1-6-2高考第二轮复习数学资料

合集下载

高考数学二轮专题(人教版)

高考数学二轮专题(人教版)

高考数学二轮复习专题教案(人教版)集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。

二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,...};②描述法。

2、两类关系:(1)元素与集合的关系,用或表示;(2)集合与集合的关系,用,,=表示,当AB时,称A是B的子集;当AB时,称A是B的真子集。

3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2}(C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}解:选(D),最小的质数是2,不是1,故(A)错;由集合的定义可知(B)(C)都错。

例2、已知集合A=-1,3,2-1,集合B=3,.若BA,则实数=.解:由BA,且不可能等于-1,可知=2-1,解得:=1。

数学高考二轮复习第2部分 第1讲

数学高考二轮复习第2部分 第1讲

返回导航
第二部分 思想方法精析
典题例析、命题探明
数 学




返回导航
第二部分 思想方法精析
函数与方程思想在不等式中的应用
典题例析
例 1 (1)已知f(x)=log2x,x∈[2,16],对于函数f(x)值域内的任意实数 数
m,使x2+mx+4>2m+4x恒成立的实数x的取值范围为

轮 复 习
A.(-∞,-2]
跟踪训练
1.如图,A 是单位圆与 x 轴的交点,点 P 在单位圆上,∠AOP=θ(0<θ<π),
O→Q=O→A+O→P,四边形 OAQP 的面积为 S,当O→A·O→P+S 取得最大值时 θ 的值为

A.π6

复 习
C.π3
B.π4 D.π2
(B )
数 学
[解析] ∵O→A=(1,0),O→P=(cosθ,sinθ),∴O→A·O→P+S=cosθ+sinθ= 2sin(θ
轮 复 习
令 g′(t)=0,得 t=1,当 t∈(0,1)时,g′(t)<0;
当 t∈(1,+∞)时,g′(t)>0,
所以 g(t)min=g(1)=32,
所以|AB|≥32,所以|AB|的最小值为32.
数 学
返回导航
第二部分 思想方法精析
求最值或参数范围的技巧
(1)充分挖掘题设条件中的不等关系,构建以待求字母为元的不等式(组)求
=0(a>1)恰有 3 个不同的实数根,则实数 a 的取值范围是__(3__4_,__2_)___.
返回导航
第二部分 思想方法精析
[解析] 由 f(x+4)=f(x),即函数 f(x)的周期为 4,

