的取值范围为)+∞.例2.如图,过抛物线24xy =的对称轴上任一点(0,)P m (0)m >作直线与抛物线交于,A B 两点,点Q是点P 关于原点的对称点, 〔1〕设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;〔2〕设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有一一共同的切线,求圆C 的方程. 解:〔1〕设直线AB 的方程为y kx m =+,代入抛物线方程24x y =得2440x kx m --=设1122(,),(,)A x y B x y ,那么124x x m =-,∵点P 分有向线段AB 所成的比为λ,得1201x x λ+=+,∴12xx λ=-,又∵点Q 是点P 关于原点的对称点,∴(0,)Q m ,∴(0,2QP =∴1212(,(1))QA QBx x y y m λλλλ-=--+-∴12()2[(1)]QP QA QB m y y m λλλ⋅-=-+-x∴()QP QA QB λ⊥-.〔2〕由221204x y x y-+=⎧⎨=⎩得点(6,9),(4,4)A B -,由24xy =得214y x =,∴12y x '=,∴抛物线在点A 处切线的斜率为6|3x y ='=, 设圆C 的方程是222()()x a y b r -+-=,那么22229163(6)(9)(4)(4)b a a b a b -⎧=-⎪-⎨⎪-+-=++-⎩, 解得2323125,,222ab r =-==, ∴圆C 的方程是22323125()()222x y ++-=,即22323720x y x y ++-+=. 三.课后作业:班级学号姓名1.直线143x y+=与抛物线221169x y +=相交于,A B 两点,该椭圆上的点P 使ABP ∆的面积等于6,这样的点P 一一共有〔〕()A 1个()B 2个()C 3个()D 4个2.设动点P 在直线1x =上,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰Rt OPQ ∆,那么动点Q 的轨迹是〔 〕()A 圆()B 两条平行线()C 抛物线()D 双曲线3.设P 是直线4y x =+上一点,过点P 的椭圆的焦点为1(2,0)F ,2(2,0)F -,那么当椭圆长轴最短时,椭圆的方程为.4.椭圆221123x y +=的焦点为12,F F ,点P 在椭圆上,假设线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的倍.5.双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,那么此双曲线的离心率e 的最大值为.6.直线l :1y kx =+与双曲线C :2221x y -=的右支交于不同的两点,A B ,〔1〕务实数k 的取值范围;〔2〕是否存在实数k ,使得线段AB 为直径的圆经过双曲线C 的右焦点F ?假设存在,求出k 的值;假设不存在,说明理由. 7.8.如图,P 是抛物线C :212y x =上一点,直线l 过点P 并与抛物线C 在点P 的切线垂直,l 与抛物线C 相交于另一点Q ,〔1〕当点P 的横坐标为2时,求直线l 的方程;〔2〕当点P 在抛物线C 上挪动时,求线段PQ 中点M 的轨迹方程,并求点M 到x 轴的最短间隔.x。
高考数学专题复习-完美版圆锥曲线知识点总结

高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。
椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。
2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。
②对称性:椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。
③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比e=c/a。
其中,c表示焦距,a表示长半轴长。
椭圆的离心率可以通过长轴和短轴的长度计算得出。
由于长轴大于短轴,因此离心率e的值介于0和1之间。
当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。
当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。
双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。
需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。
当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。
当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。
双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。
高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。
高考数学(圆锥曲线)第一轮复习

