2010年芜湖市中考数学模拟试卷和答案(五)

合集下载

2010年中考数学试题分类(精选版):函数与一次函数

2010年中考数学试题分类(精选版):函数与一次函数

2010年中考数学试题分类汇编 函数与一次函数10.(2010年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( ) 【关键词】函数的意义 【答案】A1、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(A) (B) (C) (D)1题(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【关键词】函数与实际问题 【答案】解:(1)15,154 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t ) 令t t 45412154=+-,解得4135=t当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。

5.(2010年安徽省芜湖市)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B.a >-2且a ≠0 C.a >-2或a ≠0 D.a ≥-2且a ≠0 【关键词】函数自变量的取值范围 【答案】D9.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

2010中考数学试题分类汇编-分式与分式方程

2010中考数学试题分类汇编-分式与分式方程

2010年中考数学试题分类汇编 分式5. (2010年浙江省东阳县)使分式12-x x有意义,则x 的取值范围是( ) A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式有意义【答案】D16.(2)(2010年山东省青岛市)化简:22142a a a+--. 【关键词】分式计算 【答案】(2)解:原式 = ()()21222a a a a -+--()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+.1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。

【关键词】分式运算【答案】解:原式21)2)(2(2++-+-=a a a a222121+=+++=a a a当2=a 时,原式52232=+=2、(2010浙江省喜嘉兴市)若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12 C .x =12D .x =2【关键词】分式分子、分母特点【答案】D17.(2010山东德州)先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x . 【关键词】分式、分母有理化 【答案】解:原式=11)1()1(2)1)(1(22-+++÷-+-x x x x x x =11)1(2)1()1)(1(22-+++⋅-+-x x x x x x =11)1(22-+--x x x =)1(2-x x.当12+=x 时,原式=422+.(2010年广东省广州市)若分式51-x 有意义,则实数x 的取值范围是_______. 【关键词】分式的意义 【答案】5≠x2.(2010年重庆)先化简,再求值:xx x x x 24)44(222+-÷-+,其中1-=x . 【答案】解:原式=)2()2)(2(442+-+÷-+x x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x .当1-=x 时,原式=-1-2=-3.21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.19.(2010江苏泰州,19(2),8分)计算:(2))212(112aa a a a a +-+÷--.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+.【关键词】分式的加减乘除混合运算1.(2010年浙江省绍兴市)化简1111--+x x ,可得( ) A .122-x B .122--x C .122-x x D .122--x x【答案】B2.(2010年宁德市)化简:=---ba bb a a _____________. 【答案】121.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.(2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式 分式有意义【答案】D3.(2010年福建省晋江市)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 【关键词】分式运算、化简求值【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ = ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+ =()()()()()xx x x x x x 111122-+⋅+-+ =()22+x 当22-=x 时,原式=()2222+-=22解二:原式=xx x x x x x x 1111322-⋅+--⋅- =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-= ()()113--+x x = 133+-+x x =42+x当22-=x 时,原式=224+)=225. (2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式有意义的条件 【答案】D15. (2010年安徽中考) 先化简,再求值:aa a a a -+-÷--2244)111(,其中1-=a【关键词】分式的运算 【答案】解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 当a=-1时,原式=112123a a -==---1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。

初二分式方程计算题

初二分式方程计算题

解分式方程.解方程:解:两边同时乘以(x-3)得解方程:.【原创】去分母得:………………………………………………………………4分解得:………………………………………………………………………5分检验…………………………………………………………………………………6分x=1是增根,原方程无解x=-7解分式方程:-=3;x=-2解方程.解:方程两边同乘(x+1)( x-1),得――――――――――――――-1解方程;解:方程两边同乘x-3,得――――――――――――――――――――1解方程:.解:原方程变形为┄┄2′方程两边都乘以去分母得:x―1=2X ┄┄4′解方程:解方程:解:…1分两边同时乘以(x-3)得解分式方程:. 解:方程两边同乘以最简公分母得经检验:不是原方程的根,原方程无解解分式方程.解:在方程两边同乘,整理并解得,检验:当时,,所以是增根,故原方程无解.解方程:(1)解:方程两边同乘以,得.解这个方程,得.检验:将代入原方程,得左边右边.所以,是原方程的根..解析:原式==.;解析:原式==.点评:①学习了解分式方程之后,在进行分式的化简计算时,易错将本该通分的运算变成了去分母;②进行分式的化简计算应进行到最简分式为止,本题还易错将当成最后结果.解方程.解:原方程变为:…………1分去分母,得…………2分移项合并同类项,得…………3分系化为1,得…………4分检验:把代入=-1≠0,…………5分∴是原方程的解.…………6分.;;增根,无解;.将原程化为.两边同时乘以,得.解这个方程,得.检验:将代入原方程,得左边.所以,是原方程的增根,原方程无解.;两边同时乘以,得.解这个方程,得.检验:将代入原方程,得左边右边.所以,是原方程的根.解方程.解:两边同时乘以,得.解这个方程,得.检验:将代入原方程,得左边.分母为0,无意义.所以是原方程的增根,原方程无解..将原方程化为.两边同时乘以,得.解这个方程,得.检验:将代入原方程,得左边右边.所以是原方程的根.;两边同时乘以,得.解这个方程,得.检验:将代入原方程,得左边右边.所以是原方程的根.解方程:解:方程两边都乘以得经检验是原方程的根解方程解:原方程变为整理得解得、经检验均是原方程的根方程的解为解方程:.解方程:解方程:22解方程:.解:得得经检验,均为原方程的根所以原方程的解为解方程x=3解方程解方程:.解方程:.解: ,经检验: 都是原方程的根.所以原方程的根是解方程(6分)解:方程两边同乘以得 (1分)(3分)解得(5分)检验:时,原分式方程的解。