高考数学理科二轮复习材料全套

高考数学理科二轮复习材料全套

高考数学理科二轮复习资料全套一、集合与常用逻辑用语(理科数学)1.集合(1)集合的运算性质:①A∪B=A⇔B⊆A;②A∩B=B⇔B⊆A;③A⊆B⇔∁U A⊇∁U B.(2)子集、真子集个数计算公式:对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.(3)数轴和Venn图是进行交、并、补运算的有力工具,在具体计算时不要忘记集合本身和空集这两种特殊情况.补集思想常运用于解决否定型或正面较复杂的有关问题.2.四种命题及其相互关系(1)(2)互为逆否命题的两命题同真同假.3.含有逻辑联结词的命题的真假(1)命题p∨q:若p、q中至少有一个为真,则命题为真命题,简记为:一真则真.(2)命题p∧q:若p、q中至少有一个为假,则命题为假命题,p、q同为真时,命题才为真命题,简记为:一假则假,同真则真.(3)命题綈p与命题p真假相反.4.全称命题、特称命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称命题綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),其否定为全称命题綈p:∀x∈M,綈p(x).5.充分条件和必要条件(1)若p⇒q且q⇏p,则p是q的充分不必要条件;(2)若p⇏q且q⇒p,则称p是q的必要不充分条件;(3)若p⇔q,则称p是q的充要条件;(4)若p⇏q且q⇏p,则称p是q的既不充分也不必要条件.1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.4.空集是任何集合的子集.由条件A⊆B,A∩B=A,A∪B=B求解集合A时,务必分析研究A=∅的情况.5.区分命题的否定与否命题,已知命题为“若p,则q”,则该命题的否定为“若p,则綈q”,其否命题为“若綈p,则綈q”.6.在对全称命题和特称命题进行否定时,不要忽视对量词的改变.7.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0或 3B.0或3C.1或 3D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≥2}B.{a|a≤1}C.{a|a≥1}D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|-3<x<5}B.{x|-5<x<5}C.{x|x<-5或x>-3}D.{x|x<-3或x>5}答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是( )A.1B.2C.3D.4答案 D解析满足题意的集合A可以为{a},{a,b},{a,c},{a,b,c},共4个.5.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁U B)等于( )A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)答案 D解析B={x|x2-2x<0}=(0,2),A∪(∁U B)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.下列命题正确的是( )(1)命题“∀x∈R,2x>0”的否定是“∃x0∈R,20x≤0”;(2)l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;(3)给定命题p ,q ,若“p ∧q 为真命题”,则綈p 是假命题; (4)“sin α=12”是“α=π6”的充分不必要条件.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4) 答案 C解析 命题“∀x ∈R ,2x>0”的否定是“∃x 0∈R ,2x ≤0”;l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α或l ⊂α;给定命题p ,q ,若“p ∧q 为真命题”;则p 且q 是真命题,綈p 且綈q 是假命题;“sin α=12”是“α=π6”的必要不充分条件,因此(1)(3)为真,选C.7.设命题p :∃x 0∈R ,使x 20+2x 0+a =0(a ∈R),则使得p 为真命题的一个充分不必要条件是( ) A.a >-2 B.a <2 C.a ≤1 D.a <0 答案 D解析 设f (x )=x 2+2x +a ,则p 为真命题⇔f (x )在R 内有零点⇔Δ≥0⇔a ≤1.8.已知命题p :在△ABC 中,若AB <BC ,则sin C <sin A ;命题q :已知a ∈R ,则“a >1”是“1a<1”的必要不充分条件.在命题p ∧q ,p ∨ q ,(綈p )∨q ,(綈p )∧q 中,真命题的个数为( )A.1B.2C.3D.4 答案 A解析 由题意得,在△ABC 中,若AB <BC ,即c <a ,由正弦定理可得sin C <sin A ,所以p 真,又已知a ∈R ,则“a >1”是“1a<1”的充分不必要条件,所以q 假,只有p ∨q 为真命题,故选A.9.已知命题p :∀m ∈[0,1],x +1x≥2m,则綈p 为( )A.∀m ∈[0,1],x +1x<2mB.∃m 0∈[0,1],x +1x≥20mC.∃m 0∈(-∞,0)∪(1,+∞),x +1x≥20mD.∃m 0∈[0,1],x +1x<20m答案 D解析 根据全称命题与特称命题的关系,可知命题p :∀m ∈[0,1],x +1x≥2m,则綈p 为“∃m 0∈[0,1],x +1x<20m ”,故选D.10.下列结论正确的是________. (1)f (x )=ax -1+2(a >0,且a ≠1)的图象经过定点(1,3);(2)已知x =log 23,4y=83,则x +2y 的值为3;(3)若f (x )=x 3+ax -6,且f (-2)=6,则f (2)=18; (4)f (x )=x (11-2x -12)为偶函数; (5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,则m 的值为1或-1. 答案 (1)(2)(4)解析 (1)当x =1时,f (1)=a 0+2=1+2=3,则函数的图象经过定点(1,3),故(1)正确;(2)已知x =log 23,4y =83,则22y=83,2y =log 283,则x +2y =log 23+log 283=log 2(83×3)=log 28=3,故(2)正确;(3)若f (x )=x 3+ax -6,且f (-2)=6,则(-2)3-2a -6=6,即a =-10,则f (2)=23-2×10-6=-18,故(3)错误;(4)函数的定义域为{x |x ≠0},关于原点对称, f (x )=x (11-2x -12)=x ·1+2x2(1-2x ),则f (-x )=-x ·1+2-x2(1-2-x )=-x ·2x +12(2x -1)=x ·1+2x2(1-2x )=f (x ),即有f (x )为偶函数,则f (x )=x (11-2x -12)为偶函数,故(4)正确;(5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,当m =0时,B =∅,也满足条件,故(5)错误,故正确的是(1)(2)(4). 11.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞)解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5,∴5∉M 时,a <-2或a ≥5.12.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z},集合P ={a ,b ,c }⊆M ,则(1)“好集”P 中的元素最大值为________;(2)“好集”P 的个数为________. 答案 2 012 1 006解析 因为a =-2b ,c =4b ,若集合P 中元素a 、b 、c 既是调和的,又是等差的,则1a +1b =2c且a +c =2b ,故满足条件的“好集”为形如{-2b ,b ,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,P 中元素的最大值为4b =4×503=2 012.符合条件的b 值可取1 006个,故“好集”P 的个数为1 006.13.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件, ∴a ≤-4,∴a ∈(-∞,-4]. 14.已知命题p :⎪⎪⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m 的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3;∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0⇔1-m <x <1+m ,∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m ,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3,解得m >2.二、函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ;②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞,a <0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a ; ③反比例函数y =kx(k ≠0)的值域为{y ∈R|y ≠0}. 2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.②若函数y =f (x )满足f (a +x )=-f (a -x ), 即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.③若函数y =f (x )满足f (a +x )=f (b -x ), 则函数f (x )的图象关于直线x =a +b2对称.4.函数的单调性函数的单调性是函数在定义域上的局部性质. ①单调性的定义的等价形式:设x 1,x 2∈[a ,b ], 那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性. 5.函数图象的基本变换 (1)平移变换:y =f (x )――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换:y =f (x )――→x 轴y =-f (x ), y =f (x )――→y 轴y =f (-x ), y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质 (1)定点:y =a x(a >0,且a ≠1)恒过(0,1)点;y =log a x (a >0,且a ≠1)恒过(1,0)点.(2)单调性:当a >1时,y =a x在R 上单调递增;y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =a x在R 上单调递减;y =log a x 在(0,+∞)上单调递减. 7.函数与方程(1)零点定义:x 0为函数f (x )的零点⇔f (x 0)=0⇔(x 0,0)为f (x )的图象与x 轴的交点.(2)确定函数零点的三种常用方法①解方程判定法:即解方程f(x)=0.②零点定理法:根据连续函数y=f(x)满足f(a)f(b)<0,判断函数在区间(a,b)内存在零点.③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解.8.导数的几何意义(1)f′(x0)的几何意义:曲线y=f(x)在点(x0,f(x0))处的切线的斜率,该切线的方程为y-f(x0)=f′(x0)(x-x0).(2)切点的两大特征:①在曲线y=f(x)上;②在切线上.9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f(x)的定义域;②求导函数f′(x);③由f′(x)>0的解集确定函数f(x)的单调增区间,由f′(x)<0的解集确定函数f(x)的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f(x)在区间M上单调递增,则f′(x)≥0(x∈M)恒成立;若可导函数f(x)在区间M上单调递减,则f′(x)≤0 (x∈M)恒成立;②若可导函数在某区间上存在单调递增(减)区间,f′(x)>0(或f′(x)<0)在该区间上存在解集;③若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,则I是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f′(x)=0;③判断f′(x)在方程f′(x)=0的根x0两侧的符号变化:若左正右负,则x0为极大值点;若左负右正,则x0为极小值点;若不变号,则x0不是极值点.(2)求函数f(x)在区间[a,b]上的最值的一般步骤:①求函数y=f(x)在(a,b)内的极值;②比较函数y=f(x)的各极值与端点处的函数值f(a)、f(b)的大小,最大的一个是最大值,最小的一个是最小值.1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y=a x(a>0,a≠1)的单调性忽视字母a的取值讨论,忽视a x>0;对数函数y=log a x(a>0,a≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x-4,x >0,则f [f (1)]等于( )A .-10B .10C .-2D .2 答案 C解析 由f [f (1)]=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .[1,32)C .[1,2)D .[32,2)答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x ,由f ′(x )=0,得x =12.利用图象可得,⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( )A .(94,3)B .[94,3)C .(1,3)D .(2,3) 答案 D解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.函数y =x ·2x|x |的图象大致形状是( )答案 A解析 y =⎩⎪⎨⎪⎧2x,x >0,-2x,x <0,y =2x 在(0,+∞)上单调递增,且y =2x >0,排除B ,D ;又y =-2x在(-∞,0)上单调递减,排除C.5.(2016·课标全国甲)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( ) A .2 B .0 C .-1 D .-2 答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.已知函数f (x )=⎝ ⎛⎭⎪⎫15x-log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)的值( )A .恒为正值B .等于0C .恒为负值D .不大于0 答案 A解析 由题意知f (x )为(0,+∞)上的减函数, 又f (x 0)=0,x 1<x 0, ∴f (x 1)>f (x 0)=0,故选A.8.设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b 答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b .9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________. 答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1,即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.(2016·天津)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 答案 3解析 因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3.11.设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________.答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ), 可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2, 故f (3)=f (1)=f (0+1)=-f (0)=0,f (-32)=f (12)=-14,∴f (3)+f (-32)=-14.12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________. 答案 -7解析 ∵f ′(x )=3x 2+2ax +b ,由已知可得⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得a =4,b =-11或a =-3,b =3, 经验证,a =4,b =-11符合题意, 故a +b =-7. 13.已知函数f (x )=x +1ex(e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max . ∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1ex,∴φ′(x )=-x 2+(1+t )x -t e x =-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减, 若t ∈(t,1],φ′(x )>0,φ(x )在(t,1)上单调递增, ∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t<max{1,3-te}.(*) 由(1)知,g (t )=2·t +1et在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.三、三角函数、平面向量1.准确记忆六组诱导公式 对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式 sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0). 3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β.(2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=b a). 4.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.5.三种三角函数的性质6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换:y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a ·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A.(2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号.2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ. 5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解.6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a ·b >0是〈a ,b 〉为锐角的必要不充分条件;a ·b <0是〈a ,b 〉为钝角的必要不充分条件.1.2sin 45°cos 15°-sin 30°的值等于( ) A.12 B.22 C.32 D.1 答案 C解析 2sin 45°cos 15°-sin 30°=2sin 45°cos 15°-sin(45°-15°)=2sin 45°cos 15°-(sin 45°cos 15°-cos 45°sin 15°)=sin 45°cos 15°+cos 45°sin 15°=sin 60°=32.故选C. 2.要得到函数y =sin 2x 的图象,可由函数y =cos(2x -π3)( )A.