高三数学上学期第一次检测试题

合集下载

河北省邯郸市2024届高三上学期第一次调研监测数学试题(解析版)

河北省邯郸市2024届高三上学期第一次调研监测数学试题(解析版)

邯郸市2024届高三年级第一次调研监测数学注意事项:1.答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh=(其中S 为锥体的底面积,h 为锥体的高).棱台的体积公式()13V h S S'=+(其中S ',S 分别为棱台的上、下底面面积,h 为棱台的高).一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1A =<,{}220B x xx =+≤,则A B ⋃=()A.(]1,2- B.{}0 C.[)2,1- D.(),1-∞【答案】C 【解析】【分析】先求一元二次不等式得{20}B xx =-≤≤∣,再根据集合运算法则求解A B ⋃即可.【详解】{}{}2{1}{01},2020A x x B x x x x x =<=≤<=+≤=-≤≤∣∣∣,则{21}A B xx ⋃=-≤<∣.故选:C.2.已知命题p :[)0,x ∞∀∈+,e 1x ≥,则p ⌝为()A.(),0x ∃∈-∞,e 1x ≥B.[)0,x ∃∈+∞,e 1x <C.(),0x ∀∈-∞,e 1x <D.[)0,x ∞∀∈+,e 1x <【答案】B 【解析】【分析】利用含有全称量词的命题的否定判断.【详解】因为命题:[0,),e 1x p x ∞∀∈+≥,所以:[0,),e 1x p x ⌝∃∈+∞<.故选:B.3.已知i 是虚数单位,若复数z 满足:()31i 1i z -=-,则z z +=()A.0B.2C.2iD.2i-【答案】A 【解析】【分析】根据复数的运算法则,求得i z=-,得到i z =,即可求解.【详解】由复数()31i 1i z -=-,可得()()()231i 1i 1i i 1i 1i 1i 1i z ---====--++-,则iz =,所以i i 0z z +=-+=.故选:A.4.设函数()()ln f x x a =+在1x =处的切线与直线12xy =+平行,则=a ()A.2- B.2C.1- D.1【答案】D 【解析】【分析】由条件,根据导数的几何意义及两平行直线的斜率关系列方程求a .【详解】函数()()ln f x x a =+的定义域为(),a -+∞,由已知1a >-,故1a >-,函数()()ln f x x a =+的导函数()1f x x a'=+,所以()111f a'=+,因为函数()()ln f x x a =+在1x =处的切线与直线12xy =+平行,所以1112a =+,所以1a =,经验证,此时满足题意.故选:D .5.设1F ,2F 是双曲线()222104x y b b-=>的左、右焦点,过1F 的直线l 交双曲线的左支于A ,B 两点,若直线2y x =为双曲线的一条渐近线,22AB b =,则22AF BF +的值为()A.11B.12C.14D.16【答案】C 【解析】【分析】根据双曲线的标准方程可得2a =,再由双曲线的定义可得212124,24AF AF a BF BF a -==-==,得到()22118AF BF AF BF +-+=,再根据||6AB =得到答案.【详解】根据双曲线的标准方程2221(0)4x y b b -=>,得2a =,由直线2y x =为双曲线的一条渐近线,得2b a =,解得b =,得2||26AB b ==.由双曲线的定义可得2124AF AF a -==①,2124BF BF a -==②,①+②可得()22118AF BF AF BF +-+=,因为过双曲线的左焦点1F 的直线l 交双曲线的左支于A ,B 两点,所以11||6AF BF AB +==,得22||86814AF BF AB +=+=+=.故选:C.6.有一种钻头,由两段组成,前段是高为3cm 、底面边长为2cm 的正六棱锥,后段是高为1cm 的圆柱,圆柱的底面圆与正六棱锥底面的正六边形内切,则此钻头的体积为()A.()33cm π B.()33cm πC.)33cm π+ D.33cm 2π⎛⎫ ⎪⎝⎭【答案】B【分析】根据棱锥和圆柱的体积公式即可得到答案.【详解】由题意,钻头的前段正六棱锥的体积)311133226cm 322V =⨯⨯⨯⨯⨯=,因为圆柱的底面圆与正六棱锥底面的正六边形内切,作出以下图形,所以圆柱的底面圆的半径2sin 60r ︒==,所以圆柱的体积()2321π3πcm V =⨯⨯=,所以此钻头的体积为()3123πcm V V +=.故选:B.7.甲口袋中有3个红球,2个白球,乙口袋中有4个红球,3个白球,先从甲口袋中随机取出1球放入乙口袋,分别以1A ,2A 表示从甲口袋取出的球是红球、白球的事件;再从乙口袋中随机取出1球,以B 表示从乙口袋取出的球是红球的事件,则()2P A B =()A.823B.623 C.1740D.58【答案】A 【解析】【分析】分别求出()2P A ,()2P B A ,再根据全概率公式求出()P B ,再根据条件概率公式即可得解.【详解】()()()()()1122352423585840P B P A P B A P A P B A =+=⨯+⨯=,()225P A =,()24182P B A ==,()()()()()()222221852232340P A P B A P A B P A B P B P B ⨯====.故选:A.8.设函数()f x 的定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()e x f x =-,A.()31f =-B.()21f -=-C.()6f x +为奇函数D.()()228f x f x =+【答案】D 【解析】【分析】由题意可得()()11f x f x --=--,()()11f x f x -+=+,结合()1,1x ∈-时,()e xf x =-,可判断AB ;求出函数的周期,进而可判断CD .【详解】因为()1f x -为奇函数,所以()()11f x f x --=--,即()()2f x f x =---,则()()11f f -=--,所以()10f -=,因为()1f x +为偶函数,所以()()11f x f x -+=+,即()()2f x f x =-+,则()()310f f =-=,故A 错误;由当()1,1x ∈-时,()e xf x =-,得()01f =-,则()()201f f -=-=,故B 错误;()()22f x f x -+=---,则()()4f x f x +=-,所以()()()84f x f x f x +=-+=,所以()()228f x f x =+,故D 正确;对于C ,由()()8f x f x +=,得()()62f x f x +=-,若()6f x +为奇函数,则()2f x -也为奇函数,令()()2g x f x =-,则()g x 为奇函数,则()00g =,又()()0210g f =-=≠,矛盾,所以()()2g x f x =-不是奇函数,即()6f x +不是奇函数,故C 错误.故选:D .【点睛】结论点睛:对称性与周期性之间的常用结论:(1)若函数()f x 的图象关于直线x a =和x b =对称,则函数()f x 的周期为2T a b =-;(2)若函数()f x 的图象关于点(),0a 和点(),0b 对称,则函数()f x 的周期为2T a b =-;(3)若函数()f x 的图象关于直线x a =和点(),0b 对称,则函数()f x 的周期为4T a b =-.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.设a ,b是两个非零向量,且a b a b +<+ ,则下列结论中正确的是()A.a b a b-≤+ B.a b a b-<+ C.a ,b的夹角为钝角 D.若实数λ使得a b λ=成立,则λ为负数【答案】AD 【解析】【分析】根据平面向量的模、线性运算的概念即可判断.【详解】对A ,当,a b 不共线时,根据向量减法的三角形法则知||||||a b a b -<+,当,a b 反向共线时,||||||a b a b -=+r r r r ,故a b a b -≤+,A 正确;对B ,若a b ⊥,则以,a b 为邻边的平行四边形为矩形,且a b + 和a b - 是这个矩形的两条对角线长,则a b a b +=-,故B 错误;对C ,若,a b 的夹角范围为π0,2⎛⎤⎥⎝⎦,根据向量加法的平行四边形法则知:||||||a b a b +<+r r r r ,故C 错误;对D ,若存在实数λ,使得a b λ=成立,则,a b 共线,由于||||||a b a b +<+r r r r ,则,a b反向共线,所以λ为负数,故D 正确.故选:AD.10.记n S 为数列{}n a 的前n 项和,若数列n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列,则()A.数列{}n a 为递减数列B.22n S n n=-C.43n a n =- D.数列{}n n a S +是等差数列【答案】BC 【解析】【分析】根据等差数列的通项即可判断B ;根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项,即可判断C ;由1n n a a +-的符号即可判断A ;根据等差数列的定义即可判断D.【详解】由题意21nS n n=-,所以22n S n n =-,故B 正确;当1n =时,111a S ==,当2n ≥时,()()221221143n n n a S S n n n n n -=-=---+-=-,当1n =时,上式也成立,所以43n a n =-,故C 正确;因为140n n a a +-=>,所以数列{}n a 为递增数列,故A 错误;2233n n n a S n =++-,因为()22119a S a S +-+=,()332213a S a S +-+=,所以数列{}n n a S +不是等差数列,故D 错误.故选:BC .11.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象过点()0,1,最小正周期为π2,则()A.()f x 在π5π,66⎛⎫⎪⎝⎭上单调递减B.()f x 的图象向右平移π6个单位长度后得到的函数为偶函数C.函数()f x 在()0,π上有且仅有4个零点D.函数()f x 在区间π5π,412⎛⎫⎪⎝⎭上有最小值无最大值【答案】BCD 【解析】【分析】根据给定条件,求出ω与ϕ,再逐项分析求解,判断作答.【详解】依题意,(0)2sin 1f ϕ==,即1sin 2ϕ=,而π2ϕ<,则()ππ,2sin 66f x x ϕω⎛⎫==+ ⎪⎝⎭.由最小正周期为2π,得22T ππω==,得4ω=,则()π2sin 46f x x ⎛⎫=+ ⎪⎝⎭,对于A ,由π5π,66x ⎛⎫∈⎪⎝⎭,得π5π7π4,662x ⎛⎫+∈ ⎪⎝⎭,则()f x 在π5π,66⎛⎫⎪⎝⎭上不单调,A 不正确;对于B ,()f x 的图象向右平移6π个单位长度后得函数()πππ2sin 42sin 42cos 4662f x x x x ⎡⎤⎛⎫⎛⎫=-+=-=- ⎪ ⎢⎝⎭⎝⎭⎣⎦,是偶函数,B 正确;对于C ,当0πx <<时,πππ44666x π<+<+,则π4π,2π,3π,4π6x +=,则5π11π17π23π,,,24242424x =,可得()f x 在()0,π上有且仅有4个零点,C 正确;对于D ,当π5π412x <<时,7ππ11π4666x <+<,当π3π462x +=,解得π3x =时,()f x 取得最小值2-,无最大值,D 正确.故选:BCD.12.已知棱长为2的正方体1111ABCD A B C D -,R ,E ,F 分别是AB ,11AD ,1CC 的中点,连接RE ,EF ,RF ,记R ,E ,F 所在的平面为α,则()A.a 截正方体所得的截面为五边形 B.1B D α⊥C.点D 到平面αD.α截正方体所得的截面面积为【答案】BCD 【解析】【分析】根据平面的性质先做出截面可判定A 、D ,再利用线线垂直可判定线面垂直得B 项正误,由正六棱锥的体积判定C .【详解】如上左图所示取111AA BC C D 、、中点分别为H G J 、、,连接EH HR RG GF FJ JE 、、、、、,易知HR FJ RG EJ GF HE ,,,HR FJ RG EJ GF HE ===,,,即六边形HRGFJE 为正六边形,平面HRGFJE 即过R ,E ,F 三点的平面α,故A 错误;由正方体的棱长为2,可得截面HRGFJE 的面积为2364S =⨯⨯=D 正确;如上右图所示,连接11AC BD BC B C 、、、,由正方体的性质可得1,AC BD BB ⊥⊥面ABCD ,AC ⊂面ABCD ,所以1,BB AC ⊥又11,BD BB B BD BB ⋂=⊂、面1BDB ,所以AC ⊥面1BDB ,1DB ⊂面1BDB ,所以1AC DB ⊥,而AC RG ,所以1RG DB ⊥,同理可得1FG DB ⊥,,FG RG G FG RG α⋂=⊂、,故1DB α⊥,即B 正确;分别连接1D B ,与截面HRGFJE 的六个顶点可得两个正六棱锥,设点D 到平面α的距离为h ,易知211128862162323D HRGFJE A HRD HRGFJE V V V h S h --=-=-⨯⨯⨯⨯==⨯⨯⨯⇒=正方体六边形,故C 正确.故选:BCD.三、填空题(本题共4小题,每小题5分,共20分)13.()841x x-的展开式的常数项是___________.【答案】70【解析】【分析】利用通项公式求解,84(1)x x-的展开式中常数项由8(1)x -的展开式的4次方项确定,求解即可.【详解】8(1)x -的展开式的通项公式为818C (1)r rr r T x-+=-,当84r -=时,44584,C r T x ==,所以84(1)x x-的展开式的常数项为48C 70=.故答案:70.14.写出函数()cos 1sin xf x x=-的一个对称中心:___________.【答案】π,02⎛⎫ ⎪⎝⎭【解析】【分析】首先化简函数得()πtan 24x f x ⎛⎫=+⎪⎝⎭,再根据正切函数的对称中心公式求解.【详解】222cos sin cos sincos 2222()1sin cos sinsin cos 2222x x x x x f x x x x x x -+===-⎛⎫-- ⎪⎝⎭π1tantan tan π224tan π241tan 1tan tan 224x x x x x ++⎛⎫===+ ⎪⎝⎭--,令1ππ24x k +=或()212ππ,242x k k k π+=+∈Z ,则1π2π2x k =-+或()212π2π,2x k k k =+∈Z ,令20k =,则π2x =,所以函数()f x 的一个对称中心是π,02⎛⎫⎪⎝⎭.故答案:π,02⎛⎫⎪⎝⎭(答案不唯一,横坐标符合π2π2x k =±(k ∈Z )即可)15.在平面直角坐标系xOy 中,已知抛物线W :214y x =+.若等腰直角三角形ABC 三个顶点均在W 上且直角顶点B 与抛物线顶点重合,则ABC 的面积为___________.【答案】1【解析】【分析】根据等腰直角三角形与二次函数的性质,建立不等式,可得答案.