高考数学(圆锥曲线)第一轮复习资料知识小结一.椭圆第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线.3.椭圆的标准方程:(1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -.(2))0(12222>>=+b a ay b x ,焦点:F 1(0,-c),F 2(0,c),其中c=22b a -.4.椭圆的参数方程:⎩⎨⎧==θθsin cos b y a x ,(参数θ是椭圆上任意一点的离心率).5.椭圆的几何性质:以标准方程)0(12222>>=+b a by a x 为例:①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(-a,0),B(0,b),B′(0,-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=a c,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点.二.双曲线1.双曲线的定义(1)双曲线的第一定义:平面内与两定点F 1、F 2的距离差的绝对值等于常数2a(0<2a<|F 1F 2|)的点的轨迹叫双曲线.两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示.常数用2a 表示.(2)双曲线的第二定义:若点M 到一个定点的距离和它到一条定直线的距离的比是一个常数e(e>1) 2.双曲线的标准方程(1)焦点在x 轴上:)0,0(12222>>=-b a by a x ,焦点坐标为F 1(-c,0),F 2(c,0),22b a c +=.(2)焦点在y 轴上: )0,0(12222>>=-b a bx a y ,焦点坐标为F 1(0,-c),F 2(0,c).22b a c +=.3.双曲线简单几何性质:以标准方程)0,0(12222>>=-b a by a x 为例.(1)范围:|x|≥a;即x ≥a,x ≤-a.(2)对称性:对称轴为x=0,y=0;对称中心为O(0,0).(3)顶点:A 1(-a,0),A 2(a,0)为双曲线的两个顶点;线段A 1A 2叫双曲线的实轴,B 1B 2叫双曲线的虚轴,其中B 1(0,b),B 2(0,b).|A 1A 2|=2a,|B 1B 2|=2b.(4)渐近线:双曲线渐近线的方程为y=ab±x;(5)准线:x=ca 2±;(6)离心率:e=ac,e>1. 4.等轴双曲线:x 2-y 2=±a 2,实轴长等于虚轴长,其渐近线方程为y=±x,离心率e=2三.抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点不在定直线上.2.开口向右、向左、向上、向下的抛物线及其标准方程的异同点:相同点:(1)原点在抛物线上;(2)对称轴为坐标轴;p 值的意义表示焦点到准线的距离;(3)p>0为常数;(4)p 值等于一次项系数绝对值的一半;(5)准线与对称轴垂直,垂足与焦点关于原点对称,它们与原点的距离等于一次项系数的绝对值的1/4,即2p/4=p/2. 不同点:四.直线与圆锥曲线的位置关系1.关于直线与圆锥曲线的交点问题:一般方法是用解方程组的方法求其交点的坐标.2.判断直线与圆锥曲线交点个数问题:即判断方程组解的个数.3.直线与圆锥曲线位置关系的判定:通法是消去一个未知数若得到的是关于另一未知数的一元二次方程,可用根的判别式∆来判断,注意直线与圆锥曲线相切必有一个公共点,对圆与椭圆来说反之亦对,但对双曲线和抛物线来说直线与其有一公共点,可能是相交的位置关系.4.直线与圆锥曲线相交的弦长计算:(1)连结圆锥曲线上两点的线段称为圆锥曲线的弦;(2)易求出弦端点坐标时用距离公式求弦长;(3)一般情况下,解由直线方程和圆锥曲线方程组成的方程组,得到关于x(或y)的一元二次方程,利用方程组的解与端点坐标的关系,结合韦达定理得到弦长公式:|AB|=]4))[(1(212212x x x x k -++.5.关于相交弦的中点问题:涉及到弦的中点时,常结合韦达定理.6.曲线关于直线对称问题:注意两点关于直线对称的条件:(1)两点连线与该直线垂直;(2)中点在此直线上.7.弦长公式1212||||AB x x y y =-=- 8.焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)五.轨迹问题1.常见的轨迹:(1)在平面内,到两定点的距离相等的点的轨迹是连接两定点的线段的垂直平分线.(2)平面内到角的两边距离相等的点的轨迹是这个角的平分线.(3)平面内到定点的距离等于定长的点的轨迹是以定点为圆心的圆.(4)平面内到定点的距离与到定直线的距离之比等于常数的点的轨迹是圆锥曲线.当常数大于1时表示双曲线;当常数等于1时,表示抛物线;当常数大于0而小于1时表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应的准线.(5)平面内到定直线的距离等于某一定值的点的轨迹是与这条直线平行的两条直线.2.求动点的轨迹的步骤:(1)建立坐标系,设动点坐标M(x,y);(2)列出动点M(x,y)满足的条件等式;(3)化简方程;(4)验证(可以省略);(5)说明方程的轨迹图形,最后“补漏”和“去掉增多”的点.3.求动点轨迹的常用方法:直接法;定义法;代入法(相关点法);参数法. 4.相关点法(代入法):对于两个动点00(,),(,)P x y Q x y ,点P 在已知曲线上运动导致点Q 运动形成轨迹时,只需根据条件找到这两个点的坐标之间的等量关系并化为00(,)(,)x f x y y g x y =⎧⎨=⎩然后将其代入已知曲线的方程即得到点Q 的轨迹方程.5.