向左平移π6个单位长度得到B.向右平移π6个单位长度得到C.向左平移π12个单位长度得到D.向右平移π12个单位长度得到答案 D解析 由于函数y =sin 2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x -π3)向右平移π12个单位长度得到函数y =sin 2x 的图象,故选D.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A.3B.932 C.332D.3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.4.(1+tan 18°)(1+tan 27°)的值是( ) A. 3 B.1+ 2 C.2 D.2(tan 18°+tan 27°) 答案 C解析 由题意得,tan(18°+27°)=tan 18°+tan 27°1-tan 18°tan 27°,即tan 18°+tan 27°1-tan 18°tan 27°=1,所以tan 18°+tan 27°=1-tan 18°tan 27°,所以(1+tan 18°)(1+tan 27°)=1+tan 18°+tan 27°+tan 18°tan 27°=2,故选C.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案 B解析 ∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( ) A.锐角 B.钝角 C.直角 D.不确定 答案 A解析 ∵A 、B 、C 是锐角△ABC 的三个内角,∴A +B >π2,即A >π2-B >0,∴sin A >sin(π2-B )=cos B ,∴p ·q =sin A -cos B >0.再根据p ,q 的坐标可得p ,q 不共线,故p 与q 的夹角为锐角. 7. f (x )=12sin(2x -π3)+32cos(2x -π3)是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数答案 C解析 f (x )=12sin(2x -π3)+32cos(2x -π3)=sin(2x -π3+π3)=sin 2x ,是最小正周期为π的奇函数,故选C.8.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a 与b 的夹角为( ) A.0 B.π4 C.2π3 D.π答案 D解析 |b |=12|a |=52,而(a +2b )·(2a -b )=0⇒2a 2-2b 2+3b ·a =0⇒b ·a =-52,从而cos 〈b ,a 〉=b ·a |b|·|a |=-1,〈b ,a 〉=π,故选D.9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 有下列命题: ①若A >B >C ,则sin A >sin B >sin C ; ②若cos A a =cos B b =cos C c,则△ABC 为等边三角形;③若sin 2A =sin 2B ,则△ABC 为等腰三角形;④若(1+tan A )(1+tan B )=2,则△ABC 为钝角三角形;⑤存在A ,B ,C 使得tan A tan B tan C <tan A +tan B +tan C 成立. 其中正确的命题为________.(写出所有正确命题的序号). 答案 ①②④解析 若A >B >C ,则a >b >c ⇒sin A >sin B >sin C ; 若cos A a =cos B b =cos C c ,则cos A sin A =cos B sin B⇒sin(A -B )=0⇒A =B ⇒a =b ,同理可得a =c ,所以△ABC 为等边三角形;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,因此△ABC 为等腰或直角三角形;若(1+tanA )(1+tanB )=2,则tan A +tan B =1-tan A tan B ,因此tan(A +B )=1⇒C =3π4,△ABC 为钝角三角形;在△ABC 中,tan A tan B tan C =tan A +tan B +tan C 恒成立, 因此正确的命题为①②④.10.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析 由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A=1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去). 11.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案 25解析 ∵tan θ=3,∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25. 12.已知单位向量a ,b ,c ,且a ⊥b ,若c =ta +(1-t )b ,则实数t 的值为________. 答案 1或0解析 c =ta +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2=1⇒t =0或t =1.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ). (1)求角B 的大小;(2)求函数f (x )=2sin 2x +sin(2x -B )(x ∈R)的最大值. 解 (1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin 2x +sin 2x cos2π3-cos 2x sin 2π3=32sin 2x -32cos 2x =3sin(2x -π6), 即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.14.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值. 解 (1)f (x )=2sin x cos x -2cos 2x +1 =sin 2x -cos 2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z),得k π-π8≤x ≤k π+3π8(k ∈Z),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角, ∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a = 5.四、数 列1.牢记概念与公式 等差数列、等比数列2.活用定理与结论(1)等差、等比数列{a n }的常用性质(2)判断等差数列的常用方法 ①定义法:a n +1-a n =d (常数) (n ∈N *)⇔{a n }是等差数列.②通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列.③中项公式法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. ④前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列.(3)判断等比数列的三种常用方法 ①定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. ②通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. ③中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 3.数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和.(2)形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列,利用错位相减法求和. (3)通项公式形如a n =c(an +b 1)(an +b 2)(其中a ,b 1,b 2,c 为常数)用裂项相消法求和.(4)通项公式形如a n =(-1)n·n 或a n =a ·(-1)n(其中a 为常数,n ∈N *)等正负项交叉的数列求和一般用并项法.并项时应注意分n为奇数、偶数两种情况讨论.(5)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列.(6)并项求和法:先将某些项放在一起求和,然后再求S n.1.已知数列的前n项和求a n,易忽视n=1的情形,直接用S n-S n-1表示.事实上,当n=1时,a1=S1;当n≥2时,a n=S n-S n-1.2.易混淆几何平均数与等比中项,正数a,b的等比中项是±ab.3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n}与{b n}的前n项和分别为S n和T n,已知S nT n=n+12n+3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n项和公式时,易忘记分类讨论.一定分q=1和q≠1两种情况进行讨论.6.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项.7.裂项相消法求和时,分裂前后的值要相等,如1n(n+2)≠1n-1n+2,而是1n(n+2)=12⎝⎛⎭⎪⎫1n-1n+2.8.通项中含有(-1)n的数列求和时,要把结果写成分n为奇数和n为偶数两种情况的分段形式.1.已知数列{a n}的前n项和为S n,若S n=2a n-4(n∈N*),则a n等于( )A.2n+1B.2nC.2n-1D.2n-2答案 A解析a n+1=S n+1-S n=2a n+1-4-(2a n-4)⇒a n+1=2a n,再令n=1,∴S1=2a1-4⇒a1=4,∴数列{a n}是以4为首项,2为公比的等比数列,∴a n=4·2n-1=2n+1,故选A.2.已知数列{a n}满足a n+2=a n+1-a n,且a1=2,a2=3,S n为数列{a n}的前n项和,则S2 016的值为( )A.0B.2C.5D.6答案 A解析由题意得,a3=a2-a1=1,a4=a3-a2=-2,a5=a4-a3=-3,a6=a5-a4=-1,a7=a6-a5=2,∴数列{a n}是周期为6的周期数列,而2 016=6·336,∴S2 016=336S6=0,故选A.3.已知等差数列{a n}的前n项和为S n,若a5=14-a6,则S10等于( )A.35B.70C.28D.14答案 B解析a5=14-a6⇒a5+a6=14,S10=10(a1+a10)2=10(a5+a6)2=70.故选B.4.已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则使S n+63a n取得最小值时n的值为( )A.7B.7或8C.172 D.8答案 D解析 a 2=4,S 10=110⇒a 1+d =4,10a 1+45d =110⇒a 1=2,d =2,因此S n +63a n =2n +n (n -1)+632n =n 2+632n+12,又n ∈N *,所以当n =8时,S n +63a n 取得最小值. 5.等比数列{a n }中,a 3a 5=64,则a 4等于( ) A.8 B.-8 C.8或-8 D.16 答案 C解析 由等比数列的性质知,a 3a 5=a 24, 所以a 24=64,所以a 4=8或a 4=-8.6.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=52,且a 2+a 4=54,则S na n 等于( )A.4n -1B.4n -1C.2n -1D.2n-1答案 D解析 设等比数列{a n }的公比为q , 则⎩⎪⎨⎪⎧a 1(1+q 2)=52,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=2,q =12,∴S n a n =a 1(1-q n )1-q a 1q n -1=2×(1-12n )1-122×(12)n -1=2n-1.故选D. 7.设函数f (x )=x a+ax 的导函数f ′(x )=2x +2,则数列{1f (n )}的前9项和是( ) A.2936 B.3144 C.3655 D.4366答案 C解析 由题意得函数f (x )=x a+ax 的导函数f ′(x )=2x +2,即axa -1+a =2x +2,所以a =2,即f (x )=x 2+2x ,1f (n )=1n (n +2)=12(1n -1n +2), 所以S n =12(1-13+12-14+13-15+…+1n -1n +2)=12(1+12-1n +1-1n +2).则S 9=12(1+12-110-111)=3655,故选C.8.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为( )A.4B.3C.23-2D.92答案 A解析 据题意由a 1,a 3,a 13成等比数列可得(1+2d )2=1+12d ,解得d =2,故a n =2n -1,S n =n 2,因此2S n +16a n +3=2n 2+162n +2=n 2+8n +1=(n +1)2-2(n +1)+9n +1=(n +1)+9n +1-2,据基本不等式知2S n +16a n +3=(n +1)+9n +1-2≥2(n +1)×9n +1-2=4,当n =2时取得最小值4. 9.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于________. 答案 4解析 由等比数列的性质有a 1a 8=a 2a 7=a 3a 6=a 4a 5,所以T 8=lg a 1+lg a 2+…+lg a 8=lg(a 1a 2…a 8)=lg(a 4a 5)4=lg(10)4=4.10.已知数列{a n }满足a n +1=a n +2n 且a 1=2,则数列{a n }的通项公式a n =__________. 答案 n 2-n +2 解析 a n +1=a n +2n ,∴a n +1-a n =2n ,采用累加法可得∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1, =2(n -1)+2(n -2)+…+2+2=n 2-n +2.11.若数列{a n }满足a n =3a n -1+2(n ≥2,n ∈N *),a 1=1,则数列{a n }的通项公式为a n =____________. 答案 2×3n -1-1解析 设a n +λ=3(a n -1+λ),化简得a n =3a n -1+2λ, ∵a n =3a n -1+2,∴λ=1, ∴a n +1=3(a n -1+1), ∵a 1=1,∴a 1+1=2,∴数列{a n +1}是以2为首项,3为公比的等比数列, ∴a n +1=2×3n -1,∴a n =2×3n -1-1.12.数列113,219,3127,4181,51243,…的前n 项之和等于________________.答案n (n +1)2+12[1-(13)n] 解析 由数列各项可知通项公式为a n =n +13n ,由分组求和公式结合等差数列、等比数列求和公式可知前n项和为S n =n (n +1)2+12[1-(13)n]. 13.设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,且λ≠-1),且a 1,2a 2,a 3+3为等差数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)求数列{a n b n }的前n 项和.解 (1)方法一 ∵a n +1=λS n +1(n ∈N *), ∴a n =λS n -1+1(n ≥2).∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0, 又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,以λ+1为公比的等比数列, ∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n =2n -1,b n =1+3(n -1)=3n -2.方法二 ∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)+1=λ2+2λ+1. ∴4(λ+1)=1+λ2+2λ+1+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n +1=S n +1 (n ∈N *), ∴a n =S n -1+1(n ≥2),∴a n +1-a n =a n ,即a n +1=2a n (n ≥2),又a 1=1,a 2=2, ∴数列{a n }为以1为首项,以2为公比的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2.(2)设数列{a n b n }的前n 项和为T n ,a nb n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1.①∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n. ②①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n.整理得T n =(3n -5)·2n+5.14.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *),(1)求证:数列{a n }是等差数列;(2)设b n =1S n,T n =b 1+b 2+…+b n ,若λ≤T n 对于任意n ∈N *恒成立,求实数λ的取值范围.(1)证明 ∵S n =a n (a n +1)2(n ∈N *),①∴S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1), ∵数列{a n }的各项均为正数,∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2).当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解 由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2(1n -1n +1), ∴T n =2[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2(1-1n +1)=2n n +1,∵T n =21+1n,∴T n 单调递增,∴T n ≥T 1=1,∴λ≤1.故λ的取值范围为(-∞,1].五、不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小.2.一元二次不等式的恒成立问题 (1)ax2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R)当且仅当a =b 时取等号. ②a +b2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R);②a 2+b 22≥a +b2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立). ③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立).5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f (x )g (x )≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x(x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >b c;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b.A.4B.3C.2D.1 答案 C解析 ①a >b ,c >d ⇔a +c >b +d 正确,不等式的同向可加性;②a >b ,c >d ⇒a d >b c错误,反例:若a =3,b=2,c =1,d =-1,则a d >b c不成立;③a 2>b 2⇔|a |>|b |正确;④a >b ⇔1a <1b错误,反例:若a =2,b =-2,则1a <1b不成立.故选C.2.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定 答案 A解析 M -N =2a (a -2)+4-(a -1)(a -3)=a 2+1>0.故选A.3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( )。