【详解】由题意可作图如下:设()()11221,,0,,,4A x y B C x y ⎛⎫⎪⎝⎭,其中120x x <<,则直线AB 与直线BC 的斜率分别为1114y x -,2214y x -,由AB BC ⊥,则121211441y y x x --⋅=-,由AB BC =,则222211221144x y x y ⎛⎫⎛⎫+-=+- ⎪ ⎪⎝⎭⎝⎭,将21114y x =+,22214y x =+代入121211441y y x x --⋅=-,可得121x x =-,将21114y x =+,22214y x =+代入222211221144x y x y ⎛⎫⎛⎫+-=+- ⎪ ⎪⎝⎭⎝⎭,可得24241122x x x x +=+,将121x x =-代入24241122x x x x +=+,可得()()6222110x x -+=,解得21x =,则5151,,0,,1,444A B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,==AB BC ,112ABC S AB BC =⋅⋅=V .故答案为:1.16.过圆O :222x y +=上一点P 作圆C :()()22442x y -+-=的两切线,切点分别为Q ,R ,设两切线的夹角为θ,当PQ PR +取最小值时,sin θ=___________.【答案】9【解析】【分析】易得,,,2PQ PR CPQ CPR CQ PQ CR PR θ=∠=∠=⊥⊥,从而可得2P PQ P Q R ==+,求出PC 取得最小值时,sin θ的值即可.【详解】由题意可得,,,2PQ PR CPQ CPR CQ PQ CR PR θ=∠=∠=⊥⊥,圆O 的圆心()0,0O ,半径1r =,圆C 的圆心()4,4C ,半径2r =则2PQ Q R P P ===+,当PQ PR +取最小值时,则PC 取得最小值,1min PC OC r =-=此时1sinsin23CPQ θ=∠==,又2θ为锐角,所以22cos 23θ=,所以12242sin 2339θ=⨯⨯=,即当PQ PR +取最小值时,sin 9θ=.故答案为:429.【点睛】关键点点睛:由圆的切线的性质将所求转化为求PC 的最小值是解决本题的关键.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知等比数列{}n a 的前n 项和为n S ,0n a >,且满足126a a +=,430S =.(1)求{}n a 的通项公式;(2)设()1n n b n a =-⋅,{}n b 的前n 项和为n T ,求使196n T ≤成立的n 的最大值.【答案】(1)2n n a =(2)5【解析】【分析】(1)求首项、公比,从而求得n a ;(2)利用错位相减求和法求得n T ,解不等式196n T ≤.【小问1详解】设等比数列{}n a 的公比为q ,依题意,0n a >,则0q >.1246,30a a S +==,则12346,24a a a a +=+=,得234122446a a q a a +===+,所以2q =,所以116a aq +=,所以12a =,所以2n n a =.【小问2详解】由(1)得(1)(1)2nn n b n a n =-⋅=-⋅,得231222(1)2n n T n =⨯+⨯++-⋅ ,得34121222(1)2n n T n +=⨯+⨯++-⋅ ,两式相减得23412222(1)2nn n T n +-=++++--⋅ ()112122(1)2(2)2412n n n n n ++-=-+--⋅=--⋅--,所以1(2)24n n T n +=-⋅+.由196n T ≤,得11(2)24196(2)2192n n n n ++-⋅+≤⇒-⋅≤,当5n =时,左边632192=⨯=,当5n >时,1(2)2192n n +->,所以n 的最大值为5.18.暑假期间,儿童溺水现象屡有发生,防溺水工作十分重要.现从某社区随机抽取100名居民,对他们的防溺水认识程度进行了测评,经统计,这100名居民的测评成绩全部在40至100之间,将数据按照[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成6组,制成如图所示的频率分布直方图.(1)估计这100名居民成绩的中位数(保留一位小数);(2)在这100名居民中用分层随机抽样的方法从成绩在[)40,50,[)50,60,[)60,70的三组中抽取12人,再从这12人中随机抽取3人,记ξ为3人中成绩在[)50,60的人数,求ξ的分布列和数学期望.【答案】(1)79.3(2)分布列见解析,()1E ξ=【解析】【分析】(1)根据在频率分布直方图中中位数的求法计算即可;(2)写出随机变量ξ的所有取值,求出对应概率,即可得出分布列,再根据期望公式求期望即可.【小问1详解】因为()100.0040.0080.0120.24⨯++=,0.24100.0280.52+⨯=,所以中位数在区间[)70,80内,设为x ,则()()100.0040.0080.0120.028700.5x ⨯+++-=,解得79.3x ≈,即估计这100名居民成绩的中位数为79.3;【小问2详解】成绩在[)40,50有0.0041220.0040.0080.012⨯=++人,成绩在[)50,60有0.0081240.0040.0080.012⨯=++人,成绩在[)60,70有0.0121260.0040.0080.012⨯=++人,则ξ可取0,1,2,3,()38312C 140C 55P ξ===,()1248312C C 281C 55P ξ===,()2148312C C 122C 55P ξ===,()34312C 11C 55P ξ===,所以分布列为ξ123P145528551255155所以()14281210123155555555E ξ=⨯+⨯+⨯+⨯=.19.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2sin 2cos c a C c A =-.(1)求sin 2A ;(2)若2a =,求ABC 面积的最大值.【答案】(1)34(2)273+【解析】【分析】(1)利用正弦定理把已知等式中的边转化为角的正弦,化简整理可求得sin co 1s 2A A -=,平方进而求得sin 2A ;(2)利用余弦定理表示出22b c +,根据三角形面积公式和基本不等式求得最值.【小问1详解】因为2sin 2cos c a C c A =-,由正弦定理sin sin sin a b cA B C==,得sin 2sin sin 2sin cos C A C C A =-,因为()0,,sin 0C C ∈π∴≠,所以sin co 1s 2A A -=,所以21(sin cos )4A A -=,得1312sin cos 2sin cos 44A A A A -=⇒=,即3sin 24A =.【小问2详解】由(1)知13sin cos ,2sin cos 24A A A A -==,()0,A π∈,所以0,2A π⎛⎫∈ ⎪⎝⎭,可得sin 0,cos 0A A >>,与22sin cos 1A A +=联立,有221sin cos 2sin cos 1A A A A ⎧-=⎪⎨⎪+=⎩,解得17sin 471cos 4A A ⎧+=⎪⎪⎨-⎪=⎪⎩,得1117sin 224ABC S bc A ==⨯ ,由余弦定理得,22271cos 24b c a A bc+-==,所以227142b c bc -+=+,得2271422b c bc bc -+=+≥,当且仅当b c =时等号成立,即4(59bc ≤=+,得1142(52493ABC S +≤⨯⨯+=,得最大值为23+.20.如图,几何体由四棱锥B AEFC -和三棱台EFG ACD -组合而成,四边形ABCD 为梯形,//AD BC 且2AD BC =,AD CD ⊥,2CD FG =,DG ⊥平面ABCD ,2DA DC ==,平面EBC 与平面ABCD 的夹角为45°.(1)求证:平面BCE ⊥平面CDGF ;(2)求三棱台EFG ACD -的体积.【答案】(1)证明见解析(2)73【解析】【分析】(1)利用线面垂直的性质和平行的性质得BC CD ⊥,再利用面面垂直的判定即可;(2)建立合适的空间直角坐标系,设DG h =,求出相关平面法向量,利用面面角的空间向量求法得到方程,解出h ,再利用棱台体积公式即可得到答案.【小问1详解】因为DG ⊥平面,ABCD BC ⊂平面ABCD ,所以DG BC ⊥,因为//,AD BC AD CD ⊥,所以BC CD ⊥,由GD CD D = ,,GD CD ⊂平面CDGF ,得BC ⊥平面CDGF ,由BC ⊂平面BCE ,得平面BCE ⊥平面CDGF .【小问2详解】因为DG ⊥平面ABCD ,,AD CD ⊂平面ABCD ,所以,DG AD DG CD ⊥⊥,又因为AD CD ⊥,所以,,DG AD CD 两两互相垂直,所以以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DG 所在直线为z 轴建立空间直角坐标系,如图.设DG h =,由题可知,(0,0,0),(2,0,0),(1,2,0),(0,2,0),(1,0,),(0,1,),(0,0,)D A B C E h F h G h ,易知平面ABCD 的一个法向量为(0,0,)DG h = ,设平面EBC 的法向量为(,,)n x y z =,(1,0,0),(0,2,)CB BE h ==- ,故得0n CB n BE ⎧⋅=⎪⎨⋅=⎪⎩,即020x y zh =⎧⎨-+=⎩,不妨令1y =,则20,1,,cos ,2||||DG n n n DG h DG n ⋅⎛⎫=〈〉==⎪⎝⎭ ,解得2h =,所以三棱台EFG ACD -的体积为1117222113223V ⎛⎫=⨯⨯⨯⨯+⨯⨯= ⎪ ⎪⎝⎭.21.已知函数()2ln 2xf x a x =⋅-.(1)讨论()f x 的单调性;(2)当0a >时,证明:不等式()12ln f x a a≤+有实数解.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求导,再分0a ≤和0a >两种情况讨论即可;(2)要证不等式()12ln f x a a ≤+有实数解,只需证明()min 12ln f x a a≤+即可,由(1)求出()min f x ,进而得证.【小问1详解】()()ln 22ln 2ln 221x x f x a a '=⋅-=⋅-,当0a ≤时,()0f x '<,则函数()f x 在(),-∞+∞上单调递减,当0a >时,21log x a <时,()0f x '<,21log x a>时,()0f x ¢>,所以函数()f x 在21,log a ⎛⎫-∞ ⎪⎝⎭上单调递减,在21log ,a ⎛⎫+∞ ⎪⎝⎭上单调递增,综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递减;当0a >时,函数()f x 在21,log a ⎛⎫-∞ ⎪⎝⎭上单调递减,在21log ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;【小问2详解】要证不等式()12ln f x a a ≤+有实数解,只需证明()min12ln f x a a≤+即可,由(1)得()21log 22min11log 2ln 2log 1ln a f x f a a a a ⎛⎫==⋅-⨯=+ ⎪⎝⎭,则只要证明11ln 2ln a a a+≤+即可,即证1ln 10a a+-≥,令()()1ln 10h a a a a =+->,则()22111a h a a a a-'=-=,当01a <<时,()0h a '<,当1a >时,()0h a '>,所以函数()h a 在()0,1上单调递减,在()1,+∞上单调递增,所以()()10h a h ≥=,即1ln 10a a+-≥,所以当0a >时,不等式()12ln f x a a≤+有实数解.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.已知椭圆E :()222210x y a b a b+=>>的焦点分别为()11,0F -和()21,0F ,离心率为12.不过2F 且与x 轴垂直的直线交椭圆于A ,M 两个不同的点,直线2AF 与椭圆的另一交点为点B .(1)求椭圆E 的方程;(2)①若直线MB 交x 轴于点N ,求以ON 为直径的圆的方程;②若过2F 与AB 垂直的直线交椭圆E 于D ,G 两个不同的点,当22AB DG +取最小值时,求直线AB 的方程.【答案】(1)22143x y +=(2)①22(2)4x y -+=;②1y x =-或1y x =-+.【解析】【分析】(1)根据椭圆的定义,可求其方程;(2)①联立直线AB 与椭圆方程,表示出直线BM 的方程,再由根与系数的关系求出N 点坐标,即可求出圆的方程;②根据弦长公式可求AB 长度,进而得DG 长度,根据不等式即可求解最值,得直线AB 的方程.【小问1详解】由题意可知,11,2c c e a ===,得2a =,由222a b c =+,得23b =,所以椭圆E 的方程为22143x y +=.【小问2详解】①显然直线AB 的斜率必存在,且0AB k ≠,则设直线AB 的方程为()()1122(1)(0),,,,y k x k A x y B x y =-≠,则()11,M x y -,联立有22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,可得()22224384120k x k x k +-+-=,所以221212228412,4343k k x x x x k k -+==++,直线BM 的方程为()211121,y y y y x x x x ++=-- 令0y =可得N 点的横坐标为()()()()1211212211112112121222N k x x x x x x x x x x y x x y y k x x x x ---+-=+=+=++-+-22222241282434348243k k k k kk -⨯-++==-+.所以N 为一个定点,其坐标为(4,0),则圆心坐标为()2,0,半径为2,则以ON 为直径的圆的方程为22(2)4x y -+=.②根据①可进一步求得:21||AB x =-=()2212143k k +=+,第21页/共21页因为AB DG ⊥,所以1DG k k =-,则()22121||34k DG k +=+,由()()()()()22222222221211212881||2243344334k k k AB DG AB DG k k k k ++++≥⋅=⨯⨯=++++()22222288111524943342k k k +≥=⎛⎫+++ ⎪⎝⎭,当且仅当224334k k +=+时取等号,即1k =±时,22||||AB DG +取得最小值115249,此时直线AB 的方程为1y x =-或1y x =-+.【点睛】关键点睛:本题第二问的关键是采用设线法,设直线AB的方程为(1)(0)y k x k =-≠,将其与椭圆方程联立得到韦达定理式,再去计算出N 点的横坐标为定值,则可得到圆的方程,再利用弦长公式和基本不等式则可得到22||||AB DG +的最小值.。