参数法(交规法):当动点P 的坐标,x y 之间的直接关系不易建立时,可适当地选取中间变量t ,并用t 表示动点P 的坐标,x y ,从而动点轨迹的参数方程()()x f t y g t =⎧⎨=⎩消去参数t ,便可得到动点P 的的轨迹的普通方程,但要注意方程的等价性,即有t 的范围确定出,x y 的范围.六.圆锥曲线的应用 1.相关点法(代入法):对于两个动点00(,),(,)P x y Q x y ,点P 在已知曲线上运动导致点Q 运动形成轨迹时,只需根据条件找到这两个点的坐标之间的等量关系并化为00(,)(,)x f x y y g x y =⎧⎨=⎩然后将其代入已知曲线的方程即得到点Q 的轨迹方程.2.参数法(交规法):当动点P 的坐标,x y 之间的直接关系不易建立时,可适当地选取中间变量t ,并用t 表示动点P 的坐标,x y ,从而动点轨迹的参数方程()()x f t y g t =⎧⎨=⎩消去参数t ,便可得到动点P 的的轨迹的普通方程,但要注意方程的等价性,即有t 的范围确定出,x y 的范围.试题选讲1.椭圆12222=+by a x (a>b>0)的两焦点为F 1F 2,连接点F1,F 2为边作正三角形,若椭圆恰1-2.已知N (3,1),点A 、B 分别在直线y=x 和y =0上,则△ABN 的周长的最小值是3.一个动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必经过点______(2,0)________4.抛物线顶点在原点,焦点在y 轴上,其上一点(,1)M m 到焦点的距离为5,则此抛物线的方程为 216x =5.椭圆22221(0)x y a b ab +=>>那么双曲线22221x y ab -=的离心率为6.已知椭圆的焦点是12,,F F P 是椭圆上的一个动点,如果延长1F P 到Q ,使得2PQ PF =,那么动点Q 的轨迹是 圆7.椭圆221123x y +=的焦点是12,F F ,点P 在椭圆上,如果线段1F P 的中点在y 轴上,那么12:PF PF = 7:18.过点(0,1)M 且与抛物线2:4C y x =仅有一个公共点的直线方程是 0,1x y ==及1y x =+9.函数()()1x 1x x 21x f 2≤≤---=的图象为C,则C 与x 轴围成的封闭图形的面积为______2-2π______.10.若椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,抛物线bx y 42=的焦点为M ,若||2||21M F M F =,则此椭圆的离心率为10103101011.已知双曲线)0(122>=-m my x 的右顶点为A ,而B 、C 是双曲线右支上两点,若三角形ABC 为等边三角形,则m 的取值范围是 ),3(+∞ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,下载后您可任意编辑修改!)第十章圆锥曲线★知识网络★第1讲椭圆★知识梳理★1. 椭圆定义:(1)第一定义:平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆,其中两个定点叫椭圆的焦点.当时,的轨迹为椭圆 ; ;当时,的轨迹不存在;当时,的轨迹为以为端点的线段(2)椭圆的第二定义:平面内到定点与定直线 (定点不在定直线上)的距离之比是常数 ()的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).3.点与椭圆的位置关系:当时,点在椭圆外; 当时,点在椭圆内; 当时,点在椭圆上;4.直线与椭圆的位置关系直线与椭圆相交;直线与椭圆相切;直线与椭圆相离★重难点突破★重点:掌握椭圆的定义标准方程,会用定义和求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用难点:椭圆的几何元素与参数的转换重难点:运用数形结合,围绕“焦点三角形”,用代数方法研究椭圆的性质,把握几何元素转换成参数的关系1.要有用定义的意识问题1已知为椭圆的两个焦点,过的直线交椭圆于A、B两点若,则=______________。
[解析]的周长为, =82.求标准方程要注意焦点的定位问题2椭圆的离心率为,则[解析]当焦点在轴上时,;当焦点在轴上时,,综上或3★热点考点题型探析★考点1 椭圆定义及标准方程题型1:椭圆定义的运用[例1 ](湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是A.4a B.2(a-c) C.2(a+c) D.以上答案均有可能[解析]按小球的运行路径分三种情况:(1),此时小球经过的路程为2(a-c);(2), 此时小球经过的路程为2(a+c);(3)此时小球经过的路程为4a,故选D【名师指引】考虑小球的运行路径要全面【新题导练】1. (2007²佛山南海)短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则△ABF2的周长为()A.3B.6C.12D.24[解析]C. 长半轴a=3,△ABF2的周长为4a=122. (广雅中学2008—2009学年度上学期期中考)已知为椭圆上的一点,分别为圆和圆上的点,则的最小值为()A.5 B.7 C .13 D.15[解析]B. 