2010年中考模拟卷 数学试题卷

2010年中考模拟卷 数学试题卷

(第4题)(第3题)2010年中考模拟试卷数学卷考生须知:1. 本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2. 答题时,必须在答题卷密封区内写明校区、考场、座位号、姓名、班级等内容。

答题必须书写在各规定区域之内,超出答题区域的答案将被视为无效。

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.2010年3月3日至3月14日第十一届全国人民代表大会第三次会议在北京人民大会堂举行,会议期间大会共收到提案5430件,参与提案的委员占委员总数88.82%,充分体现了广大政协委员为发展社会主义民主、推动科学发展、促进社会和谐建言献策的政治责任感。

用科学计数法表示收到的提案数量( ▲ ) (本题原创)(A )54310⨯ (B )40.543010⨯(C )254.3010⨯(D )35.43010⨯2. 杭州统计局网站消息:杭州市实施了一系列增加居民收入的政策,确保了市区城镇居民收入水平保持增长。

2006年到2009年,我市城镇居民人均可支配收入分别为:19027元、21689元、24104元、26864元。

《杭州日报》评论说,这4年的年度人均可支配收入增长相当平稳。

从统计学的角度看,“增长率相当平稳”说明这组数据的( ▲ )比较小。

(本题原创) (A )中位数 (B )平均数 (C )众数 (D )方差 3. 如图,是一个工件的三视图,则此工件的全面积是( ▲ ) (本题原创)(A )60πcm2 (B )90πcm2(C )96πcm2 (D )120πcm24. 小明同学对一块长为30cm 、宽为80cm 的蓝色矩形塑料板进行废物利用,把它分割成如图所示的四块全等的三角形。

然后自制成一块简易的飞镖板。

小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间白色区域(含边)的概率是( ▲ ) (本题原创)(A )110 (B )115 (C )120 (D )125(第10题)(第7题)5. 已知x 满足-5≤x ≤5,y1=x+1,y2=-2x+4,对任意相同的一个x ,在直角坐标系中都会存在点A (X ,Y1)和点B (X ,Y2),则线段AB 的最大值是( ▲ )(本题原创) (A )12 (B )15 (C )18 (D )206.本题用16颗心组成的“大”字图案中不包含的变换是( ▲ ) (本题原创)(A )位似 (B )旋转 (C )轴对称 (D )平移7.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为88°、32°,则∠ACB 的大小为( ▲ ) (根据2009年长春市中考第7题改编) (A )15︒. (B )28︒. (C )29︒. (D )34︒.8.如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°75°,则DAO DCO ∠+∠的大小是( ▲ )(根据2009年武汉市中考第9题改编)(A )75° ( B )135°(C )140°(D )150°9. 如图,点A 的坐标为(2-,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为( ▲ ) ( 根据2009年山东日照市中考第12题改编) (A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22)yxO BA (第9题)BCOAD(第8题)(第6题)(第13题) (第11题)10.一张等腰三角形纸片,底边长16cm ,底边上的高长32cm .现沿底边依次从下往上裁剪宽度均为4cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ▲ ) ( 根据2009年温州市中考第10题改编) (A )第5张 (B )第6张 (C )第7张 (D )第8张 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,小明利用正五边形ABCDE 以对角线AC 、BD 、CE 、DA 、EB 为边,在正五边形内作了一个五角星,则这个五角星的∠CAD 的度数为 ▲ . (本题原创)12.已知⊙1O 和⊙2O 的半径分别是一元二次方程2320x x -+=的两根且1232O O =,则⊙1O 和⊙2O 的位置关系是 ▲ . (本题原创)13. 如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,点A 、B 、C 、E 也都在格点上, CB 与⊙O 相交于点D ,连接ED 。