河南鹤壁高中2025届高三上学期第一次综合检测(7月)数学试题+答案

河南鹤壁高中2025届高三上学期第一次综合检测(7月)数学试题+答案

2025学年鹤壁市高中高三(上)第一次综合检测数学试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考试结束后,请将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b ∈R ,若m ,且不等式20x ax b −+<的解集为()1,2m ,则a b +=( )A.3B.43C.7D.112.设0.40.40.4log 0.5,0.3,0.5ab c −−==,则,,a b c 的大小关系是( )A.b c a >>B.c b a >>C.b a c >>D.c a b >>3.已知A B C D ,,,四点均在半径为R (R 为常数)的球O 的球面上运动,且,,AB AC AB AC AD BC =⊥⊥,若四面体 ABCD 的体积的最大值为43,则球 O 的表面积为( ) A.2πB.3πC.9π4D.9π4.当π0,2x∈ 时,sin2a x ≥a 的取值范围为( )A.(]0,1B.1C.)1,+∞D.1,2+∞5.设1z ,2z 是复数,则下列命题中是假命题的是( )A.若12zz z =⋅,则12||||||z z z =⋅ B.若12zz z =⋅,则12z z z =⋅ C.若12||||z z =,则2212z z =D.若12||||z z =,则1122z z z z ⋅=⋅6.重庆八中味园食堂午餐情况监测数据表明,小唐同学周一去味园的概率为 35,周二去味园的概率为310,且小唐周一不去味园的条件下周二去味园的概率是周一去味园的条件下周二去味园的概率的2倍,则小唐同学周一、周二都去味园的概率为( ) A.970B.950C.340D.3147.在长方体1111ABCD A B C D −中,122AB AD AA ==,点M 是线段11C D 上靠近1D 的四等分点,点N 是线段1CC 的中点,则平面AMN 截该长方体所得的截面图形为( ) A.三角形B.四边形C.五边形D.六边形8.已知函数()f x 的导函数为()′f x ,记()1()f x f x ′=,()21(),f x f x ′=()1()n n f x f x +′=()n N ∗∈.若()sin f x x x =,则()()20192021f x f x +=( )A.2cos x −B.2sin x −C.2cos xD.2sin x二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()sin221cos2x xf x x=−+,则( ) A.函数()f x 一个周期是πB.函数()f x 递减区间为()πππ,π22k k k Z−+∈C.函数()f x 有无数多个对称中心D.过点()2,0作曲线()y f x =的切线有且只有一条10.已知函数()f x 的图象是由函数2sin cos y x x =的图象向右平移π6个单位得到,则( ) A.()f x 的最小正周期为πB.()f x 在区间ππ,63−上单调递增C.()f x 的图象关于直线π3x =对称 D.()f x 的图象关于点π,06对称11.在三棱锥−P ABC 中,PA ⊥平面,,2,ABC AB BC AB BC PA ⊥==,点D 是三角形PAB 内的动点(含边界),AD CD ⊥,则下列结论正确的是( ) A.PB 与平面ABC 所成角的大小为π3B.三棱锥C ABD −的体积最大值是2C.D 点的轨迹长度是2π3D.异面直线CD 与AB 所成角的余弦值范围是三、填空题:本大题共3个小题,每小题5分,共15分.12.对于函数()()cos 0f x x kx x =−≥,当该函数恰有两个零点时,设两个零点中最大值为α,当该函数恰有四个零点时,设这四个零点中最大值为β,求()()2221sin21cos21ααββαβ+++=− .13.已知P 是ABC 内一点,45,30ABP PBC PCB ACP °°∠=∠=∠=∠=,则tan BAP ∠= . 14.下图数阵的每一行最右边数据从上到下形成以1为首项,以2为公比的等比数列,每行的第n 个数从上到下形成以12n −为首项,以3为公比的等比数列,则该数阵第n 行()*n ∈N 所有数据的和n S = .四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在某项比赛中,7位专业评委和7位观众评委分别给选手打分.针对某位选手,下面是两组评委的打分:(1)选择一个可以度量每一组评分相似性的量,据此判断哪一组分数更可能是专业评委打的分数;(2)现从A 组评委所打分数中随机抽取2个分数,记为a ,b ,从B 组评委所打分数中随机抽取2个分数,记为c ,d .记事件:M a ,b 中有一个数据为48,事件:100N a b +=或100c d +=,判断事件M 与事件N 是否相互独立.16.(15分)如图,四边形ABCD内接于圆O,圆O的半径2R=,π2DAB ABC∠+∠=,2CD=.(1)求DBC∠的大小以及线段AB的长;(2)求四边形ABCD面积的取值范围.17.(15分)如图,在四棱锥PP−AAAAAAAA中,△PPAAAA为正三角形,底面AAAAAAAA为正方形,平面PPAAAA⊥平面AAAAAAAA,点MM是棱PPAA的中点,平面AAAAMM与棱PPAA交于点NN.(1)求证:MMNN//平面AAAAAAAA;(2)QQ为平面AAAANNMM内一动点,EE为线段AAAA上一点;①求证:NNQQ⊥AAPP;②当AAQQ+QQEE最小时,求MMMM MMQQ的值.18.(17分)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN 面积为P 的坐标; (3)若,,,P M N T 四点共圆,求点P 的坐标.19.(17分)设函数()f x 的导函数为()(),f x f x ′′的导函数为()(),f x f x ′′′′的导函数为()f x ′′′.若()00f x ′′=,且()00f x ′′′≠,则()()00,x f x 为曲线()y f x =的拐点.(1)判断曲线6y x =是否有拐点,并说明理由;(2)已知函数()535f x ax x =−,若f 为曲线()y f x =的一个拐点,求()f x 的单调区间与极值.数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】根据不等式222x y xy +≤可得()22222244522a b a b a b ++≤=++,当且仅当222244a b a b ++=,即22a b =时等号成立,所以,52≤,所以52m =. 所以,不等式20x ax b −+<的解集为()1,5.根据一元二次不等式的解集与一元二次方程解的关系可知,1和5是方程20x ax b −+=的两个解,所以有1515a b +=×= ,所以65a b = = ,11a b +=. 故选:D. 2.【答案】A【解析】因为0.4log y x =在()0,+∞上单调递减,所以0.40.40.4log 1log 0.5log 0.4<<,即01a <<, 因为0.4y x =在()0,+∞上单调递增,又11100.3,0.523−−==,即110.30.51−−>>,所以()()0.40.4110.40.0.513−−>>,即0.40.410.30.5−−>>,故1b c >>,所以b c a >>. 故选:A. 3.【答案】D【解析】因,,AB AC AB AC =⊥取BC 中点为N ,则AN BC ⊥,又AD BC ⊥,,AN AD ⊂平面AND ,AN AD A = ,则BC ⊥平面AND ,BC ⊂面ABC ,则平面ABC ⊥平面AND ,要使四面体ABCD 的体积最大,则有DN ⊥平面ABC ,且球心O 在DN 上.设球体半径为R ,则OAOD R ==,则()111332D ABC ABC V S DNBC AN R ON −=⋅=⋅⋅+, 又注意到2BC AN =,22222AN OA ON R ON =−=−,则()()()22111333D ABC ABC V S DN AN R ON R ON R ON −=⋅=⋅+=+−. 注意到()()()()()33211122221422366363R ON R ON R R ON R ON R ON R ON R ON ++− +−=++−≤⋅=⋅.当且仅当22R ON R ON −=+,即3R ON =时取等号.又四面体 ABCD 的体积的最大值为43,则314436332R R ⋅=⇒= . 则球的表面积为24π9πR =. 故选:D4.【答案】D【解析】由sin2a x ≥2sin cos a x x ≥ 因为π0,2x∈ ,可得π0,24x ∈ ,所以sin cos 22x x <,可得2sin cos 2sin (cos sin )222x x xa x x ≥−,又因为22sin sin cos ,cos cos sin (cos sin )(cos sin )22222222x x x xx x x x x x ==−=+−,所以4sin cos (cos sin )2sin (cos sin (cos sin )22)2222222x x x x x x x xa x ≥−+−即2cos (c 1os sin )222x x xa +≥,因为2π2cos (cos sin )2sin cos sin cos 1)1222222s 42co x x x x x x x x x ++=+++==+,因为π0,2x ∈ ,可得ππ3π,444x +∈,所以πsin()4x +∈,则π)11]4x ++∈,则1]2,要使得不等式sin2a x ≥a ≥所以12a ≥,即实数a 的取值范围为1,2 +∞. 故选:D.5.【答案】C【解析】设1i z a b =+,2i z c d =+,其中,,,a b c d ∈R . 对于A ,12(i)(i)z z z a b c d ==++==12z z ⋅=,所以12z z z =⋅,故A 正确; 对于B ,(i)(i)()()i z a b c d ac bd bc ad =++=−++,()()i z ac bd bc ad =−−+,()()()()12i i i z z a b c d ac bd bc ad ⋅=−−=−−+, 所以12z z z =⋅,故B 正确;对于C ,1i z a b =+=,2i z c d =+= 由12||||z z =,得2222+=+a b c d .因为22212i z a b ab =−+,22222i z c d cd =−+,所以2212z z =不一定成立,如11z =,2i z =,此时12||||z z =,而211z =,221z =−,即2212z z ≠,故C 错误;对于D ,由12||||z z =,得2222+=+a b c d ,2211(i)(i)z z a b a b a b ⋅=+−=+,2222(i)(i)z z c d c d c d ⋅=+−=+,所以1122z z z z ⋅=⋅,故D 正确﹒故选C. 6.【答案】A【解析】设“小唐同学周一去味园”为事件A ,设“小唐周二去味园”为事件B ,则“小唐同学周一、周二都去味园”为事件AB ,由题意可知:33(),()510==P A P B ,且(|)2(|)=P B A P B A , 由全概率公式可知:()()()(|)(|)=+P B P B A P A P B A P A ,即343(|)(|)1055=+P B A P B A ,解得3(|)14=P B A , 所以()()339()|14570==×=P AB P B A P A . 故选:A 7.【答案】C【解析】延长MN 交DC 的延长线于点F ,连接AF 交BC 于点H ,连接NH , 延长NM 交1DD 的延长线于点E ,连接AE 交11A D 于点G ,连接GM , 则五边形AHNMG 为平面AMN 截该长方体所得的截面图形,不妨设1224AB AD AA ===,又点M 是线段11C D 上靠近1D 的四等分点,点N 是线段1CC 的中点, 所以13C M =,11D M =,11C NNC ==,所以3CF =,又//CF AB ,所以43AB BH CF CH ==,又2BH CH +=,所以67CH =, 又11D M ED DF ED =,即11172ED ED =+,解得113ED =,又11GD ED AD ED =,即1131223GD =+,解得127GD =,符合题意,即五边形AHNMG 为平面AMN 截该长方体所得的截面图形. 故选C.8.【答案】D 【解析】解:()sin f x x x =,则()1()sin cos f x f x x x x ′==+, ()21()cos cos sin 2cos sin f x f x x x x x x x x ′==+−=−, ()32()2sin sin cos 3sin cos f x f x x x x x x x x ′==−−−=−−, ()43()3cos cos sin 4cos sin f x f x x x x x x x x ′==−−+=−+, ()54()4sin sin cos 5sin cos f x f x x x x x x x x ′==++=+,所以猜想:()43()43sin cos k f x k x x x −=−+, ()42()42cos sin k f x k x x x −=−−,()41()41sin cos k f x k x x x −=−−−, 4()4cos sin k f x k x x x =−+,由201945051=×−,202145063=×−, 所以()20192019sin cos f x x x x =−−, ()20212021sin cos f x x x x =+, ()()201920212sin f x f x x +=, 故选:D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】BCD【解析】函数sin2()21cos2xx f x x=−+中,cos 21x ≠−,即2π2π,Z x k k ≠−+∈,解得ππ,Z 2x k k ≠−+∈,22sin cos ()tan 22cos 2x x x xf x x x =−=−,对于A ,显然(0)0f =,π(π)2f =,即(π)(0)f f ≠,A 错误; 对于B ,由()tan 2xf x x =−,求导得211()02cos f x x ′=−<, 因此函数()f x 递减区间为ππ(π,π)(Z)22k k k −+∈,B 正确;对于C ,由ππ(π)()tan(Z π)tan ,222k x x k f k x f k x x k x −−+=−−−=∈+, 得函数()f x 图象关于点ππ(,)(Z)24k k k ∈成中心对称,有无数多个对称中心,C 正确; 对于D ,设过点(2,0)的直线与曲线()y f x =相切于点000(,tan 2)x P x x −, 则切线方程为0002011(tan )()(22)cos x y x x x x −−=−−,则()000200sin 1122cos 2cos x x x x x −+=−−, 整理得000sin 2cos 223x x x −=−00π)234x x −=−,令函数π())234g x x x =−−+,当π4x ≤时,π3232x −≥−>π24x≤−,则()0g x >,即函数()g x 在π(,]4−∞上无零点,当πx ≥时,3232π3x −≤−<−,则()0g x <,即函数()g x 在[π,)+∞上无零点, 当ππ4x <<时,π())24g x x ′=−−,又ππ7π2444x <−<,则πcos(2)41x −<−≤所以π)24x −<−,()0g x ′<,函数()g x 在π(,π)4上单调递减,显然π()0,(π)04g g ><,因此函数()g x 在π(,π)4上有唯一零点,从而方程00π)234x x −=−有唯一实根,过点()2,0作曲线()y f x =的切线有且只有一条,D 正确. 故选:BCD 10.【答案】AD 【解析】因为2sin cos sin 2yx x x =,向右平移π6个单位得()ππsin 2sin 263f x x x=−=−,则最小正周期为2ππ2T ==,故A 选项正确;令πππ2π22π232k x k −+≤−≤+,解得π5πππ1212k x k −+≤≤+,所以单调递增区间为π5ππ,π,Z 1212k k k−++∈,故B 选项错误; 令ππ2π,32x k −=+解得5ππ,Z 122k x k =+∈,故C 选项错误; 令π2π,3x k −=解得ππ,Z 6x k k =+∈所以函数()f x 的对称中心为ππ,0,Z 6k k +∈,故D 选项正确.故选:AD 11.【答案】ACD【解析】如图,把三棱锥−P ABC 补形成正四棱柱并建立空间直角坐标系A xyz −,对于A ,由PA ⊥平面ABC ,得PBA ∠是PB 与平面ABC所成的角,tan PAPBA AB∠= 因此π3PBA ∠=,A 正确; 对于C ,由AD CD ⊥,得D 点的轨迹是以线段AC 为直径的球面与PAB 相交的一段圆弧及点B , 令,AC AB 的中点分别为,O E ,则OE ⊥平面PAB,1OE OD ==,1DE =,显然D 点所在圆弧所对圆心角大小为2π3,长度是2π3,C 正确; 对于B ,由选项C 知,当DE AB ⊥时,D 点到平面ABC 距离最大,最大距离为1,因此三棱锥C ABD −的体积112212323C ABD D ABCV V −−=≤××××=,B 错误; 对于D ,设2π(0)3AED θθ∠=<≤,则点(1cos ,0,sin )D θθ−,而(2,2,0)C , 于是(1cos ,2,sin )CD θθ=−−− ,又(2,0,0)AB =,令异面直线CD 与AB 所成的角大小为ϕ,则||cos |cos ,|||||CD AB CD AB CD AB ϕ⋅=〈〉==, 令11cos [,2)2t θ=+∈,cos ϕ=1[,2)2t ∈上单调递增,因此t ≤D 正确. 故选:ACD三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】3−【解析】函数()()cos 0f x x kx x =−≥恰有两个零点等价于cos y x =与直线y kx =(0)x ≥有且只有两个交点,函数()()cos 0f x x kx x =−≥恰有四个个零点等价于cos y x =与直线y kx =(0)x ≥有且只有四个交点,cos y x =与直线y kx =(0)x ≥的图象如下:根据图象可知, cos y x =与直线y kx =(0)x ≥有且只有两个交点时,则cos y x =与y kx =在点A 处相切,且切点的横坐标为α,此时对应的函数解析式为cos y x =−,所以sin y x ′=,则sin k α=,又cos k αα−=,所以cos sin ααα−=,则()222cos 21sin cos 1sin2sin 2cos sin ααααααααα+ + ==−−同理,cos y x =与直线y kx =(0)x ≥有且只有四个交点时,则cos y x =与y kx =在点B 处相切,且切点的横坐标为β,此时对应的函数解析式为cos y x =,所以sin y x ′=−,则sin k β=−,又cos k ββ=,所以cos sin βββ=−,则()()22222222cos 1cos sin 1cos2sin 1cos 11sin βββββββββ+− +==−−−所以()21sin23ααα+−故答案为:3−. 13.【答案】12/0.5 【解析】在PBC 中,30PBC PCB °∠=∠=,设1PB PC ==, 由余弦定理可得2222cos1201113BC PB PC PB PC °=+−⋅=++=,可得BC = 在ABC 中,75ABC ABP PBC °∠=∠+∠=,所以18045BAC ABC ACB °∠=−∠−∠= , 由正弦定理得sin sin BC ABBAC ACB =∠∠,即sin 60AB =,可得AB = 在ABP 中,由余弦定理得222952cos 451322AP AB PB AB PB °=+−⋅=+−=,可得AP =222cos 2AP AB PB BAP AB AP +−∠==⋅可得sin BAP∠,因此sin1tancos2BAPBAPBAP∠∠==∠.故答案为:1214.【答案】32n n−【解析】因为每行的第n个数从上到下形成以12n−为首项,以3为公比的等比数列,所以0112231032323232n n n nnS−−−−=×+×+×++×,所以12301222233333n n nnnS−−−−×++++12123331322313nnn n n nnS−−=×=×−=−−.故答案为:32n n−.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【答案】(1)更可能是专业评委打的分数(2)事件M与事件N不独立.【解析】(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.42454853524749487Ax++++++=,48527066774951597Bx++++++=,所以A组数据的方差是22222222 1(4248)(4548)(4848)(5348)(5248)(4748)(4948) 7As=−+−+−+−+−+−+−887=,B组数据的方差是22222222 1(4859)(5259)(7059)(6659)(7759)(4959)(5159) 7Bs=−+−+−+−+−+−+−8287=,因为专业评委给分更符合专业规则,所以相似程度更高,因此组分数更可能是专业评委打的分数.(2)1627C2()C7P M==,:100:4852100,4753100N a b+=+=+=,100:4852100,4951100c d+=+=+=,各有两种,所以()21111722222222227777774C C C C C 2280C C C ?C C C 441P N ×−=+−==, 事件MN :当4852100a b +=+=时, ,c d 可以任意,有27C 种,当a ,b 中有一个数据为48,另一个不是52时,则100c d +=,有1152C C 种,所以21175222227777C C C 31()C C C C 441P MN =+=, ∴()()()P M P N P MN ≠,则事件M 与事件N 不独立.16.(15分)【答案】(1)π6DBC ∠=,AB =;(2) 【解析】(1)由题易知π2ABC ∠<,由正弦定理得21sin 242DC DBC R ∠===,π6DBC ∴∠=,πππ263DAB DBA DAB ABC DBC ∴∠+∠=∠+∠−∠=−=, 2ππ()3ADB DAB DBA ∴∠=−∠+∠=,2sin 4AB R ADB ∴=×∠=(2)方法一:延长AD ,BC ,交于点E .π2DAB ABC ∠+∠= ,π2AEB ∴∠=.设DAB α∠=, 则11cos sin 6sin cos 3sin 222ABE S AE BE AB AB ααααα=×=××==△. 四边形ABCD 内接于圆O ,ECD DAB α∴∠=∠=,11sin cos 2sin cos sin 222CDE S DE CE CD CD ααααα∴=×=×==△, 2sin ABE CDE ABCD S S S ∴=−=四边形△△,ππ(,)63α∈ ,π2π2(,)33α∴∈,2]ABCD S ∴∈四边形,即四边形ABCD面积的取值范围是.方法二:连接OA ,OB ,OC ,OD ,由已知可得2π3AOB ∠=,OCD 是等边三角形.设AOD θ∠=,则π3BOC θ∠=−,OAD OBC OCD AOBCD S S S S ∴=++五边形△△△22211πsin sin()223R R Rθθ+−π[2sin sin()]3θθ=+−又212πsin 23AOBS R ==△AOB ABCD AOBCD S S S ∴−四边形五边形△ππ2[sin sin()]2sin()33θθθ=+−=+,π(0,)3θ∈ ,ππ2π(,)333θ∴+∈,2]ABCD S ∴∈四边形,即四边形ABCD 面积的取值范围是.17.(15分)【答案】(1)证明见解析; (2)①证明见解析;②12 .【解析】(1)证明:因为AAAA // AAAA ,AAAA ⊂ 平面AAAAPP ,AAAA ⊄ 平面AAAAPP , 所以AAAA // 平面AAAAPP ,又AAAA ⊂ 平面AAAANNMM ,平面AAAANNMM ∩ 平面AAAAPP =MMNN , 所以AAAA // MMNN .又AAAA ⊂平面AAAAAAAA ,MMNN ⊄ 平面AAAAAAAA , 所以MMNN // 平面AAAAAAAA .(2)解:①由平面PPAAAA ⊥ 平面AAAAAAAA ,AAAA ⊥AAAA , 又平面AAAAAAAA ∩ 平面PPAAAA =AAAA , 所以AAAA ⊥ 平面PPAAAA ,所以AAAA ⊥AAPP ,由(1),AAAA // MMNN ,故AAPP ⊥MMNN , 又MM 是棱PPAA 的中点,则NN PPAA 中点,△PPAAAA 为正三角形, 所以AAPP ⊥NNAA ,MMNN ∩NNAA =NN ,MMNN ,NNAA ⊂ 平面AAAANNMM , 所以AAPP ⊥ 平面AAAANNMM ,且NNQQ ⊂ 平面AAAANNMM , 所以AAPP ⊥NNQQ .②因为AAPP ⊥NNQQ .且NN 为棱PPAA 中点, 所以AAQQ =PPQQ ,所以AAQQ +QQEE =PPQQ +QQEE当QQ 为PPEE 与平面AAAANNMM 的交点时,(PPQQ +QQEE )mmmm mm =PPEE , 故当AAQQ +QQEE 最小时,PPEE 取得最小值,此时PPEE ⊥AAAA , 因为AAAA ⊥AAPP , 所以PPAA 2=PPAA 2+AAAA 2,同理PPAA 2=PPAA 2+AAAA 2=PPAA 2+AAAA 2=PPAA 2,当PPEE ⊥AAAA 时,可得EE 为AAAA 中点,取PPEE 中点TT ,连接MMTT ,如图:则有MMTT // AAEE 且MMTT =12AAEE =12EEAA , 有△MMTTQQ ∼△AAEEQQ ,所以MMMMMMQQ =MMMM EEQQ=12.18.(17分)【答案】(1)证明见解析; (2)()0,2−或()2,2; (3)1614,99【解析】(1)由2y x ,得2y x ′=,设()()()221122,,,,,P P A x x B x x P x y .所以1l 方程为:()21112yx x x x =−+,整理得:2112y x x x =−. 同理可得,2l 方程为:2222y x x x =−. 联立方程21122222y x x x y x x x =− =− ,解得12122P P x x x y x x +== . 因为点()1,2T 在抛物线内部,可知直线AB 的斜率存在,且与抛物线必相交, 设直线AB 的方程为()12y k x =−+,与抛物线方程联立得:220x kx k −+−=, 故1212,2x x k x x k +==−, 所以,22P P kx y k ==−,可知22P P y x =−. 所以点P 在定直线22y x =−上. .(2)在12,l l 的方程中,令0y =,得12,0,,022x x M N,所以PMN面积()12121124P S MN y x x x x =⋅=−=故()()()()22221212121212432x x x x x x x x x x −=+−=, 代入1212,2x x k x x k +==−可得:()()22484432k k k k −+−+=.整理得22(2)8(2)40k k −+−−=,解得:0k =或4k =. 所以点P 的坐标为()0,2−或()2,2.(3)抛物线焦点10,4F ,由1,02x M 得直线MF 斜率1112MF MP k x k =−=−, 可知MF MP ⊥,同理NF NP ⊥,所以PF 是PMN 外接圆的直径. 若点T 也在该圆上,则TF TP ⊥. 由74TF k =,得直线TP 的方程为:()4127y x =−−+. 又点P 在定直线22y x =−上, 联立两直线方程()412722y x y x =−−+ =− ,解得169149x y= = ,所以点P 的坐标为1614,99.19.(17分)【答案】(1)没有拐点,理由见解析.(2)单调递增区间为()(),1,1,−∞−+∞;单调递减区间为[]1,1−,极大值为2,极小值为2−.【解析】(1)解:由函数6y x =,可得5436,30,120y x y x y x ===′′′′′′, 由4300x =,得0x =,又由31200x =,得0x =,所以曲线6y x =没有拐点. (2)解:由函数()535f x ax x =−, 可得()()()4232515,20301023f x ax x f x ax x x ax =−=−=′′−′,因为f 为曲线()y f x =的一个拐点,所以0f =′′, 所以12302a ×−=,解得3a =,经检验,当3a =时,0f ≠′′′, 所以()()42221515151f x x x x x =′=−−. 当1x <−或1x >时,()0f x '>,则()f x 的单调递增区间为()(),1,1,−∞−+∞;当11x −≤≤时,()0f x ′≤,且()0f x ′=不恒成立,则()f x 的单调递减区间为[]1,1−, 故当1x =−时,()f x 取得极大值,且极大值为2; 当1x =时,()f x 取得极小值,且极小值为2−.。