两圆心C、D恰为椭圆的焦点,,的最小值为10-1-2=7题型2 求椭圆的标准方程[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.【解题思路】将题中所给条件用关于参数的式子“描述”出来[解析]设椭圆的方程为或,则,解之得:,b=c=4.则所求的椭圆的方程为或.【名师指引】准确把握图形特征,正确转化出参数的数量关系.[警示]易漏焦点在y轴上的情况.【新题导练】3. 如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是____________.[解析](0,1). 椭圆方程化为+=1. 焦点在y轴上,则>2,即k<1.又k >0,∴0<k <1.4.已知方程),0(,1sin cos 22πθθθ∈=+y x ,讨论方程表示的曲线的形状[解析]当时,,方程表示焦点在y 轴上的椭圆, 当时,,方程表示圆心在原点的圆, 当时,,方程表示焦点在x 轴上的椭圆5. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是,求这个椭圆方程. [解析],,所求方程为+=1或+=1. 考点2 椭圆的几何性质题型1:求椭圆的离心率(或范围)[例3 ] 在中,3,2||,300===∠∆ABC S AB A .若以为焦点的椭圆经过点,则该椭圆的离心率 .【解题思路】由条件知三角形可解,然后用定义即可求出离心率 [解析] 3sin ||||21=⋅=∆A AC AB S ABC , ,2cos ||||2||||||22=⋅-+=A AC AB AC AB BC2132322||||||-=+=+=BC AC AB e 【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定(2)只要列出的齐次关系式,就能求出离心率(或范围) (3)“焦点三角形”应给予足够关注【新题导练】6. (执信中学学年度第一学期高三期中考试)如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为. . . . [解析]选7. (江苏盐城市三星级高中2009届第一协作片联考)已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆的离心率为 [解析]由,椭圆的离心率为8. (山东济宁2007—2008学年度高三第一阶段质量检测)我国于07年10月24日成功发射嫦娥一号卫星,并经四次变轨飞向月球。
嫦娥一号绕地球运行的轨迹是以地球的地心为焦点的椭圆。
若第一次变轨前卫星的近地点到地心的距离为m ,远地点到地心的距离为n ,第二次变轨后两距离分别为2m 、2n (近地点是指卫星距离地面最近的点,远地点是距离地面最远的点),则第一次变轨前的椭圆的离心率比第二次变轨后的椭圆的离心率( )A .不变 B. 变小 C. 变大 D.无法确定 [解析],,选A 题型2:椭圆的其他几何性质的运用(范围、对称性等) [例4 ] 已知实数满足,求的最大值与最小值 【解题思路】 把看作的函数 [解析] 由得,]2,2[,23)1(212212222-∈+-=+-=-+∴x x x x x y x 当时,取得最小值,当时,取得最大值6【名师指引】注意曲线的范围,才能在求最值时不出差错 【新题导练】9.已知点是椭圆(,)上两点,且,则=[解析] 由知点共线,因椭圆关于原点对称,10.如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点 则1234567PF P F PF P F PF P F P F ++++++=________________ [解析]由椭圆的对称性知:352536271==+=+=+a F P F P F P F P F P F P . 考点3 椭圆的最值问题题型: 动点在椭圆上运动时涉及的距离、面积的最值[例5 ]椭圆上的点到直线l:的距离的最小值为___________. 【解题思路】把动点到直线的距离表示为某个变量的函数[解析]在椭圆上任取一点P,设P(). 那么点P 到直线l 的距离为:|9)sin(5|2211|12sin 3cos 4|22-+=+-+ϕθθθ 【名师指引】也可以直接设点,用表示后,把动点到直线的距离表示为的函数,关键是要具有“函数思想” 【新题导练】11.椭圆的内接矩形的面积的最大值为 [解析]设内接矩形的一个顶点为,矩形的面积242sin 24cos sin 48≤==θθθS12.是椭圆上一点,、是椭圆的两个焦点,求的最大值与最小值[解析] ],[||,)|(||)|2(||||||12211121c a c a PF a a PF PF a PF PF PF +-∈+--=-=⋅ 当时,取得最大值, 当时,取得最小值13. (2007²惠州)已知点是椭圆上的在第一象限内的点,又、, 是原点,则四边形的面积的最大值是_________. [解析] 设,则θθcos 221sin 21⋅+⋅=+=∆∆OB OA S S S OPB OPA OAPB 考点4 椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题[例6 ] 已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,直线与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且. (1)求椭圆方程;(2)求m 的取值范围.