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西中考模拟真题数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、单选题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列实数是无理数的是()AB C .12D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为()A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为()A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是()A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围()A .2k <-B .2k >-C .0k >D .0k <6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为()A .12B .16C .20D .247.如图,在O 中,半径OA ,OB 互相垂直,点C 在劣弧A 上.若26BAC ∠=︒,则ABC ∠=()A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32二、填空题(共5小题,每小题3分,计15分)9小的正整数.10.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题(共13小题,计81分,解答应写出过程)14()202441---.15.解方程:32544x x =---.16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩17.已知:如图,ABC V .求作:以AC 为弦的O ,使O 到AB 和BC的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题.20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。

安徽芜湖2010年中考数学真题及答案解析

安徽芜湖2010年中考数学真题及答案解析

绝密*启用前2010年安徽芜湖市中考试题解析数学本试卷分选择题和填空题和解答题,共三大题24小题,共8页,满分150分,考试用时120分钟一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2010安徽芜湖,1,4分)-6的绝对值是()A.6 B.-6 C.+16D.-16【分析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.-6是负数,它的绝对值是它的相反数6【答案】A【涉及知识点】绝对值【点评】本题属于基础题,主要考查学生掌握求绝对值的方法,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010安徽芜湖,2,4分)2010年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238亿元,用科学计数法可记作()A.238×108B.23.8×109C.2.38×1010D.0.238×1011【分析】238亿可表示为2.38×10000000000,10000000000=1010,因此23800000000=2.38×1010.【答案】C【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).本题还要注意把亿进行转化,1亿=1×108【推荐指数】★★3.(2010安徽芜湖,3,4分)一个几何体的三视图如图所示,那么这个几何体是()【分析】.本题考查的是基本几何体的三视图,从俯视图看,排除B和C,从主视图或者左视图看,可以排除D。

中考数学综合模拟测试题(word版含答案)

中考数学综合模拟测试题(word版含答案)