福建省福州市2024届高三上学期第一次质量检测数学试题及参考答案

福建省福州市2024届高三上学期第一次质量检测数学试题及参考答案

2023~2024学年福州市高三年级第一次质量检测数学试题(完卷时间120分钟;满分150分)第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足11i z=−,则在复平面内,z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}21A x x=<,{}0B x x =>,则A B = ( )A .(0,1)B .()0,+∞C .()1,−+∞D .(),−∞+∞3.已知点()0,2P x 在抛物线C :24y x =上,则P 到C 的准线的距离为( ) A .4B .3C .2D .14.“二十四节气”是中国古代劳动人民伟大的智慧结晶,其划分如图所示.小明打算在网上搜集一些与二十四节气有关的古诗.他准备在春季的6个节气与夏季的6个节气中共选出3个节气,若春季的节气和夏季的节气各至少选出1个,则小明选取节气的不同情况的种数是( )A .90B .180C .270D .3605.一个正四棱台形油槽可以装煤油3190000cm ,其上、下底面边长分别为60cm 和40cm ,则该油槽的深度为( ) A .75cm 4B .25cmC .50cmD .75cm6.一个袋子中有大小和质地相同的4个球,其中有2个红球,2个黄球,每次从中随机摸出1个球,摸出的球不再放回,则第二次摸到黄球的条件下,第一次摸到红球的概率为( ) A .13B .12C .23D .347.已知1ea =,ln b =,ln c =,则( ) A .a b c >> B .b c a >> C .a c b >>D .c a b >>8.若定义在R 上的函数()()sin cos 0f x x x ωωω=+>的图象在区间[]0,π上恰有5条对称轴,则ω的取值范围为( ) A .1721,44B .1725,44C .1725,44D .3341,44二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.某市抽查一周空气质量指数变化情况,得到一组数据:80,76,73,82,86,75,81.以下关于这组数据判断正确的有( ) A .极差为13B .中位数为82C .平均数为79D .方差为12410.已知圆M :221x y +=,直线l :(1y k x =−,则( )A .l 恒过定点)1−B .若l 平分圆周M ,则k =C .当k =l 与圆M 相切D .当k <<时,l 与圆M 相交11.已知函数()332f x x ax =−+有两个极值点.则( ) A .()f x 的图象关于点()0,2对称 B .()f x 的极值之和为-4C .a ∃∈R ,使得()f x 有三个零点D .当01a <<时,()f x 只有一个零点12.已知正四棱柱1111ABCD A B C D −的底面边长为2,球O 与正四棱柱的上、下底面及侧棱都相切,P 为平面1CDD 上一点,且直线BP 与球O 相切,则( ) A .球O 的表面积为4π B .直线1BD 与BP 夹角等于45°C .该正四棱柱的侧面积为D .侧面11ABB A 与球面的交线长为2π第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 三、填空题;本大题共4小题,每小题5分,共20分.13.已知向量()1,2a = ,()1,2b λλ=+−,若a b ⊥ ,则实数λ的值为__________.14.将圆周16等分,设每份圆弧所对的圆心角为θ,则sin cos θθ的值为__________.15.已知定义城为R 的函数()f x 同时具有下列三个性质,则()f x =__________.(写出一个满足条件的函数即可) ①()()()f x y f x f y +=+;②()f x ′是偶函数;③当0x y +>时,()()0f x f y +<.16.已知双曲线C :()222210,0x y a b a b−=>>的左焦点为F ,两条渐近线分别为1l ,2l .点A 在1l 上,点B在2l 上,且点A 位于第一象限,原点O 与B 关于直线AF 对称、若2AF b =,则C 的离心率为__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,且12n n a S +=+. (1)求{}n a 的通项公式;(2)若221log n n b a −=,求数列{}n b 的前n 项和n T . 18.(本小题满分12分)记ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =,6B π=.(1)若2c =,求a ;(2)求ABC △面积的最大值. 19.(本小题满分12分)国际上常采用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体肥瘦程度,其计算公式是()()22kg BMI m=体重单位:身高单位:.为了解某公司员工的身体肥瘦情况,研究人员从该公司员工体检数据中,采用比例分配的分层随机抽样方法抽取了50名男员工、30名女员工的身高和体重数据.计算得到他们的BMI(1)若该公司男员工有1500名,则该公司共有多少名员工?(2)以频率估计概率,分别从该公司男、女员工中各随机抽取2名员工,求抽到的员工中至少有一名是肥胖的概率.20.(本小题满分12分)如图,在底面为菱形的四棱锥M ABCD −中,2AD BD MB ===,MA MD ==(1)求证:平面MAD ⊥平面ABCD ;(2)已知2MN NB =,求直线BN 与平面ACN 所成角的正弦值.21.(本小题满分12分)已知椭圆E :22143x y +=的右焦点为F ,左、右顶点分别为A ,B .点C 在E 上,()4,P P y ,()4,Q Q y 分别为直线AC ,BC 上的点. (1)求P Q y y ⋅的值;(2)设直线BP 与E 的另一个交点为D ,求证:直线CD 经过F .22.(本小题满分12分)已知函数()ln f x x a =−,记曲线()y f x =在点()()11,x f x 处的切线为l ,l 在x 轴上的截距为()220x x >.(1)当1e x =,1a =时,求切线方程; (2)证明:12e e a a x x −≥−.答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考查意图】本小题以复数为载体,主要考查复数的基本运算、几何意义等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等数学核心素养,体现基础性. 【答案】A .【解析】由11i z =−得11i1i 2z+==−,应选A . 2.【考查意图】本小题以不等式为载体,主要考查集合运算等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等核心素养,体现基础性. 【答案】C . 【解析】{}11A x x =−<<,{}0B x x =>,故()1,A B =−+∞ ,应选C . 3.【考查意图】本小题以抛物线为载体,主要考查抛物线的图象和性质、直线与抛物线的位置关系等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性. 【答案】C .【解析】抛物线24y x =的准线为1x =−,由P C ∈得01x =,故P 到准线的距离为2,应选C .4.【考查意图】本小题以二十四节气为载体,主要考查排列与组合等基础知识;考查运算求解能力、推理论证能力和应用意识;考查数学运算、逻辑推理等核心素养,体现基础性和应用性. 【答案】B .【解析】根据题意可知,小明可以选取1春2夏或2春1夏.其中1春2夏的不同情况有:1266C C 90⋅=种;2春1夏的不同情况有:2166C C 90⋅=种,所以小明选取节气的不同情况有:9090180+=种.应选B .5.【考查意图】本小题以正四棱台形油槽为载体,主要考查空间几何体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和应用性. 【答案】D .【解析】设正四棱台的高,即深度为cm h ,依题意,得()22190000604060403h=++×,解得75h =,应选D .6.【考查意图】本小题主要考查条件概率、全概率公式等基础知识;考查推理论证能力、运算求解能力与创新意识;考查化归与转化思想;考查数学建模、逻辑推理、数据分析等核心素养,体现综合性、应用性与创新性. 【答案】C .【解析】解法一:记第i 次摸到红球为事件i A ,摸到黄球为事件()1,2i B i =,则()()()()()21211211211123232P B P A P B A P B P B B =+=×+×=,()()()12121221433P A B P A P B A ==×=,故()()()1212223P A B P A B P B ==.应选C . 解法二:记第i 次摸到红球为事件i A ,摸到黄球为事件()1,2i B i =.由抽签的公平性可知()22142P B ==,又()12221433P A B ×==×,所以()()()1212223P A B P A B P B ==.应选C . 7.【考查意图】本小题以数的大小比较为载体,主要考查函数与导数等基础知识;考查运算求解能力、推理论证能力、应用意识;考查数学建模、数学运算、逻辑推理等核心素养,体现基础性、应用性和综合性. 【答案】A . 【解答】解法一:1ln e e e a ==,ln 2ln 4ln 24b ==,ln 55c ,令()ln x f x x =,()21ln xf x x−′=,当e x ≥时,()0f x ′≤,故()f x 在区间[)e,+∞上单调递减,所以a b c >>.==>,所以ln ln >b c >.在同一坐标系中作出函数()2xf x =,()2g x x =的图象,如图所示,由图可知,()()e e f g <,即e22e <,所以e22e 2e 2e <,即11e22e <,所以111ln 2ln e 2e e<=,即b a <. (令()ln x f x x=,()21ln xf x x −′=,当0e x <<时,()0f x ′>,故()f x 在区间()0,e 上单调递增,所以1ln e ln 2e e 2a b ==>=.) 综上,a b c >>.应选A .8.【考查意图】本小题以三角函数为载体,考查三角函数的图象与性质、三角恒等变换等基础知识;考查抽象概括能力、推理论证能力、应用意识;考查数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性. 【答案】A .【解析】由已知,()4f x x πω=+,令42x k ππωπ+=+,k ∈Z ,得()414k x πω+=,k ∈Z ,依题意知,有5个整数k 满足()4104k ππω+≤≤,即0414k ω≤+≤,所以0,1,2,3,4k =,则4414451ω×+≤<×+,故172144ω≤<,应选A . 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【考查意图】本小题主要考查极差、中位数、平均数、方差等基础知识;考查推理论证能力、运算求解能力;考查化归与转化思想;考查数据分析等核心素养,体现基础性. 【答案】AC .10.【考查意图】本小题以直线与圆为载体,考查直线的方程、圆的方程、直线与圆的位置关系等基础知识;考查运算求解能力;考查直观想象、逻辑推理等核心素养;体现基础性和综合性. 【答案】BC .【解析】依题意,l恒过定点()1−,选项A 错误;若l 平分圆周M ,则l 经过圆M 的圆心()0,0,代入直线方程得k =B 正确; 圆心()0,0O 到l的距离dk =1d r ==,l 与圆M 相切,选项C 正确;若l 与圆M相交,则1d <,即)2211k −<+,即0k <<,故选项D 错误.综上,应选BC .11.【考查意图】本小题以三次函数为载体,主要考查函数与导数等基础知识;考查运算求解能力、推理论证能力、应用意识;考查数学建模、数学运算、逻辑推理等核心素养,体现基础性、应用性和综合性. 【答案】ACD .【解答】()f x 的图象可由奇函数()33g x x ax =−的图象向上平移2个单位长度得到,故()f x 的图象关于点()0,2对称,选项A 正确.设()f x 的极值点分别为()1212,x x x x <,则由对称性可知120x x +=,故()()12224f x f x +=×=,即()f x 的极值之和为4,选项B 错误.依题意,方程()2330f x x a ′=−=有两异根,则0a >,1x =2x =,()f x在区间(−∞上单调递增,在区间(上单调递减,在区间)+∞单调递增.由图象可知,当()()120f x f x >>时,()f x 的图象与x 轴有3个交点,即()f x 有3个零点,选项C 正确.当01a <<时,(32210f=−+=−>,此时()f x 只有一个零点,选项D 正确.综上,应选ACD .12.【考查意图】本小题以正四棱柱为载体,主要考查球、直线与平面的位置关系等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查化归与转化思想;考查直观想象、逻辑推理等核心素养,体现基础性、应用性和综合性. 【答案】BCD .【解答】如图,设球O 与下底面相切于点1O ,则1OO ⊥平面ABCD ,连接1O A ,则1OAO ∠为直线OA 与平面ABCD 所成的角.因为球O与正四棱柱的侧棱相切,所以其半径11R OO O A===,所以428S ππ=⋅=表,四棱柱的侧面积为()24××,故选项A 错误,C 正确.依题意,1BB ,BP 均为球O 的切线,1BD 经过球心O ,所以111B BD PBD ∠=∠,又111B D BB =,所以11145PBD B BD ∠=∠=°,选项B 正确.对于选项D ,棱1AA 的中点F ,即球O 与棱1AA 的切点应为交线上的点,故交线应为过F 的圆.截面圆的圆心即为矩形11ABB A 的中心E ,在Rt OEF △中,OFR ==,112OEBC ==,所以截面圆半径1r EF ==,周长为2π,该选项正确.综上,应选BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.【考查意图】本小题以平面向量为载体,主要考查平面向量的基本运算等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理、直观想象等核心素养,体现基础性. 【答案】5.【解析】由a b ⊥得()()1220λλ++−=,解得5λ=. 14.【考查意图】本小题以圆的等分为载体,考查三角恒等变换等基础知识;考查推理论证能力,抽象概括能力;考查逻辑推理等核心素养;体现基础性与应用性..【解析】依题意,得8πθ=,所以11sin cos sin 2sin 224πθθθ===. 15.【考查意图】本小题以函数的性质为载体,考查函数的奇偶性、函数与导数等基础知识;考查推理论证能力;考查逻辑推理等核心素养;体现基础性、综合性与应用性. 【答案】x −(答案不唯一,()0kx k <均可).16.【考查意图】本小题以双曲线为载体,主要考查双曲线的离心率、双曲线的图象和性质、直线与双曲线的位置关系等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性. 【答案】2.【解答】依题意,1l 的方程为by x a=,2AF l ⊥,设垂足为P ,则FP b =.因为22AFb FP ==,所以点F ,A 关于直线2l 对称,FOP AOP ∠=∠,又1l ,2l 关于y 轴对称,所以1l 的倾斜角为1180603×°=°,故tan 60ba=°=,所以离心率2e =.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【命题意图】本小题主要考查等差数列、等比数列、递推数列及数列求和等基础知识,考查运算求解能力、逻辑推理能力和创新能力等,考查化归与转化思想、分类与整合思想、函数与方程思想、特殊与一般思想等,考查逻辑推理、数学运算等核心素养,体现基础性和综合性.满分10分. 【解答】(1)解法一:由12n n a S +=+得21322,2,a S aS =+ =+设等比数列{}n a 的公比为q ,所以()()12112,12,a q a q q −=−−= 解得12,2,a q == 或12,a q =− = (舍去).所以2n n a =.(2)212212log log 221n n n b a n −−===−, 故11b =,()()12121122n n b b n n n −−=−−−−=≥ , 所以{}n b 是首项为1,公差为2的等差数列, 所以()()1212122n n n b b n n T n ++−===.解法二:(1)因为12n n a S +=+,① 所以当2n ≥时,12n n a S −=+,② ①-②得12n n a a +=, 所以等比数列{}n a 的公比12n na qa +==. 由①式得212a a =+,得12a =,所以2n n a =.(2)12n n T b b b =++⋅⋅⋅+2123221log log log n a a a −++⋅⋅⋅+()21321log n a a a −⋅⋅⋅= ()13212log 2n ++⋅⋅⋅+−=()12122log 2n n+− =2n =.18.【命题意图】本小题主要考查正弦定理、余弦定理及三角恒等变换等基础知识,考查逻辑推理能力、运算求解能力等,考查化归与转化思想、函数与方程思想、数形结合思想等,考查数学运算、逻辑推理等核心素养,体现基础性和综合性.满分12分.【解答】解法一:(1)因为b =,2c =,6B π=,根据余弦定理得2222cos b a c ac B =+−,所以22224cos6a a π=+−,即220a −+=,解得1a =.(2)根据余弦定理,得2222cos a b c ac B =+−,所以(222222cos 226a c ac a c ac ac π=+−=+−≥−=,(当且仅当1a c ==时取等号),即(22ac ≤=+,所以ABC △面积(1111sin sin 2222644ABC S ac B ac ac π===≤×△,即ABC △.解法二:(1)因为b =,2c =且6B π=,根据正弦定理,得sin sin b c B C=,2sin C=,即sin C =, 因为c b >,所以C B >,所以566C ππ<<, 所以4C π=或34C π=, 当4C π=时,()1sin sin sin 642A B C ππ =+=+= , 根据正弦定理,得sin sin a bA B=, 所以sin 1sin b Aa B ==+;当34C π=时,()31sin sin sin 642A B C ππ =+=+=×= ,根据正弦定理,得sin sin a bA B=, 所以sin 1sin b A a B ==; 综上,1a =.(2)略,同解法一.解法三:(1)因为b =,2c =且6B π=, 根据正弦定理,得sin sin b cB C=, 2sin C=,即sin C =, 因为c b >,所以C B >,所以566C ππ<<, 所以4C π=或34C π=,当4C π=时,()76412A B C πππππ =−+=−+= , 根据正弦定理,得sin sin a b A B=,所以sin sin cos cos sin sin 343434b A a B ππππππ ==+=+ ;sin cos cos sin 13434ππππ ++; 当34C π=时,()36412A B C πππππ =−+=−+= , 根据正弦定理,得sin sin a b A B =,所以sin sin cos cos sin sin 343434b A a B ππππππ ==−=−sin cos cos sin 13434ππππ −− ;综上,1a =.(2)根据正弦定理,得sin sin sin ac b A C B ===,所以a A =,c C =,即(251sin sin 8sin sin 8sin cos 62aC A C A A A A A π ==−=+21cos 22sin 22sin 22sin 222A A A A A A −=−=+=++14sin 224sin 223A A A π +−+= 因为506A π<<,所以42333A πππ−<−<, 所以当232A ππ−=,即512A π=时,sin 23A π −取得最大值为1,即ac最大值为4+,所以ABC △面积(1111sin sin 422644ABC S ac B ac ac π===≤×+△,即ABC △. 19.【命题意图】本小题主要考查分层抽样、独立事件的概率、互斥事件、对立事件的概率等基础知识;考查数学建模能力,运算求解能力,逻辑推理能力,创新能力以及阅读能力等;考查统计与概率思想、分类与整合思想等;考查数学抽象,数学建模和数学运算等核心素养;体现应用性和创新性.满分12分.【解】(1)设该公司共有x 名员工, 依题意得1500505030x =+, 解得2400x =, 所以该公司共有2400名员工.(2)依题意,事件“抽到一名男员工不为肥胖”的概率为404505=,事件“抽到一名女员工不为肥胖”的概率为2793010=, 由事件的独立性,得抽到的两个男员工都不存在肥胖的概率为44165525×=, 抽到的两个女员工都不存在肥胖的概率为99811010100×=, 设事件M 为“抽到的员工中至少有一名是肥胖”,则事件M 为“抽到的员工都不存在肥胖”, 所以()811632410025625P M =×=, 所以()3243011625625P M =−=, 所以抽到的员工中至少有一名是肥胖的概率为301625. 20.【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,直线与平面所成角等基础知识;考查空间想象能力,逻辑推理能力,运算求解能力等;考查化归与转化思想,数形结合思想,函数与方程思想等;考查直观想象,逻辑推理,数学运算等核心素养;体现基础性和综合性.满分12分.【解答】(1)取AD 的中点为O ,连结OM ,OB ,因为四边形ABCD 是为菱形,且2AD BD ==,所以ABD △为正三角形,所以BO AD ⊥,且BO =.因为MAMD ==,所以MO AD ⊥,所以1MO =,又因为2MB =,所以222MO BO MB +=,所以MO BO ⊥,因为AD BO O ∩=,AD ⊂平面ABCD ,BO ⊂平面ABCD所以MO ⊥平面ABCD ,又因为MO ⊂平面MAD ,所以平面MAD ⊥平面ABCD .(2)由(1)知,OA ,OB ,OM 两两垂直,故以O 为坐标原点,分别以OA ,OB ,OM 为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系O xyz −.则()1,0,0A,()B,()C −,()0,0,1M,13N ,所以()3,CA =,12,3CN =,()2,0,0CB = , 设平面ACN 的法向量为(),,n x y z = , 则0,0,n CA n CN ⋅= ⋅=即30,120,3x x y z = +=取1x =,则()3n − .因为()0,BM = ,则cos ,BM n BM n BM n⋅=== , 所以直线BN 与平面ACN21.【命题意图】本小题主要考查椭圆的标准方程及简单几何性质,直线与圆、椭圆的位置关系,平面向量等基础知识;考查运算求解能力,逻辑推理能力,直观想象能力和创新能力等;考查数形结合思想,函数与方程思想,化归与转化思想等;考查直观想象,逻辑推理,数学运算等核心素养;体现基础性,综合性与创新性.满分12分.【解答】(1)依题意,()2,0A −,()2,0B .设()11,C x y ,则2211143x y +=, 直线AC 方程为()1122y y x x ++,令4x =得1162P y y x =+, 直线BC 方程为()1122y yx x −−,令4x =得1122Q y y x =−, 所以2121124P Q y y y x =− 2121123144x x ×− =− 9=−,即P Q y y ⋅的值为9−.(2)设()22,D x y ,()4,P t ,则直线AP 方程为()26t y x =+,直线BP 的方程为()22t y x =−, 由()222,63412t y x x y =+ +=得()222227441080t x t x t +++−=, 所以2124108227t x t −−=+,即21254227t x t −=+,故()112182627t t y x t=+=+. 由()222,23412t y x x y =− +=得()2222344120t x t x t +−+−=, 所以22241223t x t −=+,即222263t x t −=+,故()2226223t t y x t −=−=+. 所以()()122111x y x y −−−2222222736918273327t t t t t t t t−−−=⋅−⋅++++ ()()()222262733270327t t t t t −−+−=++,又()1,0F ,所以向量()111,FC x y =− ,与()221,FD x y =− 共线,所以直线CD 经过F . 解法二:(1)依题意,()2,0A −,()2,0B .设()11,C x y ,则2211143x y +=, 所以111122AC BC y y k k x x ⋅=⋅+− 21214y x =− 21213144x x −−= 34=−. 即B 344242Q P AP Q y y k k −=⋅=⋅+−,故P Q y y 的值为9−. (2)设()11,C x y ,()22,D x y ,()4,P t .要证直线CD 经过()1,0F ,只需证向量()111,FC x y =− ,与()221,FD x y =− 共线,即证()()122111x y x y −=−.(*) 因为()2222112014343x y −+==+,所以111123246P AC y x y k x y −==−⋅=+, 同理可得222223242P BD y x y k x y +==−⋅=−, 所以()()21122123AC BD x y k k x y −==+,即1221123620x y x y y y −++=,① 同理可得1221123260x y x y y y −+++=,②①-②得12211244440x y x y y y −+−=,即()()122111x y x y −=−.所以(*)式成立,命题得证.22.【命题意图】本小题主要考查导数,函数的单调性、零点、不等式等基础知识;考查逻辑推理能力,直观想象能力,运算求解能力和创新能力等;考查函数与方程思想,化归与转化思想,分类与整合思想等;考查逻辑推理,直观想象,数学运算等核心素养;体现基础性、综合性和创新性.满分12分.【解答】(1)()1f x x′=, 当1e x =,1a =时,()1ln e 10f x =−=,即切点为()e,0, 所以所求切线斜率()1e ek f ′=, 所以所求的切线方程为()1e e y x =−,即11ey x =−. (2)由于()11ln f x x a =−, 所以切线l 的方程为()()1111ln y x a x x x −−=−. 令0y =,得()()1111ln x a x x x −−=−,解得()2111ln x x x x a =−−.(*) 由20x >,得11e a x +<. 构造函数()()ln g x x x x a =−−, 所以()ln g x a x ′=−,所以当0e a x <<时,()0g x ′>,()x 单调递增;当e a x >时,()0g x ′<,()g x 单调递减.故()()max e e a a g x g ==.所以2e a x ≤.若1e a x ≤,由(*)式知12x x ≤,所以12e a x x ≤≤, 故12e e a a x x −≥−.若1e a x >,则()()()121212e e e e 2e a a a a a x x x x x x −−−=−−−=+−, 所以()12111e e 2ln 2e a a a x x x x x a −−−=−−−.构造函数()()()12ln 2e e e aa a x x x x a x ϕ+=−−−<<,所以()()1ln 0x a x ϕ′=+−>,故()x ϕ在区间()1e ,e a a +上单调递增, 所以()()e 0a x ϕϕ>=,所以()1112ln 2e 0a x x x a −−−>,即 所以12e e 0a a x x −−−>,即12e e a a x x −>−. 综上,不等式成立12e e a a x x −≥−成立(当且仅当1e a x =时取等号).。