【解题思路】通过,沟通A 、B 两点的坐标关系,再利用判别式和根与系数关系得到一个关于m 的不等式[解析](1)由题意可知椭圆为焦点在轴上的椭圆,可设 由条件知且,又有,解得故椭圆的离心率为,其标准方程为: (2)设l 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧y =kx +m2x 2+y 2=1 得(k 2+2)x 2+2kmx +(m 2-1)=0 Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0 (*) x 1+x 2=-2km k 2+2, x 1x 2=m 2-1k 2+2∵AP =3PB ∴-x 1=3x 2 ∴⎩⎪⎨⎪⎧x 1+x 2=-2x 2x 1x 2=-3x 22 消去x 2,得3(x 1+x 2)2+4x 1x 2=0,∴3(-2km k 2+2)2+4m 2-1k 2+2=0整理得4k 2m 2+2m 2-k 2-2=0m 2=14时,上式不成立;m 2≠14时,k 2=2-2m 24m 2-1,因λ=3 ∴k ≠0 ∴k 2=2-2m 24m 2-1>0,∴-1<m <-12 或 12<m <1容易验证k 2>2m 2-2成立,所以(*)成立 即所求m 的取值范围为(-1,-12)∪(12,1)【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能 【新题导练】14. (2007²广州四校联考)设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是 ( )A. B. C. D. [解析] ),(),3,23(y x y x -=-=,选A.15. 如图,在Rt △ABC 中,∠CAB=90°,AB=2,AC=。
一曲线E 过点C ,动点P在曲线E 上运动,且保持|PA |+|PB |的值不变,直线l 经过A 与曲线E 交于M 、N 两点。
(1)建立适当的坐标系,求曲线E 的方程;(2)设直线l 的斜率为k ,若∠MBN 为钝角,求k 的取值范围。
解:(1)以AB 所在直线为x 轴,AB 的中点O 为原点建立直角坐标系,则A (-1,0),B (1,0) 由题设可得2222322)22(222||||||||22=+=++=+=+CB CA PB PA ∴动点P 的轨迹方程为,则1.1,222=-===c a b c a∴曲线E 方程为(2)直线MN 的方程为),(),,,(),,(),1(221111y x N y x M y x M x k y 设设+=由0)1(24)21(022)1(222222=-+++⎩⎨⎧=-++=k x k x k y x x k y 得∴方程有两个不等的实数根2221222121)1(2,224x k k x x k k x +-=⋅+-=+∴),1(),,1(2211y x y x -=-=∴)1)(1()1)(1()1)(1(112212121+++--=+--=⋅x x k x x y y x x BN BM 22122121))(1()1(k x x k x x k +++-++=22222222221171)214)(1(21)1(2)1(kk k k k k k k k +-=+++--++-+= ∵∠MBN 是钝角即 解得:又M 、B 、N 三点不共线综上所述,k 的取值范围是★~~抢分频道★基础巩固训练1. 如图所示,椭圆中心在原点,F 是左焦点,直线与BF 交于D,且,则椭圆的离心率为( ) A B C D [解析] B .=⇒=-⇒-=-⋅e ac c a cba b 221)( 2. (广东省四校联合体学年度联合考试)设F 1、F 2为椭圆+y 2=1的两焦点,P 在椭圆上,当△F 1PF 2面积为1时,的值为A 、0B 、1C 、2D 、3[解析] A . , P 的纵坐标为,从而P 的坐标为, 0,3. (广东广雅中学2008—2009学年度上学期期中考)椭圆的一条弦被平分,那么这条弦所在的直线方程是A .B .C .D . [解析] D. , ,两式相减得:0)(421212121=--+++x x y y y y x x ,, 4.在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .[解析]=+====BCAC ABe k BC k AC k AB ,5,3,45. 已知为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF ,则此椭圆的离心率为 _________. [解析] [三角形三边的比是] 6. (2008江苏)在平面直角坐标系中,椭圆1(0)的焦距为2,以O 为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= . [解析]综合提高训练7、已知椭圆与过点A (2,0),B (0,1)的直线l 有且只有一个公共点T ,且椭圆的离心率.求椭圆方程[解析]直线l 的方程为: 由已知 ①由 得:0)41(2222222=-+-+b a a x a x a b ∴0))(4(222224=-+-=∆b a a a b a ,即 ②由①②得:故椭圆E 方程为8. (广东省汕头市金山中学2008-2009学年高三第一次月考)已知A 、B 分别是椭圆的左右两个焦点,O 为坐标原点,点P )在椭圆上,线段PB 与y 轴的交点M 为线段PB 的中点。