高考数学总复习第二轮.ppt

高考数学总复习第二轮.ppt

即 G 2 ab 。
aG
[等比数列的通项公式] 如果等比数列{an}的首项是a1 ,公比是q,则等比数列的通 项为 an a1q n1
[等比数列的前n项和]
①S n

a1(1 q n ) 1 q
(q
1)
② Sn

a1 anq 1 q
(q
1)
③ Sn
当 q 1
na1
[等比数列的判定方法]
1. 定义法:对于数列{an} {an}是等比数列。
,若
an+1 an
q(q
0)
,则数列
2.等比中项:对于数列{an}
,若an an+2

a
2 n+1
,则数列
{an}是等比数列
[等比中项]
如果在a与b之间插入一个数G,使a,G,b成等比数列,
那也么就G是叫,做如a果与Gb是的a等,b比的中等项比。中项,那么G b ,
求数列的前n项和:1 + 1,
1 a
+
4,
1 a2
+
7, ,
1 a n1
+ 3n 2
求数列{(n+1)(2n+1)}的前n项和
五、裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂 项法的实质是将数列中的每项(通项)分解,然 后重新组合,使之能消去一些项,最终达到求和 的目的
常数叫做等差数列的公差,公差通常用字母d表示。
[等差数列的判定方法]
1 定义法:对于数列{an},若 an+1 an d
列 2等差中项:对于数列{an}
,若2an+1

高考二轮总复习课件(适用于老高考旧教材)数学(理)专题二 数列

高考二轮总复习课件(适用于老高考旧教材)数学(理)专题二 数列


1
+ +
=
1
(

;
+ − ).
实质就是分母的有理化过程
5.数列中的重要结论
(1)等差数列{an}的常用性质
①an=a1+(n-1)d=am+(n-m)d,m,n∈N*.
②若数列{an}的前n项和为Sn,则Sm,S2m-Sm,S3m-S2m,…仍成等差数列.
③若ap=q,aq=p(p,q∈N*,且p≠q),则ap+q=0.
an=kqn(k,q为常数,且kq≠0,n∈N*)
数列{an}的前n项和为
Sn=An2+Bn(A,B是常数且
A2+B2≠0)
an+an+2=2an+1(n∈N*)
数列{an}的前n项和为Sn=A-Aqn(常
数A≠0,公比q≠1)或Sn=An(A≠0)
2
anan+2= +1
(n∈N*)
判断方法
等差数列
用通项公式法或前n项和法.
3.由递推关系式求数列的通项公式
(1)形如an+1=an+f(n),利用累加法求通项.
(2)形如an+1=anf(n),利用累乘法求通项.
当p=1时,构造等差数列;当p≠1时,构造等比数列
(3)形如

an+1=pan+q,p≠1,q≠0,等式两边同时加 转化为等比数列求通项公式.
(2)解方程(组):把条件转化为关于a1和d(或q)的方程(组),然后
求解,注意整体计算,以减少运算量
对点练1(1)(2022·江西二模)已知各项均为正数的等比数列{an}的前n项和

高三数学二轮专题复习资料(理).docx

高三数学二轮专题复习资料(理).docx

高三数学二轮专题复习资料(理)专题一:三角函数与平面向量一、高考动向:1.三角函数的性质、图像及其变换,主要是y = Asin(亦+ 0)的性质、图像及变换.考查三角函数的概念、奇偶性、周期性、单调性、有界性、图像的平移和对称等•以选择题或填空题或解答题形式出现, 属中低档题,这些试题对三角函数单一的性质考查较少,一道题所涉及的三角函数性质在两个或两个以上,考查的知识点來源于教材.2•三角变换.主要考查公式的灵活运用、变换能力,一般要运用和角、差角与二倍角公式,尤其是对公式的应用与三角函数性质的综合考查.以选择题或填空题或解答题形式出现,属小档题.3•三角函数的应用.以平面向量、解析几何等为载体,或者用解三角形来考查学生对三角恒等变形及三角函数性质的应用的综合能力.特别要注意三角函数在实际问题中的应用和跨知识点的应用,注意三角函数在解答有关函数、向量、平面几何、立体几何、解析几何等问题时的工具性作用.这类题一般以解答题的形式出现,属屮档题.4.在一套高考试题中,三角函数一般分别有1个选择题、1个填空题和1个解答题,或选择题与填空题1个,解答题1个,分值在17分一22分之间.5.在高考试题屮,三角题多以低档或屮档题目为主,一般不会出现较难题,更不会出现难题,因而三角题是高考中的得分点.二、知识再现:三角函数跨学科应用是它的鲜明特点,在解答函数,不等式,立体几何问题时,三角幣数是常用的工具,在实际问题中也有广泛的应用,平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、距离、共线等问题,以解答题为主。

1.三角函数的化简与求值(1) _________________________ 常用方法:①②___________________③_____________________(2) ___________________ 化简要求:①②(3) __________ ④_______ ⑤_________2.三角函数的图象与性质(1)解图象的变换题时,提倡先平移,但先伸缩后平移也经常出现,无论哪种变形,请切记每一个变换总是对字母_____ 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