天津市第二十中学2024-2025学年高三上学期第一次阶段性检测数学试题(含解析)

天津市第二十中学2024-2025学年高三上学期第一次阶段性检测数学试题(含解析)

2024—2025第一学期高三数学学科第一次阶段性检测一、单选题:本题共9小题,每小题5分,共45分.1.已知集合,集合,则集合为( )A. B. C. D.2.在中,若是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.如图5个数据,去掉后,下列说法错误的是()A.相关系数变大B.相关指数变大C.残差平方和变大D.解释变量与预报变量的相关性变强4.已知函数的图象如图所示,则函数的解析式可能为( )A. B.C. D.5.已知,则( )A.B.C. D.6.从一副不含大小王的52张扑克牌中,每次从中随机抽取1张扑克牌,抽出的牌不再放回.在第一次抽到{}2540A xx x =-+≥∣{}12B x x =∈-≤Z ∣()R A B ⋂ð()1,3{}2,3(]1,3{}1,2,3ABC V :60,:sin p A q A ==p q (),x y ()3,10D r 2R x y ()f x ()f x ()e e x x f x x --=()221sin2ln x f x x x +=⋅()e e x x f x x -+=()221cos2ln x f x x x +=⋅2log 0.40.40.312,log 2,log 0.4a b c ===a b c >>b a c >>c a b >>a c b>>牌的条件下,第二次抽到牌的概率为( )A. B. C. D.7.定义运算、若,则等于( )A. B. C. D.8.在锐角中,,则的周长的取值范围是()A. B.C. D.9.已知函数,有下列命题:①为函数图象的一条对称轴②将的图象向左平移个单位,得到函数的图象,若在上的最大值为,则的最大值为③在上有3个零点,则实数的取值范围是④函数在上单调递增其中错误的命题个数为()A.1 B.2 C.3 D.4二、填空题:本题共6小题,共29分.10.是虚数单位,则复数__________.11.在的展开式中,的系数是__________.12.已知随机变量,且,则__________.13.从六个数字中任取三个组成无重复数字的三位数.其中偶数的个数为__________.K K 14113126117a b ad bc c d =-sin sin 1πcos ,cos cos 72αβαβααβ==<<<βπ12π6π4π3ABC V 222(),2S a b c a =--=ABC V (]4,6(4,2⎤⎦(6,2⎤+⎦(2⎤+⎦()44cos 2sin cos sin f x x x x x =+-5π8x =()f x ()f x π4()g x ()g x []0,t ()0g t 3π4()f x []0,a a 9π13π,88⎡⎫⎪⎢⎣⎭()f x ππ,42⎡⎤⎢⎥⎣⎦i 34i 1i +=+522x x ⎛⎫+ ⎪⎝⎭2x ()6,B p ξ~()2E ξ=()32D ξ+=0,1,2,3,4,514.已知,且,则的最小值为__________.15.设,函数,若在区间内恰有4个零点,则的取值范围是__________.三、解答题:本题共5小题,共67分.解答应写出文字说明,证明过程或演算步骤.16.在中,.(1)求;(2)求;(3)求.17.(本小题12分)已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标;(2)先将的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到的图象,求函数在上的单调减区间和最值.18.(本小题12分)如图,在四棱台中,,四边形和都是正方形,平面,点为棱的中点0,0a b >>111a b +=1411a b +--a ∈R ()2sin2π,0474,0x x f x x x a x <⎧=⎨-+->⎩()f x (),a ∞-+a ABC V 92cos ,5,163a Bbc ===a sin A ()cos 2B A -()()cos (0,0,π)f x A x A ωϕωϕ=+>><()f x ()f x 12π12()g x ()y g x =π3π,124x ⎡⎤∈⎢⎥⎣⎦1111ABCD A B C D -1111,2A A A B AB ===ABCD 1111A B C D 1AA ⊥ABCD E BC(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求点到平面的距离.19.(本小题12分)已知函数.(1)讨论的单调性;(2)若时,的图象恒在轴上方,求的范围;(3)若存在不相等的实数,使得,证明:.20.(本小题16分)已知函数.(1)求曲线在处的切线斜率;(2)当时,求证:;(3)证明:.1ED ∥11AA B B 1A DE ABCD B 1C DC ()()ln f x x m x m =-∈R ()f x 0m >()f x x m 12,x x ()()12f x f x =120m x x <<+()()11ln 12f x x x ⎛⎫=++ ⎪⎝⎭()y f x =2x =0x >()1f x >()51ln !ln 162n n n n ⎛⎫<-++≤ ⎪⎝⎭2024—2025第一学期高三数学学科第一次阶段性检测一、单选题:本题共9小题,每小题5分,共45分.在每小题给出的选项中,只有一项是符合题目要求的.1.【答案】B【解析】解:集合或,则,集合,故.故选:B.先求出集合,再结合补集、交集的定义,即可求解.本题主要考查集合的混合运算,属于基础题.2.【答案】A【解析】略3.【答案】C【解析】【分析】本题考查了利用散点图判断两个变量的相关关系,相关系数和相关指数,属于简单题.由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.【解答】解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以变大,变大,残差平方和变小.故选C.4.【答案】B 【解析】解:根据题意,由函数的图象,的定义域为,其图象关于原点对称,在区间上,函数图象与轴存在交点,由此分析选项:对于A ,,其定义域为,有为偶函数,不符合题意;对于B ,,其定义域为,有{}2540{4A x x x x x =-+≥=≥∣∣1}x ≤R {14}A xx =<<∣ð{}{}121,0,1,2,3B x x =∈-≤=-Z∣(){}R 2,3A B ⋂=ð,A B ()3,10D y x r 2R ()3,10D y x r 2R ()f x {}0x x ≠∣()0,∞+x ()e e x x f x x --={}0x x ≠∣()()()e e e e ,x x x x f x f x f x x x-----===-()221sin2ln x f x x x+=⋅{}0x x ≠∣为奇函数,其图象关于原点对称,当时,函数图象与轴存在交点,符合题意;对于C ,,当时,,必有恒成立,该函数图象在区间上与轴不存在交点,不符合题意;对D ,于,其定义域为,有为偶函数,不符合题意.故选:B.根据题意,由函数的图象分析的性质,由此分析选项,综合可得答案.本题考查函数的图象分析,涉及函数奇偶性和函数值的分析,属于基础题.5.【答案】C【解析】解:,,则,故.故选:C.根据已知条件,结合指数函数的单调性,即可求解.本题主要考查数值大小的比较,属于基础题.6.【答案】D【解析】解:由题意,第一次抽到牌后剩余51张扑克牌,剩余牌3张,故第二次抽到牌的概率为.故选:D.根据题意,第一次抽到牌后剩余51张扑克牌,剩余牌3张,进而求解即可.本题主要考查了条件概率公式,属于基础题.7.【答案】D【解析】【分析】此题要求学生会根据新定义化简求值,灵活运用角度的变换解决数学问题.掌握两角和与差的正弦函数公式的运用.()()()()222211sin 2ln sin2ln ,x x f x x x f x f x x x++-=-⋅=-⋅=-ππ2x k =+()(),sin20,0k x f x ∈==Z x ()e e x xf x x-+=0x >e e 0,0x x x +->>()0f x >()0,∞+x ()221cos2ln x f x x x+=⋅{}0x x ≠∣()()()()222211cos 2ln cos2ln ,x x f x x x f x f x x x++-=-⋅=⋅=()f x 2log 0.40.40.420.4,log 2log 10a b ===<=0.30.30.30log 1log 0.4log 0.31=<<=1c >c a b >>K K K 315117=K K根据新定义化简原式,然后根据两角差的正弦函数公式变形得到的值,根据,利用同角三角函数间的基本关系求出,再根据求出,利用两边取正切即可得到的值,根据特殊角的三角函数值即可求出.【解答】解:依题设得:..又,.故选D.8.【答案】A【解析】【分析】本题考查了正余弦定理在解三角形中的应用,及三角形面积公式,结合二倍角公式及和差化积公式化简,属于难题.根据结合三角形面积公式,得到和,再由正弦定理得到的周长可表示为,再根据和差化积和二倍角公式进行化简,最后结合角的范围求得答案.【解答】解:根据,得到,化简得,根据()sin αβ-π02βα<<<()cos αβ-cos αsin α()βααβ⎡⎤=--⎣⎦tan ββ()sin cos cos sin sin αβαβαβ⋅-⋅=-=()π130,cos 214βααβ<<<∴-= 1cos ,sin 7αα=∴= ()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=⋅--⋅-⎣⎦131147=-=π3β∴=222()S a b c =--3cos 5A =4sin 5A =ABC V ()52sin sin 2l a b c B C =++=++222()S a b c =--()12sin 21cos 2b c A b c A ⋅⋅⨯⨯=⨯⨯⨯-()sin 21cos A A =-,化简得,解得(舍).又因为为锐角三角形,故.再由正弦定理,,则的周长可表示为,再根据和差化积公式得到:,再根据二倍角公式得到,下面讨论,根据题意得到,则,得到,故,故,故.9.【答案】B【解析】解:由,可得,对于①,当时,对于②,,当,则,()21cos A =-25cos 8cos 30A A -+=3cos,cos 15A A ==ABC V 4sin 5A =254sin sin sin 24b c a B C A ====ABC V ()52sin sin 2l a b c B C =++=++25sincos 22B C B C l +-=+⨯π25sin cos 22A B C --=+⨯π2252cos 22B C A C l ---=+=+π2cos 2A C --π02A <<π0π2A C <--<πππ,2222A A A A C A C --<<--<-<π2cos cos 122A A C --<…π2cos 12A C --<…(6,2l ⎤∈+⎦()44cos 2sin cos sin f x x x x x =+-()()()2222πcos sin cos sin 2sin cos cos2sin224f x x x x x x x x x x ⎛⎫=-++=+=+ ⎪⎝⎭5π8x =5π5ππ2884f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭()ππππ224244g x f x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]0,x t ∈πππ2,2444x t ⎡⎤+∈+⎢⎥⎣⎦由于在上的最大值为,所以,故,故的最大值为,故②正确;对于③,令,则,可得,故的正零点有,要使在上有3个零点,则,故③错误,对于④,当,则,故在上单调递减,故④错误.故选:B.根据三角恒等变化化简,根据对称轴处取得最值判断①,根据平移判断②,根据零点求值判断③,根据正弦函数的单调区间判断④.本题考查三角函数的性质,属中档题.二、填空题:本题共6小题,共29分.10.【答案】【解析】解:.故答案为:.根据已知条件,结合复数的四则运算,即可求解.本题主要考查复数的四则运算,属于基础题.11.【答案】10【解析】【分析】写出二项展开式的通项公式,整理后令的指数为2,即可求出.【详解】因为的展开式的通项公式为,令,解得.所以的系数为.故答案为:10.【点睛】本题主要考查二项展开式的通项公式的应用,属于基础题.()g x []0,t ()0g π7π244t +≤3π4t ≤t 3π4()π204f x x ⎛⎫=+= ⎪⎝⎭π2π,4x k k +=∈Z ππ,82k x k =-+∈Z ()f x 3π7π11π15π,,,,8888r = ()f x []0,a 11π15π88a ≤<ππ,42x ⎡⎤∈⎢⎥⎣⎦π3π5ππ3π2,,44422x ⎡⎤⎡⎤+∈∈⎢⎥⎢⎥⎣⎦⎣⎦()f x ππ,42⎡⎤⎢⎥⎣⎦()π24f x x ⎛⎫=+ ⎪⎝⎭71i 22+()()()()34i 1i 34i 71i 1i 1i 1i 22+-+==++-+71i 22+x 522x x ⎛⎫+ ⎪⎝⎭()55315522C C 20,1,2,3,4,5rr r r r r r T x x r x --+⎛⎫==⋅⋅= ⎪⎝⎭532r -=1r =2x 15C 210⨯=12.【答案】12【解析】【分析】本题考查二项分布的期望和方差,考查推理能力和计算能力,属于基础题.先求出和,再利用即可求解.【解答】解:因为随机变量,所以,又因为,所以.故答案为12.13.【答案】52【解析】【分析】本题考查排列的应用,考查分类、分步计数原理的应用,解题需要注意偶数的末位数字以及0不能在首位等性质.分2种情况讨论:①、若0在个位,由排列公式即可得此时三位偶数的数目,②、若0不在个位,且由于0不能在首位,由分步计数原理可得此情况下三位偶数的数目,综合2种情况,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、若0在个位,此时只须在中任取2个数字,作为十位和百位数字即可,有个没有重复数字的三位偶数;②、若0不在个位,此时必须在2或4中任取1个,作为个位数字,有2种取法,0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,此时共有个没有重复数字的三位偶数;综合可得,共有个没有重复数字的三位偶数.故答案为52.13p =()()413D n p p ξ=⋅⋅-=()()329D D ξξ+=()6,B p ξ~()62E np p ξ===13p =()()12416333D n p p ξ=⋅⋅-=⨯⨯=()()32912D D ξξ+==1,2,3,4,525A 20=24432⨯⨯=203252+=14.【答案】4【解析】【分析】本题考查利用基本不等式求最值,属于中档题.由正数满足,可得,所以结合基本不等式即可求解.【解答】解:正数满足,,解得同理则,当且仅当时取等号(此时.的最小值为4.故答案为:4.15.【答案】【解析】解:①当在区间有4个零点且在区间没有零点时,满足,无解;②当在区间有3个零点且在区间有1个零点时,满足,或,a b 111a b +=01a b a =>-()1414141111111a a ab a a a +=+=+-------,a b 111a b+=01ab a ∴=>-1,a >1,b >141411111a ab a a +=+-----()14141a a =+-=- (3)2a =3)b =1411a b ∴+--371,,224⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦()f x (),0a -[)0,∞+()Δ164740522a a ⎧=--<⎪⎨-≤-<-⎪⎩()f x (),0a -[)0,∞+()()Δ16474000322a f a ⎧⎪=-->⎪<⎨⎪⎪-≤-<-⎩者解得③当在区间有2个零点且在区间有2个零点时,满足,解得,综上所述,的取值范围是.分类讨论,分在区间有4个零点且在区间没有零点,在区间有3个零点且在区间有1个零点和在区间有2个零点且在区间有2个零点三种情况求解即可.本题考查了分段函数,函数的零点与方程根的关系,属于难题.三、解答题:本题共5小题,共67分.解答应写出文字说明,证明过程或演算步骤.16.【答案】解:(1)在中,,设,则,,解得,;(2)由(1)得,由正弦定理得,即解得.(3)是锐角,且,()Δ164740322a a ⎧--=⎪⎨-≤-<-⎪⎩72;4a <≤()f x (),0a -[)0,∞+()()Δ16474000312a f a ⎧⎪=-->⎪≥⎨⎪⎪-≤-<-⎩312a <≤a 371,,224⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦()f x (),0a -[)0,∞+()f x (),0a -[)0,∞+()f x (),0a -[)0,∞+ABC V 92cos ,5,163a Bbc ===2a k =3,0c k k =>2294259cos 23216k k B k k +-∴==⨯⨯2k =24a k ∴==4,6,sin a c B ====sin sin a bA B=4sin A =sin A =π,sin sin ,4a b A A <=<=∴ π4A <,.17.【答案】解:(1)根据函数的部分图象,可得,.再由图象知:,又,故有.令,解得,故函数的对称中心为.(2)先将的图象纵坐标缩短到原来的倍,可得的图象,再向右平移个单位,得到的图象,最后将图象向上平移1个单位后得到的图象.令,求得,sin22sin cos 2A A A ∴===1cos28A ==()cos 2cos cos2sin sin2B A B A B A∴-=+91168=⨯5764=()()cos (0,0,π)f x A x A ωϕωϕ=+>><πϕ<32π5ππ2,4123A ω=⋅=+2ω∴=5π22π,12k k ϕ⨯+=∈Z 5ππ,6ϕϕ<∴=-()5π2cos 26f x x ⎛⎫=-⎪⎝⎭5ππ2π62x k -=+2ππ,32k x k =+∈Z 2ππ,0,32k k ⎛⎫+∈⎪⎝⎭Z ()f x 125πcos 26y x ⎛⎫=- ⎪⎝⎭π12()cos 2πcos2y x x =-=-()cos21g x x =-+2ππ22π,k x k k -≤≤∈Z πππ,2k x k k -≤≤∈Z可得的减区间为,结合,可得的单调减区间为.,故当时,取得最大值,为;当时,取得最小值,为.【解析】本题主要考查由函数的部分图象求解析式,函数的图象变换规律,三角函数的图象的对称性,余弦函数的定义域和值域,属于中档题.(1)由函数的图象的顶点坐标求出,由周期求出,由图象过点求出的值,可得的解析式,再利用三角函数的图象的对称性,得出结论;(2)由题意利用函数的图象变换规律求得的解析式,再利用余弦函数的单调性、余弦函数的定义域和值域,得出结论.18.【答案】(1)证明:连接,在四棱台中,且,又四边形是正方形,故,点为棱的中点,则,故,即四边形为平行四边形,则平面平面,故平面;(2)由于平面,四边形是正方形,以为坐标原点,所在直线为轴,建立空间直角坐标系,()g x ππ,π,2k k k ⎡⎤-∈⎢⎥⎣⎦Z π3π,124x ⎡⎤∈⎢⎥⎣⎦()g x π3π,24⎡⎤⎢⎥⎣⎦π3π2,62x ⎡⎤∈⎢⎥⎣⎦2πx =()g x ()112--+=π26x =()gx 1+()sin y A x ωϕ=+()sin y A x ωϕ=+A ω5π,212⎛⎫⎪⎝⎭ϕ()f x ()sin y A x ωϕ=+()g x 1A B 1111ABCD A B C D -11A D ∥AD 1112A D AD =ABCD BC ∥,AD BC AD =E BC BE ∥1,2AD BE AD =11A D ∥11,BE A D BE =11A D EB 1D E∥11,A B D E ⊄111,AA B B A B ⊂11AA B B 1ED ∥11AA B B 1AA ⊥ABCD ABCD A 1,,AB AD AA ,,x y z由于,则,则,设平面的一个法向量为,则,即,令,则,平面的一个法向量为,故由图知平面与平面所成角为锐角,故平面与平面(3)由(2)可知,则,设平面的一个法向量为,则,即,令,则,设点到平面的距离为,则.【解析】1)连接,先证明,再根据线面平行的判定定理即可证明结论;(2)建立空间直角坐标系,求出相关点的坐标,求出平面与平面的法向量,根据空间角的向量求法,即可求得答案;1111,2A A A B AB ===()()()10,0,1,0,2,0,2,1,0A D E ()()10,2,1,2,1,0DA ED =-=-1A DE (),,m x y z = 100m DA m ED ⎧⋅=⎪⎨⋅=⎪⎩2020yz x y -+=⎧⎨-+=⎩1x =()1,2,4m =ABCD ()0,0,1n =cos ,m n m n m n ⋅<>===1A DE ABCD 1A DE ABCD ()()()()11,1,1,0,2,0,2,2,0,2,0,0C D C B ()()()10,2,0,1,1,1,2,0,0BC DC DC ==-=1C DC (),,u s t g = 100u DC u DC ⎧⋅=⎪⎨⋅=⎪⎩ 020s t g s -+=⎧⎨=⎩1t =()0,1,1u =B 1C DC d BC u d u ⋅=== 1A B 1D E∥1A B 1A DE ABCD(3)求出平面的法向量,根据空间距离的向量求法,即可求得答案.19.【答案】解:(1)函数的定义域为,,①当时,,所以在上是增函数;②当时,由得,所以在上是增函数,由得,所以在上是减函数;故时,在上单调递增;当时,在上单调递增,在上单调递减;(2)由的图象恒在轴上方,可得,因为且,不等式两边同时除以,可得,设可得令,解得,令,解得所以在上单调递增,在上单调递减,所以当时,取得最大值为,所以,即,所以的范围是;(3)证明:,1C DC ()f x ()0,∞+()1m x m f x x x-=-='0m ≤()0f x '>()f x ()0,∞+0m >()0f x '>x m >()f x (),m ∞+()0f x '<0x m <<()f x ()0,m 0m ≤()f x ()0,∞+0m >()f x (),m ∞+()0,m ()f x x ()ln 0f x x m x =->0x >0m >mx 1ln xm x>()ln ,x h x x =()21ln ,xh x x-='()0h x '>0e x <<()0h x '<e,x >()h x ()0,e ()e,∞+e x =()h x ()1e eh =max 1()h x m>11em >m ()0,e ()ln ,0f x x m x x =->则,由(1)可知,当时,在上是增函数,故不存在不相等的实数,使得,所以,由,得,即,不妨设,则,要证,只需证,即证,只需证令只需证,即证令,则,所以在上是增函数,所以,即成立,故成立.【解析】本题考查了利用导数求函数的单调区间(含参)、利用导数研究恒成立与存在性问题、利用导数求函数的最值(含参)、利用导数解(证明)不等式,属于较难题.()1m x m f x x x-=-='0m ≤()f x ()0,∞+12,x x ()()12f x f x =0m >()()12f x f x =1122ln ln x m x x m x -=-()2121ln ln m x x x x -=-120x x <<21210ln ln x x m x x -=>-12m x x <+211221ln ln x x x x x x -<+-212112ln ln x x x x x x -<-+2122111ln 1x x x x x x -<+211x t x =>1ln 1t t t -<+1ln 0,1t t t -->+()()1ln 11t g t t t t -=->+()2221210(1)(1)t g t t t t t +=-=>++'()g t ()1,∞+()()10g t g >=1ln 01t t t -->+120m x x <<+(1)求出函数的导数,讨论的取值,利用导数判断函数的单调性与单调区间;(2)问题转化为,设,利用导数求出,即可求出结果;(3)易得,由得,要证,只需证,只需证,令,只需证,即证,令,利用导数研究单调性即可得证.20.【答案】解:(1)对函数求导,可得,则曲线在处的切线斜率为;(2)证明:当时,,即,即,而在上单调递增,因此原不等式得证;(3)证明:设数列的前项和,则;当时,,由(2),,故,不等式右边得证;要证,只需证:对任意的,()f x m ()f x 1ln x m x >()ln x h x x=max ()h x 0m >()()12f x f x =21210ln ln x x m x x -=>-12m x x <+211221ln ln x x x x x x -<+-2122111ln 1x x x x x x -<+211x t x =>1ln 1t t t -<+1ln 01t t t -->+()()1ln 11t g t t t t -=->+()f x ()()()221ln 121x f x x x x x+=-++'()y f x =2x =()1ln3234f =-'0x >()1f x >()2ln 112x x x ++>()()2ln 102xg x x x =+->+()()()220,1(2)x g x g x x x =>++'()0,∞+()()00,g x g >={}n a n ()1ln !ln 2n S n n n n ⎛⎫=-++ ⎪⎝⎭111a S ==2n ≥11111111ln 1ln 11122111n n n n a S S n f n n n n -⎛⎫ ⎪-⎛⎫⎛⎫⎛⎫=-=+-=-++=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪-⎝⎭()02n a n <≥11n S S ≤=56n S ≤()22112,116n n k k k n a f k ==⎛⎫⎛⎫≥-=-≤ ⎪⎪-⎝⎭⎝⎭∑∑令,则,当时,,函数在上单调递减,则,即,则,因此当时,,当时,累加得,又,故,即得证.【解析】(1)对函数求导,求出的值即可得解;(2)令,先利用导数求出的单调性,由此容易得证;(3)设数列的前项和,可得当时,,由此可知,证得不等式右边;再证明对任意的,令,利用导数可知,由此可得.再求得,由此可得证不等式左边,进而得证.本题考查导数的综合运用,考查逻辑推理能力和运算求解能力,属于难题.()()()()2ln 121x x h x x x +=+-+()222(1)x h x x '=-+0x >()0h x '<()h x ()0,∞+()0h x <()()()2ln 121x x x x ++<+()()()()222211221414x x x x x f x x x x ++-<⋅-=<++2k ≥22111111114(1)4(1)122321f k k k k k ⎛⎫⎛⎫-<<=- ⎪ ⎪------⎝⎭⎝⎭4n ≥()441111111111111,1257792321252110n nk k k a f k n n n ==⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-<-+-++-=-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑ ()()233353511ln210.69410.041,ln 1 1.10.69310.017522222a f a -=-=-<⨯-=-=-<--=()()2324110.0410.01750.1585106nnkk k k a aa a ==-=--+-=++=<∑∑()f x ()2f '()()1g x f x =-()g x {}n a n ()1ln !ln 2n S n n n n ⎛⎫=-++ ⎪⎝⎭2n ≥10n n n a S S -=-<11n S S ≤=()22112,116nnk k k n a f k ==⎛⎫⎛⎫≥-=-≤⎪ ⎪-⎝⎭⎝⎭∑∑()(2)()ln 12(1)x x h x x x +=+-+()()()2ln 121x x x x ++<+()4110n k k a =-<∑23,a a --。