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣42.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 23.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣34.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)26.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=817.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个二.填空题(共4小题,满分20分,每小题5分)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是.12.不等式5x+1≥3x﹣5的解集为.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为(用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是.三.解答题(共9小题,满分90分)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:;(2)猜想并写出第n个等式:;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.21.如图,已知△A B C ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =°时,四边形OD C E是菱形.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .参考答案一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣4【分析】首先根据负数小于0,0小于正数,然后判断﹣π和﹣4的大小即可得到结果.【解答】解:由于负数小于0,0小于正数,又∵π<4,∴﹣π>﹣4,故选:D .【点评】本题考查实数大小的比较,利用不等式的性质比较实数的大小是解本题的关键.2.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 2【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及平方差公式逐一判断即可.【解答】解:A 、A 4•A 2=A 6,故本选项不合题意;B 、(2A 3)2=4A 6,故本选项不合题意;C 、(A B )6÷(A B )2=(A B )2=A 4B 4,故本选项符合题意;D 、(A +B )(A ﹣B )=A 2﹣B 2,故本选项不合题意;故选:C .【点评】本题主要考查了同底数幂的乘除法,积的乘方以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.3.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为A ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,底层是一个矩形,上层是一个等腰梯形,故选:C .【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)2【分析】利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:选项A :运用平方差公式得9x2﹣1=(3x+1)(3x﹣1),符合题意;选项B :运用提取公因式法得4xy+6x=2x(2y+3),不符合题意;选项C :x2﹣2x﹣1不能进行因式分解,不符合题意;选项D :x2+xy+y2不能进行因式分解,不符合题意.故选:A .【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=81【分析】设每人每轮平均感染x人,根据经过两轮后共有81人得流感,即可得出关于x的一元二次方程,此题得解.【解答】解:设每人每轮平均感染x人,∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x=(1+x)2,∵经过两轮后共有81人得流感,∴可列方程为:(1+x)2=81.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°【分析】过点C 作C F∥A ,则C F∥A ∥B ,再利用平行线的性质和等边三角形的内角是60°可得∠2的度数.【解答】解:过点C 作C F∥A ,则C F∥A ∥B ,∴∠1=∠A C F=40°,∠2=∠B C F.∵等边三角形A B C 中,∠A C B =60°,∴∠B C F=60°﹣40°=20°,∴∠2=∠B C F=20°.故选:C .【点评】本题考查平行线的性质和等边三角形的性质,正确作出辅助线是解题关键.8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A 作A D ⊥B C 于D ,∵A B =A C =B C =3,∠B A C =∠A B C =∠A C B =60°,∵A D ⊥B C ,∴B D =C D =,A D = B D =,∴△A B C 的面积为•B C •A D =,S扇形B A C ==π,∴莱洛三角形的面积S=3×π﹣2×=π﹣,故选:D .【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对【分析】根据条件,可以求得点A 关于直线B D 的对称点E的坐标,再根据E在图形中的位置,得到关于t的方程组【解答】解:∵点B (t,3)在直线y=kx+1上,∴3=kt+1,得到,于是直线B D 的表达式是.于是过点A (0,3)与直线B D 垂直的直线解析式为.联立方程组,解得,则交点M.根据中点坐标公式可以得到点E,∵点E在长方形A B C O的内部∴,解得或者.本题答案:或者.故选:C .【点评】该题涉及直线垂直时”k”之间的关系;直线的交点坐标与对应方程组的解之间的关系;中点坐标公式需要熟悉.计算量较大.10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个【分析】①由角平分线的性质和平行线的性质可证A B =B E,由勾股定理可得A D =A E= A B ,从而判断出①正确;②由”A A S”可证△A B E和△A HD 全等,则有B E=D H,再根据等腰三角形两底角相等求出∠A D E =∠A ED =67.5°,求出∠C ED =67.5°,从而判断出②正确;③求出∠A HB =67.5°,∠D HO=∠OD H=22.5°,然后根据等角对等边可得OE=OD =OH,判断出③正确;④求出∠EB H=∠OHD =22.5°,∠A EB =∠HD F=45°,然后利用”角边角”证明△B EH和△HD F 全等,根据全等三角形对应边相等可得B H=HF,判断出④正确;⑤根据全等三角形对应边相等可得D F=HE,然后根据HE=A E﹣A H=B C ﹣C D ,B C ﹣C F=B C ﹣(C D ﹣D F)=2HE,判断出⑤正确.