数学必修一二轮复习资料

数学必修一二轮复习资料

数学必修一二轮复习资料数学是一门重要的学科,无论是在学校还是在日常生活中,我们都离不开数学。

而数学必修一和必修二是中学数学的基础,是我们打好数学基础的关键。

下面,我将为大家提供一些数学必修一和必修二的复习资料,希望能够帮助大家更好地复习和掌握这两门课程。

1. 数的性质和运算法则数的性质和运算法则是数学的基础,也是必修一和必修二的重点内容。

在复习这部分知识时,我们可以从以下几个方面进行总结和归纳:(1)整数的性质和运算法则:包括整数的分类、整数的加减乘除运算法则等。

(2)有理数的性质和运算法则:有理数包括整数和分数,掌握有理数的性质和运算法则对于解决实际问题非常重要。

(3)实数的性质和运算法则:实数是整数、有理数和无理数的统称,了解实数的性质和运算法则可以帮助我们更好地理解数的概念。

2. 代数式的运算和应用代数式是数学中的重要概念,也是必修一和必修二的核心内容之一。

在复习这部分知识时,我们可以从以下几个方面进行总结和归纳:(1)代数式的基本运算:包括代数式的加减乘除运算法则,以及代数式的合并同类项和提取公因式等。

(2)代数式的应用:代数式在实际问题中的应用非常广泛,包括方程、不等式、函数等方面。

3. 几何图形的性质和应用几何图形是数学中的重要内容,也是必修一和必修二的重点之一。

在复习这部分知识时,我们可以从以下几个方面进行总结和归纳:(1)平面图形的性质和分类:包括点、线、面的概念,以及各种平面图形的性质和分类。

(2)空间图形的性质和分类:包括立体图形的性质和分类,如球体、圆柱体、棱柱体等。

(3)几何图形的应用:几何图形在实际问题中的应用非常广泛,包括计算面积、体积等方面。

4. 统计与概率统计与概率是必修一和必修二的重点内容之一,也是数学中的实用知识。

在复习这部分知识时,我们可以从以下几个方面进行总结和归纳:(1)统计学的基本概念:包括数据的收集、整理、分析和表示等方面。

(2)概率的基本概念:包括事件、样本空间、概率的计算等方面。

高中 高考数学一轮 二轮总复习资料汇编(理科)

高中 高考数学一轮 二轮总复习资料汇编(理科)