江苏海门中学2025届高三上学期第一次调研考试数学试题+答案

江苏海门中学2025届高三上学期第一次调研考试数学试题+答案

2024/2025学年度高三第一次调研测试数学2025.09一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题“ x ∀∈N ,20x >”的否定为( ) A . x ∀∈N ,20x ≤ B . x ∃∈N ,20x ≤ C . x ∃∈N ,20x >D . x ∀∈N ,20x <2.已知集合{}||2,A x x x =<∈Z ,(){}2ln 3B x y x x ==−,则A B = ( ) A .{}02x x <<B .{}23x x −<<C .{1}D .{0,1,2}3.已知点(3,4)P −是角α终边上一点,则cos2α=( ) A .725B .725−C .2425D .2425−4.已知函数1,12()1,12xa x f x x x+≤ = > 在R 上单调递减,则实数a 的取值范围为( ) A .0a < B .12a >−C .102a −<< D .102a ≤<5.已知函数()f x 部分图象如图所示,则其解析式可能为( )A .()2()e e x x f x x −=− B .()2()e e x x f x x −=+ C .()()e e x x f x x −=−D .()()e e x x f x x −=+6.过点(3,1)作曲线ln(1)y x =−的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条7.锐角α、β满足sin cos()sin βαβα=+,若1tan 2α=,则cos()αβ+=( )A .12BCD. 8.若函数2()sin 20)f x x x ωωω=−+>在0,2π上只有一个零点,则ω的取值范围为( ) A .14,33B .14,33C .17,66D .17,66二、选择题:本题共3小题,每小题6分,共18分。

2024-2025学年福建省漳州市高三上学期第一次质量检测数学试题及答案

2024-2025学年福建省漳州市高三上学期第一次质量检测数学试题及答案

福建省漳州市2025届高三毕业班第一次教学质量检测数学试题本试卷共4页,19小题,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,用0.5m 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2340A x x x =−−>∣,则R A = ( ) A.{}14x x −∣ B.{14}x x −<<∣C.{41}x x −<<∣D.{}41x x −∣ 2.若复数3i 1iz −=+,则z 的虚部为( ) A.2i − B.2i C.2− D.23.已知,a b 为单位向量,若0a b a b +−−= ,则a b −= ( )C.1D.04.若()tan 2tan ,sin t αβαβ=−=,则()sin αβ+=( ) A.2t B.2t − C.3t D.3t −5.已知双曲线22:4C x y −=,点M 为C 上一点,过M 分别作C 的两条渐近线的垂线,垂足分别为,A B ,则四边形OAMB (O 为原点)的面积为( )A.1B.2C.4D.66.在正四棱锥1111P A B C D −中,11PB PD ⊥.用一个平行于底面的平面去截该正四棱锥,得到几何体111111,1,2ABCD A B C D AB A B −==,则几何体1111ABCD A B C D −的体积为( )7.已知函数()πtan (0)4f x x ωω=+> ,若方程()1f x =在区间()0,π上恰有3个实数根,则ω的取值范围是( )A.(]2,3B.[)2,3C.(]3,4D.[)3,48.已知函数()222cos x x f x x x −=+++,若()()()3,e ,πa f b f c f =−==,则( )A.b a c <<B.b c a <<C.c a b <<D.c b a <<二、多项选择题:本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错或不选的得0分.9.已知()2,X N µσ∼,则( )A.()E X µ=B.()D X σ=C.()()1P X P X µσµσ++−=D.()()2P X P X µσµσ+>−10.已知定义在R 上的函数()f x 不恒等于()0,π0f =,且对任意的,x y ∈R ,有()()()()222f x f y f x y f x y +=+−,则( )A.()01f =B.()f x 是偶函数C.()f x 的图象关于点()π,0中心对称D.2π是()f x 的一个周期11.在2024年巴黎奥运会艺术体操项目集体全能决赛中,中国队以69.800分的成绩夺得金牌,这是中国艺术体操队在奥运会上获得的第一枚金牌.艺术体操的绳操和带操可以舞出类似四角花瓣的图案,它可看作由抛物线2:2(0)C y px p =>绕其顶点分别逆时针旋转90180270 、、后所得三条曲线与C 围成的(如图阴影区域),,A B 为C 与其中两条曲线的交点,若1p =,则( )A.开口向上的抛物线的方程为212y x =B.4AB =C.直线x y t +=截第一象限花瓣的弦长最大值为34D.阴影区域的面积大于4 三、填空题:本大题共3小题,每小题5分,共15分. 12.41x x −的展开式的常数项为__________. 13.已知数列{}n a 的前n 项和为2n S n n =+,当9n nS a +取最小值时,n =__________. 14.2024年新高考数学I 卷多选题的计分标准如下:①本题共3小题,每小题6分,共18分;②每小题的四个选项中有两个或三个正确选项,全部选对的得6分,有选错或不选的得0分;③部分选对的得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).考生甲在此卷多选题的作答中,第一小题选了三个选项,第二小题选了两个选项,第三小题选了一个选项,则他多选题的所有可能总得分(相同总分只记录一次)的第80百分位数为__________.四、解答题:本大题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤. 15.(13分)在ABC 中,,,A B C 的对边分别为,,a b c ,且满足__________.请在①()()()()sin sin sin a b A C a c A C −+=−+;②ππ1sin cos 634C C −+=,这两个中任选一个作为条件,补充在横线上,并解答问题.(1)求C ;(2)若ABC的面积为D 为AC 的中点,求BD 的最小值.16.(15分)某学校食堂有,A B 两家餐厅,张同学第1天选择A 餐厅用餐的概率为13.从第2天起,如果前一天选择A 餐厅用餐,那么次日选择A 餐厅用餐的概率为34;如果前一天选择B 餐厅用餐,那么次日选择A 餐厅用餐的概率为12.设他第n 天选择A 餐厅用餐的概率为n P . (1)求2P 的值及1n P +关于n P 的表达式;(2)证明数列23n P − 是等比数列,并求出{}n P 的通项公式.17.(15分)已知边长为4的菱形ABCD (如图1),π,3BAD AC ∠=与BD 相交于点,O E 为线段AO 上一点,将三角形ABD 沿BD 折叠成三棱锥A BCD −(如图2).(1)证明:BD CE ⊥;(2)若三棱锥A BCD −的体积为8,二面角B CE O −−OE 的长. 18.(17分)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为12,F F ,点P 为C 上一点,12PF F周长为2,其中O 为坐标原点.(1)求C 的方程;(2)直线:l y x m =+与C 交于,A B 两点,(i )求OAB 面积的最大值;(ii )设OQ OA OB =+ ,试证明点Q 在定直线上,并求出定直线方程.19.(17分)定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x −=−成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x=−−. (1)当52a =时,判断()f x 是否为极值可差比函数,并说明理由; (2)是否存在a 使()f x 的极值差比系数为2a −?若存在,求出a 的值;若不存在,请说明理由;(352a ,求()f x 的极值差比系数的取值范围.福建省漳州市2025届高三毕业班第一次教学质量检测数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则:2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.12 3 4 5 6 7 8 A D B C B C C A二、多项选择题:本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错或不选的得0分.910 11 AC ABC ABD三、填空题:本题共3小题,每小题5分,共15分.12.6 13.3 14.13四、解答题:本大题共6小题,共77分,解答应写出文字说明,证明过程或演算步骤. 15.(13分)【解析】解法一:(1)选择条件①,()()()()sin sin sin a b A C a c A C −+=−+,则()()()sin sin sin a b B a c A C −=−+由正弦定理可得()()()a b b a c a c −=−+,即222a b c ab +−=, 所以2221cos 22a b c C ab +−==,由()0,πC ∈,所以π3C =. 选择条件②,ππ1sin cos 634C C −+=,即πππ1sin cos 2334C C −++=, 所以2π1cos 34C+= , 由()ππ4π0,π,333C C ∈<+<,则π1cos 32C +=−, 所以π2π33C +=,则π3C =.(2)由11sin 22S ab C ab ===,解得20ab =. 又BD BC CD =+ ,所以2222()2BD BC CD BC BC CD CD =+=+⋅+ 222211111122224222b a a b b a ab ab ab ab =+××−+=+−−= 10=所以BD ,当且仅当ab 时等式成立,所以BD .解法二:(1)同解法一;(2)因为ABC S D = 为AC 中点,所以111πsin 2223BDC ABC S S a b ===⋅⋅⋅ ,得20ab =, 在BCD 中,由余弦定理得2222cos BD BC CD BC CD C +−⋅⋅221111121042222a b ab a b ab ab =+−⋅−==所以BD ab所以BD .16.(15分)【解析】(1)设n A =“第n 天去A 餐厅用餐”,n B =“第n 天去B 餐厅用餐”, 则Ωn n A B =∪,且n A 与n B 互斥.根据题意得 ()()()()()111112,1,133n n P P A P B P A P B P A ===−==−, ()()1131,42n n n n P A A P A B ++==∣∣, ()()()()()2212112113217343212P P A P A P A A P B P A B ==+=×+×=∣∣, ()()()()()()111131142n n n n n n n n n n P P A P A P A A P B P A B P P ++++==+=+−∣∣, 即11142n n P P +=+. (2)12112111234234643n n n n P P P P + −=+−=−=−又因为121033P −=−≠,所以23n P −是以13−为首项,14为公比的等比数列, 所以1211334n n P − −=−×, 从而121334n n P −=−×. 17.(15分)【解析】解法一:(1)因为四边形ABCD 是边长为4的菱形,并且π3BAD ∠=, 所以,ABD BCD 均为等边三角形,故,AO BD CO BD ⊥⊥,且AO CO ==,因为AO ⊂平面,ACO CO ⊂平面ACO ,且AO CO O ∩=,所以BD ⊥平面ACO 因为CE ⊂平面ACO ,所以BD CE ⊥.(2)设A 到平面BCD 的距离为h ,因为等边三角形BCD 的边长为4,所以三棱锥A BCD −的体积为21483h =,所以h =因为AO =,所以AO ⊥平面BCD ,以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系O xyz −;则()()0,0,0,2,0,0O B,()(0,,0,0,C A ,设()0,0,(0)E n n > 因为BD ⊥平面ACO , 所以()11,0,0m = 是平面ECO 的一个法向量,设平面BCE 的法向量为()2,,m x y z = ,又()()2,,2,0,BC BE n −=− ,故222020m BC x m BE x nz ⋅=−+= ⋅=−+=取x =,则1,y z ==得2m = , 因为二面角B CE O −−所以1212m m m m ⋅=⋅解得:n =n =(舍去),此时OE =解法二:(1)同解法一;(2)如图,过点O 作OQ CE ⊥,垂足为Q ,连接BQ ,由(1)可得BO ⊥平面,AOC CE ⊂平面AOC ,所以BO CE ⊥,又,CE OQ OQ ⊥⊂平面BOQ ,BO ⊂平面,BOQ OQ BO O ∩=, 所以CE ⊥平面BOQ ,因为BQ ⊂平面BOQ ,所以CE BQ ⊥,则BQO ∠即为二面角B CE O −−的平面角,所以cos BQO ∠=,则tan BO BQO OQ ∠==,又2BO =,所以OQ =,在Rt COQ 中,sin OQ OCQCO ∠==,则1tan 4OCQ ∠=, 设A 到平面BCD 的距离为h ,因为等边三角形BCD 的边长为4,所以三棱锥A BCD −的体积为21483h =,所以h =因为AO =,所以AO ⊥平面BCD ,因为CO ⊂平面BCD ,所以AO CO ⊥,即EO CO ⊥,在Rt COE 中,1tan 4OE OCQ OC ∠==,又OC =OE =18.(17分)【解析】(1)设焦距为2c,依题意,222,c a a c = +=+解得1,a c = = 又222a b c =+,所以2221b a c =−=,所以C 的方程为2212x y +=. (2)(i )设()()1122,,,A x y B x y , 因为2212x y y x m += =+,所以2234220x mx m ++−=,()22Δ1643220m m =−××−>,解得23m <, 所以21212422,33m m x x x x −+=−=,AB ==== 点O 到直线:0l x y m −+=的距离d OAB的面积12S =()2232m m −+ 当且仅当223m m−=,即m =OAB . (ii )设(),Q x y ,由OQ OA OB =+ ,有()()1212,,x y x x y y =++, 即1212x x x y y y =+ =+因为1243m x x +=−,所以1212223m y y x x m +=++=,故4323m x my =− = ,于是有12y x =−, 所以点Q 在定直线12y x =−. 19.(17分)【解析】(1)当52a =时,()15ln (0)2f x x x x x =−−>, 所以()()()2221215122x x f x x x x −−=+−=′, 当()10,2,2x ∞∈∪+ 时,()0f x ′>;当1,22x ∈时,()0f x ′<, 所以()f x 在10,2和()2,∞+上单调递增,在1,22上单调递减, 所以()f x 的极大值为153ln2222f=−,极小值为()352ln222f =−, 所以()110122ln22232f f  −=−−  ,因此()f x 是极值可差比函数. (2)()f x 的定义域为()()210,,1a f x x x ∞+′+=−,即()221x ax f x x−+=′, 假设存在a ,使得()f x 的极值差比系数为2a −,则12,x x 是方程210x ax −+=的两个不等正实根, 21212Δ401a x x a x x =−> +== 且,解得2a >,不妨设12x x <,则21x >, 由于()()1211221211ln ln f x f x x a x x a x x x −=−−−−− ()11212211ln x x x a x x x =−+−()()11121221222ln 2ln ,x x a x x a x x x x x x =−−=−− −所以112222ln x a a x x x −=−−,从而11221ln 1x x x x =−, 得()22212ln 0,*x x x −−= 令()()2222121(1)2ln (1),0x x x g x x x x g x x x x −+−=−−>=′=>, 所以()g x 在()1,∞+上单调递增,有()()10g x g >=, 因此()*式无解,即不存在a 使()f x 的极值差比系数为2a −. (3)由(2)知极值差比系数为11222ln xa x x x −−, 即1211222ln x x x x x x +−−,不妨设120x x <<, 令()12,0,1x t t x =∈,极值差比系数可化为12ln 1tt t+−−, ()2122121221122x x x x a t x x x x t+==++=++,52a ,解得1142t ,令()()212ln 1112ln ,142(1)t t t t p t t t p t t t +−+ =−= − ′ − ,设()()2221121212ln 1,14t t h t t t t h t t t t t −−=+−=−−= ′22(1)0t t −=− 所以()h t 在1,14 上单调递减,当1,14t∈ 时,()()1102h t h h >= ,从而()0p t ′>,所以()p t 在11,42 上单调递增,所以()1142p p t p,即()102ln223ln23p t −− .故()f x 的极值差比系数的取值范围为102ln2,23ln23 −− .。