【解答】解:①∵A E平分∠B A D ,∴∠B A E=∠D A E=∠B A D =45°,∵A D ∥B C ,∴∠D A E=∠A EB =45°,∴∠A EB =∠B A E=45°,∴A B =B E,∴A E= A B ,∵A D = A B ,∴A D =A E,故①正确;②在△A B E和△A HD 中,,∴△A B E≌△A HD (A A S),∴B E=D H,∴A B =B E=A H=HD ,∴∠A D E=∠A ED =(180°﹣45°)=67.5°,∴∠C ED =180°﹣45°﹣67.5°=67.5°,∴∠A ED =∠C ED ,故②正确;∵A B =A H,∵∠A HB =(180°﹣45°)=67.5°,∠OHE=∠A HB (对顶角相等),∴∠OHE=67.5°=∠A ED ,∴OE=OH,∵∠D HO=90°﹣67.5°=22.5°,∠OD H=67.5°﹣45°=22.5°,∴∠D HO=∠OD H,∴OH=OD ,∴OE=OD =OH,故③正确;∵∠EB H=90°﹣67.5°=22.5°,∴∠EB H=∠OHD ,在△B EH和△HD F中,,∴△B EH≌△HD F(A SA ),∴B H=HF,HE=D F,故④正确;∵HE=A E﹣A H=B C ﹣C D ,∴B C ﹣C F=B C ﹣(C D ﹣D F)=B C ﹣(C D ﹣HE)=(B C ﹣C D )+HE=HE+HE=2HE.故⑤正确;故选:D .【点评】本题为四边形的综合应用,涉及矩形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定与性质等知识.熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二.填空题(共4小题)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是 A <0.【分析】利用二次函数的性质得到抛物线开口向下,即可求解.【解答】解:∵抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,∴抛物线开口向下,∴A <0,故答案为A <0.【点评】本题考查了二次函数图象与系数的关系:二次项系数A 决定抛物线的开口方向和大小.当A >0时,抛物线向上开口;当A <0时,抛物线向下开口;一次项系数B 和二次项系数A 共同决定对称轴的位置:当A 与B 同号时,对称轴在y轴左;当A 与B 异号时,对称轴在y轴右.12.不等式5x+1≥3x﹣5的解集为x≥﹣3.【分析】不等式移项,合并,把x系数化为1,即可求出解集.【解答】解:不等式移项得:5x﹣3x≥﹣5﹣1,合并得:2x≥﹣6,解得:x≥﹣3.故答案为:x≥﹣3.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为﹣ A (用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为﹣<n<1.【分析】(1)把抛物线y1=A x2+3A x﹣4A 化成顶点式即可求得;(2)先求得顶点M的坐标,然后根据轴对称的性质求得对称点M′的坐标,由题意可知当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣6,易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,即可得出n﹣(﹣6)<7,即n<1,得到≤n<1;若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,即可得出n﹣(2n﹣)<7,即n>﹣,得到﹣<n<,进而即可得到﹣<n<1.【解答】解:(1)y1=A x2+3A x﹣4A =A (x+3)2﹣ A ,∴该抛物线顶点的纵坐标为﹣ A ,故答案为﹣ A ;(2)当A =﹣1时,y=﹣x2﹣3x+4=﹣(x+)2+,抛物线的顶点M(﹣,),∵直线A B ⊥y轴且过点(0,n)(﹣5<n<5),∴点M关于直线A B 的对称点M′(﹣,2n﹣),∵抛物线y1的对称轴为直线x=﹣,且自变量x的取值范围为﹣5≤x≤2,∴当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣22﹣3×2+4=﹣6,由题意易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,∵函数y2的最大值与最小值之差小于7,∴n﹣(﹣6)<7,即n<1,∴≤n<1,若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,∵函数y2的最大值与最小值之差小于7,∴n﹣(2n﹣)<7,即n>﹣,∴﹣<n<,综上,﹣<n<1,故答案为﹣<n<1.【点评】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,二次函数的最值,分类讨论是解题的关键.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是2﹣2≤x≤2或x=2或x=﹣1.【分析】考虑四种特殊位置,求出x的值即可解决问题;【解答】解:如图1中,当△P2MN是等边三角形时满足条件,作P2H⊥OA 于H.在Rt△P2HN中,P2H=NH=,∵∠O=∠HP2O=45°,∴OH=HP2=,∴x=OM=OH﹣MH=﹣1.如图2中,当⊙M与OB 相切于P1,MP1=MN=2时,x=OM=2,此时满足条件;如图3中,如图当⊙M经过点O时,x=OM=2,此时满足条件的点P有2个.如图4中,当⊙N与OB 相切于P1时,x=OM=2﹣2,观察图3和图4可知:当2﹣2<x≤2时,满足条件,综上所述,满足条件的x的值为:2﹣2<x≤2或x=2或x=﹣1,故答案为2﹣2<x≤2或x=2或x=﹣1.【点评】本题考查等腰三角形的判定、直线与圆的位置关系等知识,解题的关键是学会寻找特殊位置解决问题,属于中考填空题中的压轴题.三.解答题(共9小题)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.【分析】直接利用零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣2+2×=1+﹣2+=1﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?【分析】设绳长是x尺,井深是y尺,根据把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺列方程组即可.【解答】解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可.(2)将△A ′B ′C ′绕点B ′逆时针旋转90°即可.【解答】解:(1)如图,△A 'B 'C '即为所求作.(2)如图,△A ″B 'C ″即为所求作.【点评】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:=7+;(2)猜想并写出第n个等式:=(n+1)+;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=4753.【分析】(1)根据分母不变,分子是两个数的平方差可得答案;(2)根据发现的规律写出第n个等式并计算可进行验证;(3)根据=1,=2,=3…可得原式=1+2+3……+97,进而可得答案.【解答】解:(1)第⑥个式子为:=7+;故答案为:=7+;(2)猜想第n个等式为:=(n+1)+,证明:∵左边===(n+1)+=右边,故答案为:=(n+1)+;(3)原式=1+2+3+…+97==4753.故答案为:4753.