第一章集合与常用逻辑用语1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用Venn图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定.§1.1集合及其运算1.集合的基本概念(1)我们把研究对象统称为________,把一些元素组成的总体叫做________.(2)集合中元素的三个特性:________,________,________.(3)集合常用的表示方法:________和________.3.元素与集合、集合与集合之间的关系(1)元素与集合之间存在两种关系:如果a是集合A中的元素,就说a ________集合A,记作________;如果a不是集合A中的元素,就说a________集合A,记作________.∅∅)结论:集合{a1,a2,…,a n}的子集有______个,非空子集有________个,非空真子集有________个.5.集合运算中常用的结论(1)①A∩B________A;②A∩B________B;③A∩A=________;④A∩∅=________;⑤A∩B________B∩A.(2)①A∪B________A; ②A∪B________B;③A∪A=________;④A∪∅=________;⑤A∪B________B∪A.(3)①∁U(∁U A)=________;②∁U U=________;③∁U∅=________;④A∩(∁U A)=____________;⑤A∪(∁U A)=____________.(4)①A∩B=A⇔________⇔A∪B=B;②A∩B=A∪B⇔____________.(5)记有限集合A,B的元素个数为card(A),card(B),则:card(A∪B)=____________________________;card[∁U(A∪B)]=________________________.自查自纠1.(1)元素集合(2)确定性互异性无序性(3)列举法描述法2.N N*(N+)Z Q R C3.(1)属于a∈A不属于a∉A(2)A⊆B且B⊆A A⊆B B⊇A A B B A非空集合2n2n-12n-24.A∪B A∩B∁U A{x|x∈A或x∈B}{x|x∈A且x∈B}{x|x∈U且x∉A}5.(1)①⊆②⊆③A④∅⑤=(2)①⊇②⊇③A④A⑤=(3)①A②∅③U④∅⑤U(4)①A⊆B②A=B(5)card(A)+card(B)-card(A∩B)card(U)-card(A)-card(B)+card(A∩B)(2015·安徽)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=() A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解:∵∁U B={1,5,6},∴A∩(∁U B)={1}.故选B.(2015·陕西)设集合M={x|x2=x},N={x|lg x ≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解:∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N=[0,1].故选A.(2015·全国Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=() A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解:由已知得B={x|-2<x<1},∴A∩B={-1,0}.故选A.已知集合A={1,2,3},B={(x,y)|x∈A,y ∈A,x+y∈A},则B中所含元素的个数为________.解:根据x∈A,y∈A,x+y∈A,知集合B={(1,1),(1,2),(2,1)},有3个元素.故填3.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0}.若A∩B中恰含有一个整数,则实数a的取值范围是________.解:A={x|x2+2x-3>0}={x|x>1或x<-3},设函数f(x)=x2-2ax-1,则其对称轴x=a>0,由对称性知,若A∩B中恰含有一个整数,则这个整数为2,∴f(2)≤0且f(3)>0,即⎩⎪⎨⎪⎧4-4a-1≤0,9-6a-1>0,得34≤a<43.故填⎣⎡⎭⎫34,43.类型一集合的概念(1)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2 C.0 D.0或4解:由ax2+ax+1=0只有一个实数解,可得当a =0时,方程无实数解;当a≠0时,Δ=a2-4a=0,解得a=4.故选A.(2)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.解:由题意得m+2=3或2m2+m=3,则m=1或m=-32,当m=1时,m+2=3,2m2+m=3,根据集合中元素的互异性可知不满足题意;当m=-32时,m+2=12,2m2+m=3,综上知,m=-32.故填-32.【点拨】(1)用描述法表示集合,首先要弄清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(1)(2015·苏州一模)集合⎩⎨⎧⎭⎬⎫x∈N*|12x∈Z中含有的元素个数为()A.4 B.6 C.8 D.12解:令x=1,2,3,4,5,6,7,8,9,10,11,12,代入验证,得x=1,2,3,4,6,12时,12x∈Z,即集合中有6个元素.故选B.(2)已知a∈R,b∈R,若⎩⎨⎧⎭⎬⎫a,ba,1={a2,a+b,0},则a2 017+b2 017=________.解:由已知得ba =0及a ≠0,∴b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =-1,∴a 2 017+b 2 017=-1.故填-1.类型二 集合间的关系已知集合A ={x |x 2-3x -10≤0}. (1)若B ={x |m +1≤x ≤2m -1},B ⊆A ,求实数m 的取值范围;(2)若B ={x |m -6≤x ≤2m -1},A =B ,求实数m 的取值范围;(3)若B ={x |m -6≤x ≤2m -1},A ⊆B ,求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)若B ⊆A ,则①当B =∅,有m +1>2m -1,即m <2,此时满足B ⊆A ;②当B ≠∅,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5, 解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5, 解得m ∈∅,即不存在实数m 使得A =B .(3)若A ⊆B ,则⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得3≤m ≤4.∴m 的取值范围为[3,4]. 【点拨】本例主要考查了集合间的关系,“当B ⊆A 时,B 可能为空集”很容易被忽视,要注意这一“陷阱”.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集的个数; (3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.解:(1)①当m +1>2m -1,即m <2时,B =∅,满足B ⊆A .②当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5, 可得2≤m ≤3.综上,m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ∩B =∅,∴当B =∅时,即m +1>2m -1,得m <2,满足条件;当B ≠∅时, 有⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得m >4.综上,m 的取值范围是(-∞,2)∪(4,+∞).类型三 集合的运算(1)已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( )A .∅B.⎝⎛⎦⎤0,13C.⎣⎡⎦⎤13,1D .(-∞,1]解:由题意知,A =(0,1],B =⎝⎛⎦⎤-∞,13, ∴A ∪B =(-∞,1].故选D .(2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解:∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩(∁U B )={3}.故填{3}.(3)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.故填-1,1.【点拨】(1)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2)在解决有关A ∩B =∅的问题时,往往忽略空集的情况,一定要先考虑A (或B )=∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(1)已知集合A ={x |y =x },B ={x|12<2x<4},则(∁R A )∩B 等于( )A .{x |-1<x <2}B .{x |-1<x <0}C .{x |x <1}D .{x |-2<x <0}解:∵A ={x |y =x }={x |x ≥0},∴∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x|12<2x <4={x |-1<x <2},∴(∁R A )∩B={x |-1<x <0}.故选B .(2)(2015·唐山模拟)集合M ={2,log 3a },N ={a ,b },若M ∩N ={1},则M ∪N =( )A .{0,1,2}B .{0,1,3}C .{0,2,3}D .{1,2,3}解:∵M ∩N ={1},∴log 3a =1,即a =3,∴b =1.∴M ={2,1},N ={3,1},M ∪N ={1,2,3}.故选D .(3)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解:|x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,由A ∩B =∅知,a +1≤1或a -1≥5,解得a ≤0或a ≥6.故选C .类型四 Venn 图及其应用设M ,P 是两个非空集合,定义M 与P的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A .PB .M ∩PC .M ∪PD .M解:作出Venn 图.当M ∩P ≠∅时,由图知,M -P 为图中的阴影部分,则M -(M -P )显然是M ∩P .当M ∩P =∅时,M -(M -P )=M -M ={x |x ∈M ,且x ∉M }=∅=M ∩P .故选B .【点拨】这是一道信息迁移题,属于应用性开放问题.“M -P ”是我们不曾学过的集合运算关系,根据其元素的属性,借助Venn 图将问题简单化.已知集合A ={-1,0,4},集合B ={x |x 2-2x -3≤0,x ∈N },全集为U ,则图中阴影部分表示的集合是________.解:B ={x |x 2-2x -3≤0,x ∈N }={x |-1≤x ≤3,x ∈N }={0,1,2,3},图中阴影部分表示的为属于A 且不属于B 的元素构成的集合,该集合为{-1,4}.故填{-1,4}.类型五 和集合有关的创新试题在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 017∈[2];②-3∈[3];③Z =[0]∪[1]∪[2]∪ [3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”.其中正确命题的个数是( )A .1B .2C .3D .4解:∵2 017=403×5+2,∴2 017∈[2],结论①正确;-3=-1×5+2,∴-3∈[2],-3∉[3],结论②不正确;整数可以分为五“类”,这五“类”的并集就是整数集,即Z =[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a ,b 属于同一“类”,则a =5n +k ,b =5m +k ,a -b =5(n -m )+0∈[0],反之,若a -b ∈[0],则a ,b 被5除有相同的余数,故a ,b 属于同一“类”,结论④正确,综上知,①③④正确.故选C.【点拨】(1)以集合语言为背景的新信息题,常见的类型有定义新概念型、定义新运算型及开放型,解决此类信息迁移题的关键是在理解新信息并把它纳入已有的知识体系中,用原来的知识和方法来解决新情境下的问题.(2)正确理解创新定义,分析新定义的表述意义,把新定义所表达的数学本质弄清楚,转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.设S为复数集C的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列命题:①集合S={a+b i|a,b为整数,i为虚数单位}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆C的任意集合T 也是封闭集.其中的真命题是________.(写出所有真命题的序号)解:①对,当a,b为整数时,对任意x,y∈S,x+y,x-y,xy的实部与虚部均为整数;②对,当x =y时,0∈S;③错,当S={0}时,是封闭集,但不是无限集;④错,设S={0}⊆T,T={0,1},显然T 不是封闭集.因此,真命题为①②.故填①②.1.首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x|y=f(x)}、{y|y=f(x)}、{(x,y)|y=f(x)}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.5.五个关系式A⊆B,A∩B=A,A∪B=B,∁U B ⊆∁U A以及A∩(∁U B)=∅是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂、比较抽象、条件和结论不明确、难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易、化隐为显,从而解决问题.例如:已知A={x|x2+x+a≤0},B={x|x2-x+2a-1<0},C={x|a≤x≤4a-9},且A,B,C中至少有一个不是空集,求a的取值范围.