辽宁省鞍山市普通高中2024-2025学年高三上学期第一次质量检测数学试题(含答案)

辽宁省鞍山市普通高中2024-2025学年高三上学期第一次质量检测数学试题(含答案)

鞍山市普通高中2024—2025学年度高三第一次质量监测数学考试时间:120分钟 满分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则( )A.B.C.D.2.已知复数满足,则()A.B.C.D.3.已知向量满足,则( )B.C.2D.4.在二项式的展开式中,常数项为( )A.180B.270C.360D.5405.已知函数为奇函数,则实数的值为( )A.-2B.2C.-1D.16.若为随机事件,且,则( )A.若为互斥事件,则B.若为互斥事件,C.若为相互独立事件,D.若,则7.已知双曲线在双曲线上,且,若恒成立,则实数的取值范围为( )A.B.C.D.{}1A xx =≥∣11B x x ⎧⎫=<⎨⎬⎩⎭A B ⋂=()1,∞+[)1,∞+][(),11,∞∞--⋃+(](),11,∞∞--⋃+z ()11i z z -=+z=i i -1i 21i 2-,a b 1,22b a a b a b ==-=+ 2a b -= 1022x ⎫⎪⎭()131xaf x =+-a ,M N ()()0.4,0.3PM P N ==,M N ()0.58P M N ⋃=,M N ()0.12PM N ⋂=,M N ()0.7PM N ⋃=()0.4P NM =∣()0.15P NM =∣()()2211222:1(0),,,,4y x C m A x y B x y m -=>120y y >12120x x y y -<m [)2,∞+(]0,2[)1,∞+(]0,18.已知定义在上的函数,若,则取得最小值时的值为( )A.4B. C. D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,定义域均为,则下列说法正确的是()A.函数与有相同的最小正周期B.函数与的图象有相同的对称轴C.的图象可以由函数的图象向右平移个单位得到D.函数的图象与的图象关于直线对称10.已知直线,圆为圆上任意一点,则下列说法正确的是( )A.的最大值为5B.C.直线与圆相切时,D.圆心到直线的距离最大为411.已知函数满足对任意,都有,且为奇函数,,下列说法正确的是( )A.函数的一个周期是8B.函数为偶函数C.D.()1,∞+()2e x f x x =-()()e b f a f =()f baa 2e 2e ee ()()22π2cos 2sin ,2cos 23f x x xg x x ⎛⎫=-=- ⎪⎝⎭R ()y f x =()y g x =()y f x =()y g x =()yg x =()y f x =π6()y f x =()y g x =π12x =:0l kx y k -+=()2200:650,,C x y x P x y +-+=C 22x y +00y x l C k=±C l ()f x x ∈R ()()42f x f x -=-()43f x +()12f =()f x ()27f x +20251()2i f i ==↓∑11(1)(43)2ni i f i n-=--=∑三、填空题:本题共3小题,每小题5分,共15分.12.已知数列的前项和为,且有,则__________.13.已知,则__________.14.已知四棱锥中,底面为正方形,,则__________,该四棱锥的高为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.本小题满分13分如图,四棱锥中,底面是边长为2的正方形,为等边三角形,且平面平面.(1)求四棱锥的体积;(2)求二面角的余弦值.16.本小题满分15分2024年6月25日14时07分,嫦娥六号返回器准确着陆于内蒙古自治区四子王旗预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现了世界首次月球背面采样返回.某学校为了了解学生对探月工程的关注情况,随机从该校学生中抽取了一个容量为90的样本进行调查,调查结果如下表:关注不关注合计男生5560女生合计75(1)完成上述列联表,依据该统计数据,能否有的把握认为该校学生对探月工程的关注与性别有关?(2)为了激发同学们对探月工程的关注,该校举办了一次探月知识闯关比赛,比赛有两个答题方案可供选择:方案一:回答4个问题,至少答对3个问题才能晋级;方案二:在4个问题中随机选择2个问题作答,都答对才能晋级.{}n a n n S 23n n a S -=3a =()80,π,sin 5ααα∈+=πcos 3α⎛⎫+= ⎪⎝⎭P ABCD -ABCD 34,cos 4PA PB AB PCA ∠====PC =P ABCD -ABCD PAD V PAD ⊥ABCD P ABCD -P AC B --99%已知振华同学答对这4个问题的概率分别为,振华同学回答这4个问题正确与否相互独立,则振华选择哪种方案晋级的可能性更大?附:0.10.050.0250.010.0012.7063.8415.0246.63510.82817.本小题满分15分已知椭圆,右焦点为且离心率为,直线,椭圆的左右顶点分别为为上任意一点,且不在轴上,与椭圆的另一个交点为与椭圆C 的另一个交点为.(1)直线和直线的斜率分别记为,求证:为定值;(2)求证:直线过定点.18.本小题满分17分已知函数,且定义域为.(1)求函数的单调区间;(2)若有2个零点,求实数的取值范围;(3)若恒成立,求实数的取值范围.19.本小题满分17分若数列满足如下两个条件:①和恰有一个成立;②.就称数列为“中项随机变动数列”.已知数列为“中项随机变动数列”,(1)若,求的可能取值;2221,,,3332()()()()22()n ad bc a b c d a c b d χ-=++++()P k χ≥k2222:1(0)x y C a b a b +=>>()2,0F 23:6l x =C 12,A A P 、l x 1PA C 2,M P A N 1M A 2M A 12M AM A k k 、12MA MA k k ⋅MN ()2e 2xa f x x =-[)0,,a ∞+∈R ()f x ()f x 12,x x a ()()31e 1cos 2xa f x a x ⎛⎫≥-+- ⎪⎝⎭a {}n a *21,2n n n n a a a ++∀∈=+N 122n n n a a a ++=+*,0n n a ∀∈≥N {}n a {}n a 1246,4,3a a a ===3a(2)已知的解集为,求证:成等比数列;(3)若数列前3项均为正项,且的解集为,设的最大值为,求的最大值.0n a ={}2,5,8369,,a a a {}n a 211,0n a a a -=={},,m s t ,,m s t p 1p a +鞍山市普通高中2024—2025学年高三第一次质量检测数学科参考答案一、选择题:1-5DBDAB6-8DAC9.ACD 10.BC11.ACD二、填空题:12.1213. 14.或三、解答题:15.解:(1)取中点,连接,因为平面平面,平面平面,平面,在等边中,,所以平面,的体积为.(2)取中点,连接,则,以为坐标原点,分别以的方向为轴的正方向,,为平面的法向量,则有,令,得,取为平面的法向量,由图可知,二面角的大小为钝角,二面角的余弦值为16(1)关注不关注合计男生5556035-AD E PE PAD ⊥ABCD PAD ⋂ABCD AD =PE ⊂PAD PAD V PE AD ⊥PE ⊥ABCD 143P ABCD PE V -==⨯=P ABCD -BC F EF EF AD ⊥E ,,EA EF EPx,y,z ()(()()1,0,0,0,,1,2,0,1,2,0A P CB-(()1,,2,2,0AP AC =-=-APC 1111110220n AP x n AC xy ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩1z =)1n = ()20,0,1n =ABC 121212cos ,n n n n n n ⋅===P AC B --P AC B --女生201030合计751590能有的把握认为该校学生对探月工程的关注与性别有关(2)记这4个问题为,记振华答对的事件分别记为,分别记按方案一、二晋级的概率为,则因为,振华选择方案一晋级的可能性更大17解:(1)由题意,可得椭圆设,又,所以,为定值(2)设直线,代入,得,2290(5510205)9 6.63560307515χ⨯-⨯==>⨯⨯⨯99%,,,a b c d ,,,a b c d ,,,A B C D 12,P P 1()()()()()P P ABCD P ABCD P ABCD P ABCD P ABCD =++++322121114233232327⎛⎫⎛⎫=⨯⨯+⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭()()()()()()2111111666666P P AB P AC P AD P BC P BD P CD =+++++21221733633218⎡⎤⎛⎫=⨯+⨯⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1472718>222223c c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩3a b =⎧⎪⎨=⎪⎩∴22:195x y C +=()221111,,195x y M x y +=()()123,0,3,0A A -12221111A A 221111555933999M Mx y y y k k x x x x -⋅=⋅===-+---12MA MA k k ⋅59-112221,,393P P A P MA A P A N A N MA y yk k k k k k =====2221533A M A N A MA M k k k k ⋅=⋅=-:M Nx my t =+22195x y +=()22259105450m y mty t +++-=,则且有,所以,可得或3(舍)直线过定点法二:设,直线由.得,所以,同理直线的斜率存在时,,令,当的斜率不存在时,直线过定点()()1122,,,M x y N x y 22Δ0,59m t >+>1222122105954559mt y y m t y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩()()221212A A 221212125333(3)3M N y y y y k k x x m y y m t y y t ⋅=⋅==---+-++-225455954813t t t -=--+32t =MN 3,02⎛⎫⎪⎝⎭()6,P Py ()1:39Py A P y x =+22(3)9195P y y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩()2222451694050pp p y xy x y +++-=Δ729000=>2222294053135303,,454545P P PM M MP P P y y y x x y y y y --+-===+++22231510,55P PN NP P y y x y y y --==++MN ()()2422015203675315p p p M N MNM N p p y y y y y k x x y y +-===--+--()22221020315:55315p pp p p p y y y MN y x y y y ⎛⎫-+=- ⎪ ⎪++--⎝⎭0y =()()()2222223153153153522525p p ppppy y y x y y y --+=-==+++MN 2222231353153,,15,4552P P M N P M NP P y y x x y x x y y -+-======++MN 3,02⎛⎫⎪⎝⎭18.(1),(注:导函数的定义域按写不扣分,下同)①时,恒成立,所以在上递减(注:写上递增不扣分,下同)②时,恒成立,所以在上递增③时,令得单调递减,单调递增综上:在上单调递减,时在上递增,时,在上单调递减,在上单调递增(2)因为不是单调函数,由(1)知,,且在上单调递减,在上单调递增,要使得有2个零点,则必有,所以,,又当时,先证:,令,令,令在上单调递增,在上单调递减,所以,所以成立,所以,,即:成立,取则有,且,所以时,有2个零点综上:()[)2e ,0,2xa f x x x ∞=-∈+()()2e 1,0,x f x a x ∞=-∈+'[)0,∞+0a ≤()0f x '<()f x [)0,∞+()0,∞+1a ≥()2e 10(0)x f x x '≥->>()f x [)0,∞+01a <<()0f x '=11ln2x a=()()110,ln ,0,2x f x f x a ⎛⎫∈< ⎝'⎪⎭()()11ln ,,0,2x f x f x a ∞⎛⎫'∈+> ⎪⎝⎭()0a fx ≤[)0,∞+1a ≥()f x [)0,∞+()0,1a ∈()f x 110,ln 2a ⎛⎫ ⎪⎝⎭()f x 11ln ,2a ∞⎛⎫+ ⎪⎝⎭()f x ()0,1a ∈()f x 110,ln 2a ⎛⎫⎪⎝⎭()f x 11ln ,2a ∞⎛⎫+ ⎪⎝⎭()f x 12x x 、1111ln 1ln 022f a a ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭10,e a ⎛⎫∈ ⎪⎝⎭10,e a ⎛⎫∈ ⎪⎝⎭()002af =>2e (0)xx x >>()()222,(0),,(0)e ex xx x x x x x x ϕϕ-='=>>()0,02x x ϕ><<'()()0,2,x x x ϕϕ<>'()0,2()2,∞+()()2421e x ϕϕ≤=<2e (0)xxx >>2ln (0)x x x >>ln (0)2xx x x <<>012x a =111ln (0)22x a a >>()1021e 02aa f x a ⎛⎫=-> ⎪⎝⎭10,e a ⎛⎫∈ ⎪⎝⎭()f x 10,e a ⎛⎫∈ ⎪⎝⎭(3)令则恒成立,且①时,,当时,,当时,时,恒成立,所以,在上递增,所以,,符合题意②时,,与题意不符,舍去③时,时,得,所以,存在,使,且可使,单调递减,时,,舍去综上:(注:本题方法不唯一,可以参照上述答案给分情况酌情给分)19解:(1)因为,所以或,所以或5,当时,符合题意,当时,且,不符合题意所以(2)因为,其余项均为正项,所以或()()()()[)2331e 1cos e 1e 1cos ,0,222x x x a a a F x f x a x x a x x ∞⎛⎫⎛⎫=----=-----∈+ ⎪ ⎪⎝⎭⎝⎭()0Fx ≥()00F =()()[)()23e 11e 1sin ,0,,0222x x a F x a a x x F a ∞⎛⎫=-+-+-∈+=- '⎪⎝⎭'1a ≥()23e 11sin 2xa F x a x '⎛⎫≥-+- ⎪⎝⎭[]0,πx ∈()0F x '≥()π,x ∞∈+()222333e 11e e 0222x x x a a F x a a a ⎛⎫⎛⎫≥--'-=-=-> ⎪ ⎪⎝⎭⎝⎭[)0,x ∞∈+()0F x '≥()F x [)0,∞+()()00Fx F ≥=0a ≤()ππ2ππe 1e 0222a F a ⎛⎫=-+-< ⎪⎝⎭01a <<()0220,0F a x =-<>'()()()()222333e 11e 1e 1e 11e 1e 2e 222x x x x x x x a a a F x a a a a a a ⎛⎫>-+--->+--'-->+--+ ⎪⎝⎭()3e e 12ee 3,e 30222x x xx xa a a a a a a ⎤⎡⎤⎛⎫⎡⎫>+--+=----=⎥ ⎪⎪⎢⎥⎢⎝⎭⎣⎭⎣⎦⎦由6ln 02a x a +=>6ln 02a F a '+⎛⎫> ⎪⎝⎭060,ln 2a x a +⎛⎫∈ ⎪⎝⎭()00F x '=()()00,,0x x F x ∈'<()F x ()00,x x ∈()()00F x F <=[)1,a ∞∈+126,4a a ==2132a a a =+3122a a a =+32a =32a =4232a a a =+35a =3242a a a ≠+4232a a a ≠+32a =2580a a a ===342a a =432a a =若时,对于,因为且,故舍去所以即,所以,,因为,所以,所以,,又,所以,所以成等比数列(3)由题意,其余项为正项,不妨设,则又或所以或,又,可得,所以,时,设这个因式中恰有个因式的值为,有个因式的值为1,所以,所以,,因为,且不可能,故,同理,类似的,,当设等式右侧有恰有个因式的值为,有个因式的值为1,则,当时等式也成立,所以,,其中,同理,当且仅当时取等.综上:的最大值为432a a =345,,a a a 55340,2a a a a =≠+4532a a a ≠+432a a =4312a a =646312,4a a a a ==80a =7631128a a a ==97311216a a a ==30a >693614a a a a ==369,,a a a 0m st a a a ===3m s t <<<p t =212n n n a a a ++=+122,n n n a a a ++=+21112n n n n a a a a +++-=--2111n n n n a a a a +++-=-0m a =121122m m m m a a a a --+-=⎧⎨=⎩()121111211,22m m m m m m m a a a a a a a ---+----=-==--4m ≥123243121221213223m m m m m m m m a a a a a a a a a a a a a a a a a a -------------==⋅---- 3m -i 12-3m i --()131211211111,,,32222i ii m i m m m m m a a i a a a i m +----+--⎛⎫⎛⎫⎛⎫-=-⋅=-∈=--=-≤- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭N ()1max 14m a +=0m s t a a a ===1s m =+2s m ≥+2t s ≥+()11212s s s a a a +--=--12211211232,s s m m s s m m m m s s a a a a a a s m a a a a a a --++--++----->+=--- j 12-2s j --()()221121*********j s j m m s s s s m m m m m m s s a a a a a a a a a a a a a a --++----+++----⎛⎫-=⋅-=-⋅⋅- ⎪--⎝⎭2s m =+()111211112222j j s s s a a a ++--⎛⎫⎛⎫=--=--=- ⎪ ⎪⎝⎭⎝⎭02,j s m j ≤≤--∈N 111111124416j s m a a +++⎛⎫=-⋅≤⨯= ⎪⎝⎭1111111,02,241664k t s a a k t s k +++⎛⎫=-⋅≤⨯=≤≤--∈ ⎪⎝⎭N 1i j k ===1p a +164。

高三第一次质量检测数学试题(附答案)

高三第一次质量检测数学试题(附答案)

高三第一次质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页. 第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并收回.第Ⅰ卷(选择题 共60分)参考公式:三角函数的和差化积公式2cos 2sin 2sin sin βαβαβα-+=+ 2sin 2cos 2sin sin βαβαβα-+=- 2cos 2cos 2cos cos βαβαβα-+=+ 2sin 2sin 2cos cos βαβαβα-+-=- 若事件A 在一次试验中发生的概率是P,则它在n 次独立重复试验中恰好发生k 次的概率k n k k n n p p C k p --=)1()( 一组数据n x x x ,...,,21的方差212)[(1x x nS -=+22)(x x -+…+2)(x x n -] 其中x 为这组数据的平均数一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的。