【点评】本题考查对规律型问题的理解和有理数的运算能力,找到规律是解题关键.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.【分析】(1)计算判别式的值得到△=4m2+1,利用非负数的性质得△>0,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)根据根与系数的关系得x1+x2=2m+1,x1x2=m,利用x12+x22=3得到(2m+1)2﹣2×m=3,然后解方程即可.【解答】(1)证明:△=(2m+1)2﹣4m=4m2+1,∵4m2≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵x1,x2是该方程的两根,则x1+x2=2m+1,x1x2=m,∵x12+x22=3,∴(x1+x2)2﹣2x1x2=3,∴(2m+1)2﹣2×m=3,解得m=或﹣1.【点评】本题考查了一元二次方程A x2+B x+C =0(A ≠0)的根的判别式△=B 2﹣4A C :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解和根与系数的关系.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)首先根据A E⊥x轴于点E,tA n∠A OE=,A E=2等条件求出A 点的坐标,然后把A 点坐标代入反比例函数的解析式中,求出m的值,再根据B 点在反比例函数的图象上,进而求出k,根据两点式即可求出一次函数的解析式,(2)首先求出一次函数与y轴的交点坐标,然后再根据S△A OB =S△OB D +S△A OD 求面积;(3)根据图象即可求得.【解答】解:(1)在Rt△OEA 中:∵tA n∠A OE==,∵A E=2,∴OE=6,∴点A 的坐标为(6,2),∵A 在反比例函数y=(m≠0)的图象上,∴m=6×2=12,∴反比例函数的解析式为y=,设B 点坐标为(A ,﹣6),把(A ,﹣6)代入y=,解得A =﹣2,把A (6,2)和B (﹣2,﹣6)代入y=kx+B 中,∴,解得,∴一次函数的解析式为y=x﹣4;(2)直线y=x﹣4与y的交点为D ,故D 点坐标为(0,﹣4),∴S△A OB =S△OB D +S△A OD =×4×6+×4×2=12+4=16;(3)观察图象,一次函数的值大于反比例函数的值的x的取值范围是﹣2<x<0或x>6.【点评】本题主要考查反比例函数和一次函数交点问题的知识点,解答本题的关键是根据题干条件求出A 点的坐标,进而求出反比例函数和一次函数的解析式,本题难度一般,是一道很不错的试题.21.如图,已知△ABC ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =60°时,四边形OD C E是菱形.【分析】(1)连接A E,如图,先证明∠B =∠C 得到△A B C 为等腰三角形,再根据圆周角定理得到∠A EB =90°,即A E⊥B E,然后根据等腰三角形的性质得到结论;(2)①证明△C D E∽△C B A ,利用相似比可求出C D 的长;①当∠A =60°,证明△A OD 和△A B C 、△C D E、△OB D 都为等边三角形,则OD =D C =C E =OE,然后判定四边形OD C E是菱形.【解答】(1)证明:连接A E,如图,∵ED =EC ,∴∠C =∠ED C ,∵∠ED C =∠B ,∴∠B =∠C ,∴△A B C 为等腰三角形,∵A B 为直径,∴∠A EB =90°,即A E⊥B E,∴B E=C E,即点E为B C 的中点;(2)①∵∠D C E=∠B C A ,∠ED C =∠B ,∴△C D E∽△C B A ,∴C D :B C =D E:A B ,即C D :4=2:6,∴C D =;①当∠A =60°,∵OA =OD ,A B =A C ,∴△A OD 和△A B C 都为等边三角形,∴OD =OA ,同理可得△C D E、△OB D 都为等边三角形,∴C D =C E=D E=B E=OB ,∴OD =D C =C E=OE,∴四边形OD C E是菱形.故答案为;60.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质和菱形的判定.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为18°,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.【分析】(1)先由”不重视”的学生人数和所占百分比求出调查总人数,再由360°乘以”非常重视”的学生所占比例得所占的圆心角的度数;求出”重视”的人数,补全条形统计图即可;(2)由该校共有学生人数乘以”比较重视”的学生所占比例即可;(3)画树状图,共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,再由概率公式求解即可.【解答】解:(1)调查的学生人数为16÷20%=80(人),∴”非常重视”所占的圆心角的度数为360°×=18°,故答案为:18°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:4000×=1800(人),即估计该校对视力保护”比较重视”的学生人数为1800人;(3)画树状图如图:共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,∴恰好抽到同性别学生的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了扇形统计图和条形统计图以及样本估计总体.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .【分析】(1)判断出△A HF∽△C HE,得出比例式,求出C E,最后用勾股定理,即可得出结论;(2)先求出A C =3,再判断出△A EG≌△C ED (A SA ),得出EG=ED ,再判断出△A EF∽△D A C ,得出比例式,即可得出结论;(3)先判断出△B ED ∽△B D C ,得出,进而判断出A G=GD ,即可得出结论.【解答】解:(1)如图1,连接A E,∵A F∥B C ,∴△A HF∽△C HE,∴,∴A F=1,,∴,∴C E=3,在Rt△A B C 中,A B =A C ,点E是B C 的中点,∴A E= B C =C E,A E⊥B C ,∴C E=3,∵A F∥B C ,∴A E⊥A F,∴∠EA F=90°,根据勾股定理得,EF==;(2)由(1)知,EF=,C E=3,∴B C =2C E=6,∴A C =3,∵∠A EP=∠C D P,∠A PE=∠C PD ,∴∠EA G=∠PC D ,∵∠A EG=∠C ED ,A E=C E,∴△A EG≌△C ED (A SA ),∴EG=ED ,∴∠ED G=45°=∠A C E,∵∠A PC =∠EPD ,∴∠PED =∠C A P,∴∠FEA =∠C A D ,∴△A EF∽△D A C ,∴,∴,∴C D =.(3)如图2,在Rt△A B C 中,A B =A C ,∴,,连接A E,∵,,∴,∵∠EB D =∠D B C ,∴△B ED ∽△B D C ,∴,∴C D = D E=GD ,∵C D =A G,∴A G=GD ,∵B D =A B ,∴B G⊥A D .【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形判定和性质,勾股定理,构造出相似三角形是解本题的关键.。