这个问题的反面即是三个集合全为空集,即⎩⎪⎨⎪⎧1-4a<0,1-4(2a-1)≤0,a>4a-9,解得58≤a<3,从而所求a的取值范围为⎩⎨⎧⎭⎬⎫a|a<58或a≥3.1.(2015·全国Ⅰ)已知集合A={x|x=3n+2,n ∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解:A∩B={x|x=3n+2,n∈N}∩{6,8,10,12,14}={8,14}.故选D.2.设集合M={-1,0,1},N={x|x2≤x},则M ∩N=()A.{0} B.{0,1}C.{-1,1} D.{-1,0,1}解:∵N={x|0≤x≤1},M={-1,0,1},∴M∩N={0,1}.故选B.3.(2013·辽宁)已知集合A={x|0<log4x<1},B ={x|x≤2},则A∩B=()A.()0,1 B.(]0,2C.()1,2D.(]1,2解:易知A ={}x |1<x <4,∴A ∩B =(]1,2.故选D .4.(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9解:由题意知,x -y =0,-1,-2,1,2.故B 中元素个数为5,故选C .5.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为()A .3B .4C .7D .8解:A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.故选C .6.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合; ②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合. 其中正确结论的个数是( ) A .0B .1C .2D .3解:①(-4)+(-2)=-6∉A ,不正确; ②设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,不正确.故选B .7.(2014·重庆)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解:∵U ={1,2,3,…,9,10},A ={1,2,3,5,8},∴∁U A ={4,6,7,9,10}.∴(∁U A )∩B ={7,9}.故填{7,9}.8.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.解:由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}这样的集合,共有6个.故填6.9.(2014·天津)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n },当q =2,n =3时,用列举法表示集合A .解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+2x 2+4x 3,x i ∈M ,i =1,2,3}={0,1,2,3,4,5,6,7}.10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围. 解:(1)A =⎩⎨⎧⎭⎬⎫x|12≤x ≤3, 当a =-4时,B ={x |-2<x <2},A ∩B =⎩⎨⎧⎭⎬⎫x |12≤x <2,A ∪B ={x |-2<x ≤3}. (2)∁R A =⎩⎨⎧⎭⎬⎫x |x <12或x >3,当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅. ①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,只须-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |a ≥-14.11.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.解:易知A ={0,-4},若B ⊆A ,则可分以下三种情况:①当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1. 综上所述,a 的取值范围为{}a |a ≤-1或a =1.(2015·杭州模拟)已知集合A ={x |x 2-3(a +1)x +2(3a +1)<0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2ax -(a 2+1)<0. (1)当a =2时,求A ∩B ;(2)求使B ⊆A 时实数a 的取值范围.解:(1)当a =2时,A ={x |x 2-9x +14<0}=(2,7),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -4x -5<0=(4,5),∴A ∩B =(4,5).(2)当a ≠1时,B =(2a ,a 2+1);当a =1时,B =∅.又A ={x |(x -2)[x -(3a +1)]<0},①当3a +1<2,即a <13时,A =(3a +1,2),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a ≥3a +1,a 2+1≤2, 解得a =-1;②当a =13时,A =∅,B =⎝⎛⎭⎫23,109,B ⊆A 不成立; ③当3a +1>2,即a >13时,A =(2,3a +1),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a ≥2,a 2+1≤3a +1,或a =1,a ≠1,解得1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}.§1.2 命题及其关系、充分条件与必要条件1.命题的概念(1)一般地,在数学中,我们把用语言、符号或式子表达的,可以__________的陈述句叫做命题,其中__________的语句叫做真命题,____________的语句叫做假命题.(2)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们称这两个命题为____________.(3)在两个命题中,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题称为________________.(4)在两个命题中,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题称为________________.(5)一般地,设“若p ,则q ”为原命题,那么____________就叫做原命题的逆命题;_____________就叫做原命题的否命题;________________就叫做原命题的逆否命题.2.四种命题间的相互关系(1)四种命题间的相互关系图(请你补全)(2)真假关系①两个命题互为逆否命题,它们具有________的真假性,即等价;②两个命题为互逆命题或互否命题,它们的真假性________.3.充分条件和必要条件(1)如果p ⇒q ,则称p 是q 的________,q 是p 的_________.(2)如果__________,且__________,那么称p 是q 的充分必要条件,简称p 是q 的______________,记作__________.(3)如果p ⇒q ,但q p ,那么称p 是q 的______________条件.(4)如果________,但________,那么称p 是q 的必要不充分条件.(5)如果________,且________,那么称p 是q 的既不充分也不必要条件.自查自纠1.(1)判断真假 判断为真 判断为假 (2)互逆命题 (3)互否命题 (4)互为逆否命题 (5)若q ,则p 若綈p ,则綈q 若綈q ,则綈p 2.(1)(2)①相同 ②没有关系 3.(1)充分条件 必要条件 (2)p ⇒q q ⇒p 充要条件 p ⇔q (3)充分不必要(4)p q q ⇒p (5)p q q p下列语句为命题的是( ) A .对角线相等的四边形 B .a <5 C .x 2-x +1=0D .有一个内角是90°的三角形是直角三角形 解:只有选项D 是可以判断真假的陈述句,故选D.(2015·陕西)“sin α=cos α”是“cos2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解:若sin α=cos α,则cos2α=cos 2α-sin 2α=0,充分性成立;反之,若cos2α=cos 2α-sin 2α=0,则sin α=±cos α,必要性不成立.因此,“sin α=cos α”是“cos2α=0”的充分不必要条件.故选A .(2015·天津)设x ∈R ,则“||x -2<1”是“x 2+x -2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:∵|x -2|<1⇔-1<x -2<1⇔1<x <3,x 2+x -2>0⇔x <-2或x >1,∴“|x -2|<1”是“x 2+x -2>0”的充分不必要条件.故选A .命题“若x 2>y 2,则x >y ”的逆否命题是______________.解:根据互为逆否命题的概念得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.故填若x ≤y ,则x 2≤y 2.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件.解:∵x 2+x +m =0有实数解等价于Δ=1-4m ≥0,得m ≤14,∴“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.故填充分不必要.类型一 四种命题及其相互关系写出下列命题的逆命题、否命题及逆否命题,并分别判断四种命题的真假:(1)末位数字是0的多位数一定是5的倍数; (2)在△ABC 中,若AB >AC ,则∠C >∠B ; (3)若x 2-2x -3>0,则x <-1或x >3. 解:(1)原命题:若一个多位数的末位数字是0,则它是5的倍数.逆命题:若一个多位数是5的倍数,则它的末位数字是0.否命题:若一个多位数的末位数字不是0,则它不是5的倍数.逆否命题:若一个多位数不是5的倍数,则它的末位数字不是0.这里,原命题与逆否命题为真命题,逆命题与否命题是假命题.(2)逆命题:在△ABC 中,若∠C >∠B ,则AB >AC .否命题:在△ABC 中,若AB ≤AC ,则∠C ≤∠B . 逆否命题:在△ABC 中,若∠C ≤∠B ,则AB ≤AC . 这里,四种命题都是真命题.(3)逆命题:若x <-1或x >3,则x 2-2x -3>0. 否命题:若x 2-2x -3≤0,则-1≤x ≤3. 逆否命题:若-1≤x ≤3,则x2-2x -3≤0. 这里,四种命题都是真命题.【点拨】写出一个命题的逆命题、否命题和逆否命题,关键是找出原命题的条件p 与结论q ,将原命题写成“若p ,则q ”的形式.在(2)中,原命题有大前提“在△ABC 中”,在写出它的逆命题、否命题和逆否命题时,应当保留这个大前提.(3)中“x <-1或x >3”的否定形式是“x ≥-1且x ≤3”,即“-1≤x ≤3”.写出下列命题的否定形式和否命题:(1)若xy =0,则x ,y 中至少有一个为零; (2)若a +b =0,则a ,b 中最多有一个大于零; (3)若四边形是平行四边形,则其相邻两个内角相等;(4)有理数都能写成分数.解:(1)否定形式:若xy =0,则x ,y 都不为零. 否命题:若xy ≠0,则x ,y 都不为零. (2)否定形式:若a +b =0,则a ,b 都大于零. 否命题:若a +b ≠0,则a ,b 都大于零. (3)否定形式:若四边形是平行四边形,则它的相邻内角不都相等.否命题:若四边形不是平行四边形,则它的相邻内角不都相等.(4)否定形式:有理数不都能写成分数.否命题:非有理数不都能写成分数. 类型二 充要条件的判定“sin α=12”是“cos2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解法一:(定义法)若sin α=12,则cos2α=1-2sin 2α=1-2×⎝⎛⎭⎫122=12,充分性成立;反之,若cos2α=12,则有1-2sin 2α=12,得sin 2α=14,sin α=±12,必要性不成立.因此,“sin α=12”是“cos2α=12”的充分不必要条件.解法二:(集合法)令A ={α|p (α)},B ={α|q (α)},则可得A =⎩⎨⎧⎭⎬⎫α|sin α=12,B =⎩⎨⎧⎭⎬⎫α|cos2α=12=⎩⎨⎧⎭⎬⎫α|1-2sin 2α=12=⎩⎨⎧⎭⎬⎫α|sin α=±12. 显然,A B ,所以p 是q 的充分不必要条件.故选A .【点拨】充要条件的三种判断方法: (1)定义法:根据p ⇒q ,q ⇒p 进行判断; (2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.(1)设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解:设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧x ≥2,y ≥2, B ={(x ,y )|x 2+y 2≥4},通过画草图可知A B ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的充分而不必要条件,故选A .注:此题也可采用定义法来判断.(2)(2013·山东)给定两个命题p ,q ,若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:∵綈p 是q 的必要而不充分条件,∴綈q 是p 的必要而不充分条件,从而得出p 是綈q 的充分而不必要条件,故选A .类型三 充要条件的证明与探求数列{a n }的前n 项和S n =An 2+Bn (A ,B是常数)是数列{a n }是等差数列的什么条件?解:当n >1时,a n =S n -S n -1=2An +B -A ; 当n =1时,a 1=S 1=A +B ,适合a n =2An +B -A .所以a n =2An +B -A ,显然{a n }是等差数列,故充分性成立.反之,若{a n }是等差数列,则有S n =na 1+n (n -1)2d (d 为公差),即S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 设A =d 2,B =a 1-d2,即得S n =An 2+Bn ,因此,必要性成立.