(1)集合P={}{}62|,6,5,4,3,2,1≤≤=x x Q ,则Q P ⋂等于 (A) {}1 (B) {}6,2 (C) {}5,4,3,2 (D) {}6,5,4,3,2 (2)若θ是第一或第四象限角,则有(A) 0tan sin <θθ (B) 0tan sin >θθ (C) 0tan cos >θθ (D) 0tan cos <θθ (3)直线2=y 与直线02=-+y x 的夹角是(A) 4π (B) 3π (C) 2π (D) 43π (4)等差数列{}n a 中,若1,164106==+a a a ,则12a 的值是(A) 64 (B) 31 (C) 30 (D) 15(5)若P: 2≥x ,Q: 01)2(≥+-x x ,则P 是Q 的(A)充分而不必要条件 (B) 必要而不充分条件(C) 充要条件 (D) 即不充分也不必要条件(6)过曲线23-+=x x y 上的点P 0的切线平行于直线14-=x y ,则切点P 0的坐标为(A)(0,-1)或(1,0) (B) (1,0)或(-1, -4)(C) (-1, -4)或(0,-2) (D) (1,0)或(2,8)(7)函数x x x f 32sin)232sin()(++=π的图象相邻的两条对称轴之间的距离是 (A) π3 (B) π6 (C) 23π (D) 43π (8) 设),3(...)1(2210Z n n x a x a x a a x n n n ∈≥++++=+且,若3132=a a ,则n 的值为 (A) 7 (B) 11 (C) 15 (D) 16(9)已知函数c bx ax x f ++=2)(的图象过点(-1, 3)和(1,1),若0<c<1,则实数a 的取值范围是(A) [2,3] (B) [1,3] (C)(1,2) (D) (1,3)(10) 已知直线l :Ax+By+C=0(A 、B 不全为0)及两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )(Ax 2+By 2+C )>0,且|Ax 1+By 1+C|>| Ax 2+By 2+C|,则(A)直线l 与直线P 1P 2不相交 (B) 直线l 与线段P 2 P 1的延长线相交(C) 直线l 与线段P 1 P 2的延长线相交 (D) 直线l 与线段P 1P 2相交(11)已知A 、B 、C 三点共线,O 是这条直线外一点,设,=,=,=且存在实数m ,使=+-m 30成立,则点A 分的比为(A) 31- (B) 21- (C) 31 (D) 21 (12)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,若此双曲线的离心率为e ,且|PF 1|=e|PF 2|,则e 的最大值为(A) 35 (B) 37 (C) 2 (D) 12+ 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共6小题,每小题4分,共24分.把答案填写在答题卡相应位置上.(13)设直线01=+-y x 和圆直线4)1(22=+-y x 相交于两点A 、B ,则弦AB 的垂直平分线方程为_________▲_________(14)已知直线53)4sin(=-x π,则直线x 2sin 的值为_______▲_______ (15)某校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n 的值为_____▲___(16)从2005年12月10日零时起,徐州市电话号码由七位升到八位,若升位前与升位后0,1,9均不作为电话号码的首位,则扩容后增加了______▲_____个电话号码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三年级第一次学情检测数 学 试 卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1. 已知全集U N =(N 是自然数集),集合{}20A x x =->,则U C A = ▲ .2. 函数()2ln 2()1x x f x x -=-的定义域是 ▲ .3. “12>a ”是“13>a ”的 ▲ 条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 4. )31<<x ,则)(x f 的值域是 ▲ . 5. 若0.330.30.3,0.3,log 3a b c ===,则,,a b c 的值从小到大的顺序是 ▲ . 6. 设2()2f x ax bx =++是定义在[1,2]a +上的偶函数,则()f x 的值域是 ▲ .7. 若命题“2 0t R t at a ∃∈--<,”是假命题,则实数a 的取值范围是 ▲ . 8. 若函数()22xf x b =--有两个零点,则实数b 的取值范围是 ▲ .9. 已知函数()22x x f x -=-,若不等式()()230f x ax a f -++>对任意实数x 恒成立,则实数a 的取值范围是 ▲ .10. ,若()f x 在区间[],4m 上的值域为[]1,2-,则实数m 的取值范围是 ▲ .11. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += ▲ .12. []12,2,3x R x ∀∈∃∈,使得2211221233x x x x x mx ++≥+-成立,则实数m 的取值范围是 ▲ . 13. 用()C A 表示非空集合A 中的元素个数,定义()(),()()*()(),()()C A C B C A C B A B C B C A C A C B -≥⎧=⎨-<⎩.若{}{}221,2,()(2)0A B x x ax x ax ==+++=,且*1A B =,设实数a 的所有可能取值组成的集合是S ,则()C S = ▲ .14.已知函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是 ▲ .二、解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数()()()log 1log 3a a f x x x =++-(0a >且1a ≠),且()12f =. (1)求a 的值及()f x 的定义域;(2)若不等式()f x c ≤恒成立,求实数c 的取值范围.16.(本小题满分14分)已知0107:2<+-x x p ,034:22<+-m mx x q ,其中0>m .(1)已知4=m ,若q p ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围.17.(本小题满分14分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式2()(5)2ay f x b x x ==+--,其中25x <<,,a b 为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克.(1)求函数()f x 的解析式;(2)若该商品的成本为2元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润()f x 最大.18.(本小题满分16分) 已知函数3211()(1)323a f x x a x x =-++-(a ∈R ). (1)若1a >,求函数()f x 的极值;(2)当01a <<时,判断函数()f x 在区间[]0,2上零点的个数.19.(本小题满分16分) 函数2()ln xf x x=. (1)求函数()y f x =在区间(2,e e ⎤⎦上的值域; (2)求()f x 的单调递减区间;(3)若存在0[e,)x ∈+∞,使函数21e()eln ln ()22a g x a x x x f x a +=+-⋅⋅≤成立,求实数a 的取值范围.20.(本小题满分16分) 已知函数1()2(1)(0).x a f x ae a a x+=+-+> ⑴当1a =时,求()f x 在点(1,(1))f 处的切线方程;⑵若对于任意的()0,x ∈+∞,恒有()0f x ≥成立,求实数a 的取值范围.2018届高三年级第一次学情检测数学加试试卷(物理方向考生作答)解答题(共4小题,每小题10分共40分,解答时应写出文字说明,证明过程或演算步骤) 1. 求下列函数的导函数3)23()1(-=x y )(12log )2(2+=x y2. 求曲线3232y x x x =-+过点()0,0的切线方程.3. 已知关于x 的不等式2320ax x -+>(a R ∈).(1)若不等式2320ax x -+>的解集为{1x x <或}x b >,求a ,b 的值; (2)求不等式2325ax x ax -+>-(a R ∈)的解集.4. 已知函数()()2221x f x e ax x =+-, a R ∈.(1)若函数()y f x =在(],2-∞-上单调递增,求实数a 取值范围; (2)当0x ≤时,()10f x +≥,求实数a 的取值范围.2018届高三年级第一次学情检测数学参考答案一、填空题: 本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上1. {}0,1,2;2.(0,1)⋃(1,2);3.必要不充分条件; 5 .c <b <a 6.[-10,2] 7. 8. ()0,29. ()2,6- 10.[]4,1-- 11. 11 12. 4m ≤ 13. 314.⎥⎦⎤⎢⎣⎡31,41二、解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数()()()log 1log 3a a f x x x =++-(0a >且1a ≠),且()12f =. (1)求a 的值及()f x 的定义域;(2)若不等式()f x c ≤恒成立,求实数c 的取值范围.解:(1)因为()12f =,所以2log 22a =,故2a =, …………………………2分所以()()()22log 1log 3f x x x =++-, 由1030x x +>⎧⎨->⎩得13x -<<,所以()f x 的定义域为()1,3-. ……………………………………7分(2)由(1)知,()()()22log 1log 3f x x x =++-()()2log 13x x =+-…………9分()22log 23x x =-++=()22log 14x ⎡⎤--+⎣⎦,故当1x =时,()f x 的最大值为2,所以c 的取值范围是[)2,+∞. ……………………………………)53,31(.440a -≤≤14分16. 已知0107:2<+-x x p ,034:22<+-m mx x q ,其中0>m . (1)已知4=m ,若q p ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围. 解:(1)由01072<+-x x ,解得52<<x ,所以52:<<x p又03422<+-m mx x ,因为0>m ,解得m x m 3<<,所以m x m q 3:<<. 当4=m 时,124:<<x q ,又q p ∧为真,q p ,都为真,所以54<<x . …………………………………6分(2)由q ⌝是p ⌝的充分不必要条件,即q ⌝⇒p ⌝,p⌝≠>q ⌝,其逆否命题为p q q p ≠>⇒,, (8)分由(1)52:<<x p ,m x m q 3:<<, …………………………………10分所以⎪⎩⎪⎨⎧>≥≤0532m m m ,即:52.3m ≤≤ …………………………………14分17. 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x(单位:元/千克)满足关系式2()(5)2ay f x b x x ==+--,其中25x <<,,a b 为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克. (1)求函数()f x 的解析式;(2)若该商品的成本为2元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润()f x 最大.解:(1)由题意,(4)5,22(4.5) 2.3554a f b a b f ⎧=+=⎪⎪⎨⎪=+=⎪⎩, …………………………………2分解得4a b == , …………………………………4分故24()3(5)2f x x x =+--;25x << …………………………………6分(2)商场每日销售该商品所获得的利润为(2)()y x f x =-243(2)(5)y x x =+--(25)x << …………………………………8分9(3)(5)y x x '=--列表:由上表可得,3x =是函数()f x 在区间()2,5内的极大值点,也是最大值点所以,当3x =时,函数()f x 取得最大值,且最大值等于16 .故销售价格为3元/千克时,商场每日销售该商品所获得的利润最大. ………14分18.已知函数3211()(1)323a f x x a x x =-++-(a ∈R ). (1)若1a >,求函数()f x 的极值;(2)当01a <<时,判断函数()f x 在区间[]0,2上零点的个数. 解:(1…………………………………4分所以()f x 的极大值为221231()6a a f a a-+-=,极小值为1(1)(1)6f a =--.…………8分(2 所以()f x 在[]0,2上有两个零点 …………………………………11分,()f x 在()0,1上单调递增,上递增, 又因为所以()f x 在[]0,1上有且只有一个零点,在[]1,2上没有零点,所以在[]0,2上有且只有一个零点时,()f x 在[]0,2上有两个零点;时,()f x 在[]0,2上有且只有一个零点 …………………………………16分19. 已知函数2()ln xf x x=. (1)求函数()y f x =在区间(2,e e ⎤⎦上的值域; (2)求()f x 的单调递减区间;(3)若存在0[e,)x ∈+∞,使函数21e()eln ln ()22a g x a x x x f x a +=+-⋅⋅≤成立,求实数的取值范围.解:(1)由已知22(ln 1)()(ln )x f x x -'=,因为(2,x e e ⎤∈⎦,所以()0f x '>, 所以函数()y f x =在区间(2,e e ⎤⎦上单调递增,又因为()()222,f e e f e e ==,所以函数()y f x =的值域为(22,e e ⎤⎦ …………………………………4分(2)函数()f x 的定义域为(0,1)(1,)+∞ ,22(ln 1)'()(ln )x f x x -=,由'()0f x <,解得01x <<或1e x <<,函数()f x 的单调递减区间为(0,1)和(1,e). (8)分(3)因为21()e ln (e)2g x a x x a x =+-+, 由已知,若存在0[e,)x ∈+∞使函数21()eln (e)2g x a x x a x a =+-+≤成立, 则只需满足当[e,)x ∈+∞时,min ()g x a ≤即可. (10)分又21()e ln (e)2g x a x x a x =+-+, 则2e (e)e ()(e)'()(e)a x a x a x a x g x x a x x x-++--=+-+==, ……………12分①若e a ≤,则()0g x '≥在[),x e ∈+∞上恒成立, 所以()g x 在[),e +∞上单调递增,所以()()()22min122e g x g e ae e e a e ==+-+=-所以22e a -≥,又因为a e ≤,22e a e -≤≤ (14)分②若a e >,则()g x 在[),e a 上单调递减,在[),a +∞上单调递增 所以()g x 在[),e +∞上的最小值是()g a又因为()()202e g a g e <=-<,而0a e >>,所以一定满足条件综上所述,的取值范围是2e 2a -≥. ………………………………16分20. 已知函数1()2(1)(0).x a f x ae a a x+=+-+>⑴当1a =时,求()f x 在点(1,(1))f 处的切线方程;⑵若对于任意的()0,x ∈+∞,恒有()0f x ≥成立,求实数a 的取值范围. 解:()1当1a =时,2()4x f x e x =+-因为,22()x f x e x'=-所以, (1)2f e '=-所以, 所以,()f x 在点(1,(1))f 处的切线方程为(2)0e x y --= (4)分()21()2(1)(0)xa f x ae a a x +=+-+>因为.所以 22(1)(),x ax e a f x x-+'= 令2()(1)x g x ax e a =-+,则()(2)0xg x a x x e'=+>, (8)分()g x 所以在()0,+∞上单调递增, (0)(1)0,g a =-+<因为2(1)(1)0g a a a a =-+>+= , 所以存在()00,x ∈+∞,使0()0g x =,且()f x 在()00,x 上单调递减,()f x 在()0,x +∞ 上单调递增,0002200020(1)()(1)0,=(1)=x x x a g x ax e a ax e a ae x +=-+=+因为所以,即, 因为对于任意的()0,x ∈+∞,恒有()0f x ≥成立, 所以0min 001()()2(1)0x a f x f x ae a x +==+-+≥, ………………………………12分所以200112(1)0a a a x x +++-+≥,2001120x x +-≥所以,所以200210x x --≤, 解得0112x -≤≤,因为020=(1)x ax e a +,∴0201=1x a x e a+>, 令0200()x h x x e =,而00200000()(2)(2)x x h x x x e x x e '=+=+, 当01,02x ⎡⎫∈-⎪⎢⎣⎭时,0()0h x '<,(]00,1x ∈时,0()0h x '>,所以0()h x 在1,02⎡⎫-⎪⎢⎣⎭上为减函数,在(]0,1上为增函数.又1(0)0,()(1)2h h h e =-==所以[]0()0h x e 的值域为, ,所以11a e a +<≤ ,解得11a e ≥- . 故所求实数a 的取值范围为1,1e ⎡⎫+∞⎪⎢-⎣⎭……………………………………16分数学(加试)参考答案1.下列函数的导函数(1)3(32)y x =- (2) (21)2log x y +=解:(1)223(32)39(32)y x x '=-⨯=- ………………………………5分(2)2(21)ln 2y x '=+ (10)分2. 求曲线3232y x x x =-+过点()0,0的切线方程.解:设切点坐标()00,P x y ,因为 2362y x x '=-+ 所以 2000()362f x x x '=-+ 曲线在()00,P x y 处的切线方程为32200000032(362)()y x x x x x x x -+-=-+- 又切线过点()0,0,所以32200000032(362)()x x x x x x -+-=-+- ……………………4分即3200230x x -=,解得0030.2x x ==或所以001()2()4f x f x ''==-或………………………………8分所以,12.4y x y x ==-切线方程为或 ………………………………10分3. 已知关于x 的不等式2320ax x -+>(a R ∈).(1)若不等式2320ax x -+>的解集为{1x x <或}x b >,求a ,b 的值; (2)求不等式2325ax x ax -+>-(a R ∈)的解集.解:(1)将1x =代入2320ax x -+=,则1a =因为,不等式为2320x x -+>,即()()120x x -->所以,不等式解集为{2x x >或}1x <,所以2b = (4)分(2)不等式为()2330ax a x +-->,即()()310ax x -+>当0a =时,原不等式解集为{}1x x <- (6)分当0a ≠时,方程()()310ax x -+=的根为13x a=,21x =-, ①当0a >时,31a >-,∴3x x a ⎧>⎨⎩或}1a <- ②当30a -<<时,31a <-,∴31x x a ⎧⎫<<-⎨⎬⎩⎭③当3a =-时,31a=-,∴∅ ④当3a <-时,31a >-,∴31x x a ⎧⎫-<<⎨⎬⎩⎭………………………………10分4. 已知函数()()2221x f x e ax x =+-, a R ∈.(1)若函数()y f x =在(],2-∞-上单调递增,求实数a 取值范围; (2)当0x ≤时,()10f x +≥,求实数a 的取值范围.解:(1)()()22222x f x e ax a x '=++⎡⎤⎣⎦,因为函数()y f x =在(],2-∞-上单调递增所以()0f x '≥在(],2x ∈-∞-上恒成立,即()220ax a x ++≥在(],2x ∈-∞-时恒成立当0a =时,20x ≥,不合题意,当0a ≠时,0a >且22a a+--≥ 解得:2a ≥ 所以,实数a 取值范围为2a ≥ (4)分(2)因为,当0x ≤时, ()10f x +≥,即当0x ≤时, ()222110x e ax x +-+≥所以,当0x ≤时, 221210x ax x e+-+≥, 设()22121x h x ax x e =+-+,则()22212221x x h x ax ax e e ⎛⎫=+-=+- ⎪⎝⎭', (5)设()211x m x ax e =+-,则()22x m x a e=+'. ①当2a -≥时,因为0x ≤,所以222x e≥从而()0m x '≥,所以()211xm x ax e =+-在(],0-∞上单调递增, 又因为()00m =,所以当0x ≤时,()0m x ≤, 从而当0x ≤时,()0h x '≤,所以()22121x h x ax x e=+-+在(],0-∞上单调递减又因为()00h =,从而当0x ≤时,()0h x ≥,即221210xax x e +-+≥ 于是当0x ≤时,()10f x +≥ (7)分②当2a <-时,令()0m x '=,得22x a e +=,∴12102x n a ⎛⎫=-< ⎪⎝⎭, 故当121,02x n a ⎛⎤⎛⎫∈- ⎪⎥⎝⎭⎝⎦时, ()2220x xam x e e a ⎛⎫=+< ⎪⎝⎭', ∴()211x m x ax e =+-在121,02n a ⎛⎤⎛⎫- ⎪ ⎥⎝⎭⎝⎦上单调递减, 又∵()00m =,∴当121,02x n a ⎛⎤⎛⎫∈- ⎪⎥⎝⎭⎝⎦时, ()0m x ≥,从而当121,02x n a ⎛⎤⎛⎫∈- ⎪⎥⎝⎭⎝⎦时, ()0h x '≥∴()22121x h x ax x e =+-+在121,02n a ⎛⎤⎛⎫- ⎪ ⎥⎝⎭⎝⎦上单调递增,又∵()00h =, 从而当121,02x n a ⎛⎫⎛⎫∈-⎪ ⎪⎝⎭⎝⎭时, ()0h x <,即221210xax x e +-+< 于是当121,02x n a ⎛⎤⎛⎫∈-⎪ ⎥⎝⎭⎝⎦时, ()10f x +<, 综合得a 的取值范围为[)2,-+∞. ………………………………。

相关文档
最新文档