2010年中考数学压轴题(一)及解答

2010年中考数学压轴题(一)及解答

中考复习资料大全2010年中考数学压轴题(一)及解答1、(2010年北京市)24. 在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45mx +m 2-3m +2 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。

(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。

延长PE 到点D 。

使得ED =PE 。

以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。

过Q 点作x 轴的垂线,与直线AB 交于点F 。

延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。

若P 点运动到t 秒时,两个等腰直角三角形分 别有一条直角边恰好落在同一条直线上,求此刻t 的值。

【解答】24. 解:(1) ∵拋物线y = -41-m x 2+45mx +m 2-3m +2经过原点,∴m 2-3m +2=0,解得m 1=1,m 2=2, 由题意知m ≠1,∴m =2,∴拋物线的解析式为y = -41x 2+25x ,∵点B (2,n )在拋物线y = -41x 2+25x 上,∴n =4,∴B 点的坐标为(2,4)。

(2) 设直线OB 的解析式为y =k 1x ,求得直线OB 的解析式为y =2x ,∵A 点是拋物线与x 轴的一个交点,可求得A 点的 坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为 (a ,2a ),根据题意作等腰直角三角形PCD ,如图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年芜湖市初中毕业学业考试数学模拟试卷(五)一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1.下列各式中,运算正确的是( ) A .632a a a ÷=B .325()a a = C .=D =2.已知3=a ,且2(4tan 45)0b ︒-+=,以a 、b 、c 为边组成的三角形面积等于( ).A .6B .7C .8D .9 3.若0ab <,则正比例函数y ax =与反比例函数b y x=在同一坐标系中的大致图象可能是( ) 4.在A B C △和D E F △中,22A B D E A C D F A D ==∠=∠,,,如果A B C △的周长是16,面积是12,那么D E F △的周长、面积依次为( ) A .8,3B .8,6 C.4,3 D .4,65.关于x 的方程2(6)860a xx --+=有实数根,则整数a 的最大值是() A .6 B .7 C .8 D .96. 如图P A P B ,是O ⊙的切线,A B ,为切点,A C 是O ⊙的直径,40P ∠=°,则B A C ∠的度数是( ) A .10° B .20° C .30° D .40°P x x x x B .7.某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离为( ) A . αcos 5 B .αcos 5 C . αsin 5 D .αsin 58.如图,矩形A B C D 中,35A B B C ==,.过对角线交点O 作O E A C ⊥交A D 于E ,则A E 的长是( )A .1.6B .2.5C .3D .3.49. 下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+10.在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可..能.是下列数中的( )A .5 二、填空题(本大题共6小题,每小题5分,共30分) 11.若n (0n ≠)是关于x 的方程220x m x n ++=的根,则m +n的值为____________.12.如图,梯形A B C D 的两条对角线交于点E ,图中面积相等的三角形共 有 对.13.如图,一条公路的转弯处是一段圆弧(图中的A B ),点O 是这段弧的圆心,C 是A B 上一点,OC ⊥AB ,垂足为D , AB =300m ,CD =50m ,则这段弯路的半径是 m .D AC O BABCDOEA DC BE14.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 . 15. 如图,小明从A 地沿北偏东30方向走到B 地,再从B地向正南方向走200m 到C 地,此时小明离A 地 m .16. 如图,正方形A B C D 的边长为10,点E 在CB 的延长线上,10E B =,点P 在边CD上运动(C 、D 两点除外),EP 与AB 相交于点F ,若CP x =,四边形F B C P 的面积为y ,则y 关于x 的函数关系式是 .三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共两小题,每小题6分,满分12分)(1)计算:1012)4co s 30|3-⎛⎫-++-⎪⎝⎭°.(2)解不等式组⎩⎨⎧->+<-.)1(215,02x x x18.(本小题满分8分)已知:如图,在A B C D 中,AE 是BC 边上的高,将A B E △沿B C方向平移,使点E 与点C 重合,得G F C △. (1)求证:B E D G =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形A B F G 是菱形?证明你的结论.ADGCBFEPDCBF A E19.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线O A B C 、线段D E 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段A B 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)20.(本小题满分8分) 市种子培育基地用A 、B 、C 三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图1、图2):(1)C 型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C 型号发芽种子的概率.各种型号种子图2 图121.(本小题满分10分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支.(Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当O A B △的面积为4时,求点A 的坐标及反比例函数的解析式.22.(本小题满分10分) 有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.23.(本小题满分12分)如图, R t A B C △内接于O ⊙,A C B C B A C =∠,的平分线A D 与O ⊙交于点D ,与B C 交于点E ,延长B D ,与A C 的延长线交于点F ,连接C D G ,是C D 的中点,连结O G .(1)判断O G 与C D 的位置关系,写出你的结论并证明;(2)求证:A E B F =; (3)若3(2O G D E =- ,求O ⊙的面积.24.(本小题满分12分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得P B C △的周长最小.请求出点P 的坐标.A(3)若点D 是线段O C 上的一个动点(不与点O 、点C 重合).过点D 作D E P C ∥交x 轴于点E .连接P D 、P E .设C D 的长为m ,P D E △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.2010年初中毕业学业考试(五)数学试题参考答案一、选择题(本大题共10小题,每题4分,满分40分)二、填空题(本大题共6小题,每题5分,满分30分)11. 2- 12. 3 13.250 14.小张 15.100 16. 15(010)2y x x =<<三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤.17.(本小题满分12分)(1) 解:112)4cos 30|3-⎛⎫++- ⎪⎝⎭°.13422=++ 43=+-4=(2) 解:解不等式①,得2<x ,解不等式②,得1->x ,∴不等式组的解集为 21<<-x . 18.(本小题满分8分) 证明:(1)∵四边形A B C D 是平行四边形, ∴A B C D =.∵A E 是B C 边上的高,且C G 是由A E 沿B C 方向平移而成. ∴C G A D ⊥.∴90A E B C G D ∠=∠=°. ∵A E C G =,∴R t R t A B E C D G △≌△. ∴B E D G =. (2)当32B C A B =时,四边形A B F C 是菱形.∵A B G F ∥,A G B F ∥, ∴四边形A B F G 是平行四边形. ∵R t A B E △中,60B ∠=°, ∴30B A E ∠=°,ADG∴12B E A B =.∵32B E C F B C A B ==,,∴12E F A B =.∴A B B F =.∴四边形A B F G 是菱形.19.(本小题满分8分)解:(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩,y ∴与x 的函数关系式为60120y x =-.(2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240),∴两车在途中第二次相遇时,它们距出发地的路程为240千米.(3)设线段B C 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩, ∴y 与x 的函数关系式为120480y x =-.∴当 4.5x =时,120 4.548060y =⨯-=. ∴点B 的纵坐标为60,A B 表示因故停车检修, ∴交点P 的纵坐标为60.把60y =代入60120y x =-中,有6060120x =-,解得3x =,∴交点P 的坐标为(3,60).交点P 表示第一次相遇,∴乙车出发321-=小时,两车在途中第一次相遇.20.(本小题满分8分)解:(1)480.(2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%.B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%.C 型号种子数发芽率是80%. ∴选A 型号种子进行推广. (3)取到C 型号发芽种子的概率=480370420480++=12748.21.(本小题满分10分) 解:(Ⅰ)这个反比例函数图象的另一支在第三象限. 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >.(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,, 0014242O A B S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. 又 点A 在反比例函数5m y x-=的图象上,542m -∴=,即58m -=.∴反比例函数的解析式为8y x=.22.(本小题满分10分)解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,. ()2163P A ∴==.23.(本小题满分12分)1 2 32 13 3 1 2 第一个球 第二个球 第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 23(1)猜想:O G C D⊥.证明:如图,连结OC、OD.∵O C O D=,G是CD的中点,∴由等腰三角形的性质,有O G C D⊥.(2)证明:∵AB是⊙O的直径,∴∠ACB=90°.而∠CAE=∠CBF(同弧所对的圆周角相等).在Rt△ACE和Rt△BCF中,∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,∴Rt△ACE≌Rt△BCF(ASA)∴A E B F=.(3)解:如图,过点O作BD的垂线,垂足为H.则H为BD的中点.∴OH=12AD,即AD=2OH.又∠CAD=∠BAD⇒CD=BD,∴OH=OG.在Rt△BDE和Rt△ADB中,∵∠DBE=∠DAC=∠BAD,∴Rt△BDE∽Rt△ADB∴B D D EA D D B=,即2B D A D D E=·∴226(2B D A D D E O G D E===-··又B D F D=,∴2B F B D=.∴22424(2B F B D==-…①设A C x=,则B C x=,.∵AD是∠BAC的平分线,∴F A D B A D∠=∠.在Rt△ABD和Rt△AFD中,∵∠ADB=∠ADF=90°,AD=AD,∠F AD=∠BAD,∴Rt△ABD≌Rt△AFD(ASA).∴AF=AB,BD=FD.∴CF=AF-AC1)x x-=在Rt△BCF中,由勾股定理,得2222221)]2(2B F BC C F x x x=+=+=-…②由①、②,得22(224(2x-=-.∴212x=.解得x=-.∴A B===A∴⊙O.∴π6πO S =⋅2⊙= 24.(本小题满分12分)解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+-(2)连结A C 、B C .因为B C 的长度一定,所以P B C △周长最小,就是使P C P B +最小.B 点关于对称轴的对称点是A 点,A C 与对称轴1x =-的交点即为所求的点P .设直线A C 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭,(3)S 存在最大值 理由:∵D E P C ∥,即D E A C ∥. ∴O E D O A C △∽△. ∴O D O E O CO A=,即223m O E -=.2010年芜湖市初中毕业学业考试数学模拟试卷(五)第11页(共8页)∴332O E m =-,连结O P O A C O E D A E P P C D S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ∵304-< ∴当1m =时,34S =最大。

相关文档
最新文档