所以S n =An 2+Bn (A ,B 是常数)是数列{a n }是等差数列的充要条件.【点拨】在证明与探求充要条件时,容易出现如下错误:①张冠李戴,证明过程中把充分性与必要性搞反了;②证明充分性或必要性时,没有把“p ”(或“q ”)分别作为条件,推出“q ”(或“p ”).已知m ∈Z ,关于x 的一元二次方程x 2-4x +4m =0, ① x 2-4mx +4m 2-4m -5=0,② 求方程①②的根都是整数的充要条件. 解:方程①有实数根⇔Δ=16-16m ≥0,即m ≤1,方程②有实数根⇔Δ=16m +20≥0,即m ≥-54,∴方程①②都有实数根⇔-54≤m ≤1.∵m ∈Z ,∴m =-1,0,1.当m =-1时,方程①可化为x 2-4x -4=0,无整数解;当m =0时,方程②可化为x 2-5=0,无整数解; 当m =1时,方程①②都有整数解.综上所述,方程①②的根都是整数的充要条件是m =1.类型四 充要条件的应用(1)设p :|4x -3|≤1,q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎭⎫0,12 C .(-∞,0]∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 解:由|4x -3|≤1得12≤x ≤1,由x 2-(2a +1)x +a (a +1)=(x -a )[x -(a +1)]≤0得a ≤x ≤a +1,∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件,有⎩⎪⎨⎪⎧a ≤12,a +1>1,或⎩⎪⎨⎪⎧a <12,a +1≥1,得0≤a ≤12.故选A .(2)已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解:由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件,有a ≥1.故选A .【点拨】解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解,在求解参数的取值范围时,一定要注意对区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的情形.(1)(2015·湖南高三质检)函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0 有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1D .a ≤0或a >1解:∵函数f (x )过点(1,0),∴函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.数形结合可得a ≤0或a >1.观察选项,根据集合间关系{a |a<0}{a |a ≤0或a >1},知A 正确.故选A .(2)若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.解:由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3, 解得0≤m ≤2.故填[0,2].1.命题及判断命题的真假(1)判断一个语句是否为命题,就是要看它是否具备“是陈述句”和“可以判断真假”这两个条件.只有这两个条件都具备的语句才是命题.(2)判断一个命题的真假,首先要分清命题的条件和结论.对涉及数学概念的命题真假的判断,要以数学定义、定理为依据(数学定义、定理都是命题,且都是真命题),从概念的本身入手进行判断.2.四种命题间的相互关系及应用(1)在判断四种命题之间的关系时,首先要注意分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地有了它的“逆命题”“否命题”“逆否命题”.(2)当一个命题有大前提而要写其他三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其他三种命题时,应把其中一个(或几个)作为大前提.(3)判断命题的真假,如果不易直接判断,可正难则反,应用互为逆否命题的等价性来判断.3.“否命题”与“命题的否定”的区别.“否命题”与“命题的否定”是两个不同的概念,“否命题”是对原命题既否定其条件,又否定其结论,而“命题的否定”只否定命题的结论.4.充要条件的三种判断方法(1)定义法:分三步进行,第一步,分清条件与结论;第二步,判断p⇒q及q⇒p的真假;第三步,下结论.(2)等价法:将命题转化为另一个等价且容易判断真假的命题.一般地,这类问题由几个充分必要条件混杂在一起,可以画出关系图,运用逻辑推理判断真假.(3)集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合之间的包含关系加以判断:①若A⊆B,则p是q的充分条件;②若A B,则p是q的充分不必要条件;③若B⊆A,则p是q的必要条件;④若B A,则p是q的必要不充分条件;⑤若A=B,则p是q的充要条件;⑥若A B且B A,则p是q的既不充分也不必要条件.1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数解:根据互为逆命题的概念,结论与条件互换位置,易得答案.故选B.2.与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉M B.若b∉M,则a∈M C.若b∈M,则a∉M D.若a∉M,则b∈M 解:命题“若a∈M,则b∉M”的逆否命题是“若b∈M,则a∉M”,又原命题与逆否命题为等价命题,故选C.3.(2015·安徽)设p:x<3,q:-1<x<3,则p 是q成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:∵(-1,3)⊆(-∞,3),∴p是q成立的必要不充分条件.故选B.4.条件p:-2<x<4,条件q:(x+2)(x+a)<0,若q是p的必要而不充分条件,则a的取值范围是()A.(4,+∞) B.(-∞,-4)C.(-∞,-4] D.[4,+∞)解:由题意,可得p是q的充分不必要条件,∴{x|-2<x <4}{x|(x+2)(x+a)<0},得-a>4,即a<-4.故选B.5.(2014·湖北)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若存在集合C,使得A⊆C,B⊆∁U C,则A∩B⊆C ∩(∁U C )=∅;反过来,若A ∩B =∅,由Venn 图可知,一定存在集合C 使得A ⊆C ,B ⊆∁U C .故选C .6.(2015·台州高三诊断)下列选项中,p 是q 的必要不充分条件的是( )A .p :x =1,q :x 2=xB .p :|a |>|b |,q :a 2>b 2C .p :x >a 2+b 2,q :x >2abD .p :a +c >b +d ,q :a >b 且c >d解:A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1x =1,故p 是q 的充分不必要条件;B 中,|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,∵a 2+b 2≥2ab ,∴由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但a <b ,c >d ;反之,由同向不等式可加性知a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.故选D .7.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =__________. 解:x =4±16-4n2=2±4-n ,∵x 是整数,即2±4-n 为整数,∴4-n 为整数,且n ≤4.又∵n ∈N+,∴可取n =1,2,3,4,验证可知n =3,4符合题意;反之,当n =3,4时,可推出一元二次方程x 2-4x +n =0有整数根.故填3或4.8.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.解:对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8,…显然不是等比数列,而相应的数列3,6,12,24,48,96,…是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,有m (m +3)-6m =0,得m =3或0,因此③不正确;对于④,由题意得b a =sin Bsin A=3,若B =60°,则sin A=12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.故填①④.9.写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:若x =2且y =-1,则x -2+(y +1)2=0;(真)否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1;(真)逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0.(真).10.已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的取值范围;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的取值范围.解:由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.(1)∵x ∈P 是x ∈S 的充要条件,∴P =S , 有⎩⎪⎨⎪⎧1-m =-2,1+m =10, 得⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在. (2)∵x ∈P 是x ∈S 的必要条件,∴S ⊆P , 有⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10, 得m ≤3,即m 的取值范围是(-∞,3].11.已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.解:由⎪⎪⎪⎪1-x -13≤2得-2≤x ≤10,由x 2-2x +1-m 2=[x -(1-m )][x -(1+m )]≤0(m >0)得1-m ≤x ≤1+m .∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴{x |-2≤x ≤10}⊆{x |1-m ≤x ≤1+m }, 有⎩⎪⎨⎪⎧1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧1-m ≤-2,1+m >10, 得m ≥9. ∴实数m 的取值范围是[9,+∞).求方程ax 2+2x +1=0至少有一个负实根的充要条件.解:(1)当a =0时,方程为一元一次方程,其根为x =-12,符合题目要求;(2)当a ≠0时,方程为一元二次方程,它有实根的充要条件是判别式Δ≥0,即4-4a ≥0,从而a ≤1.设方程ax 2+2x +1=0的两实根为x 1,x 2,则由韦达定理得x 1+x 2=-2a ,x 1x 2=1a .①方程ax 2+2x +1=0恰有一个负实根的充要条件是⎩⎪⎨⎪⎧a ≤1,1a <0,得a <0;②方程ax 2+2x +1=0有两个负实根的充要条件是⎩⎪⎨⎪⎧a ≤1,-2a <0,1a >0,得0<a ≤1.综上,方程ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.§1.3简单的逻辑联结词、全称量词与存在量词1.逻辑联结词命题中的“或”“且”“非”称为_____________.2.全称量词“所有的”“任意一个”“每一个”等短语在逻辑中通常叫做____________,并用符号“________”表示.含有全称量词的命题称为____________,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).3.存在量词“存在一个”“至少有一个”等短语在逻辑中通常叫做______________,并用符号“________”表示.含有存在量词的命题称为______________,特称命题“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).注:特称命题也称存在性命题.因此,全称命题的否定是________命题;特称命题的否定是________命题.注:“p∧q”“p∨q”“綈p”统称为复合命题,构成复合命题的p命题,q命题称为简单命题.自查自纠1.逻辑联结词2.全称量词∀全称命题3.存在量词∃特称命题4.∃x0∈M,綈p(x0)∀x∈M,綈p(x)特称全称5.①真②真③假④假⑤真⑥假⑦假⑧真⑨真○10假⑪假⑫真(2015·全国Ⅰ)设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n解:∵特称命题的否定是全称命题,∴綈p:∀n ∈N,n2≤2n.故选C.(2015·浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N *,f(n0)∉N*或f(n0)>n0解:全称命题的否定为特称命题,因此命题“∀n ∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”.故选D.(2014·重庆)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.(綈p)∧(綈q)C.(綈p)∧q D.p∧(綈q)解:显然p真,由x>2⇒x>1,而x>1x>2,因此“x>1”是“x>2”的必要不充分条件,q假,綈q真,p∧(綈q)是真命题.故选D.(2015·山东)若“∀x∈⎣⎡⎦⎤0,π4,tan x≤m”是真命题,则实数m的最小值为________.解:根据题意,m≥(tan x)max,而y=tan x在⎣⎡⎦⎤0,π4上单调递增,有(tan x)max=tanπ4=1,∴m≥1,m的最。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是( ) A .(3,+∞) B.(-∞,-3)C .(-3,3)D.(-∞,-3)∪(3,+∞)解析:f ′(x )=x 2+2ax +3,由题意知方程f ′(x )=0有两个不相等的实数根, 所以Δ=4a 2-12>0,解得a >3或a <- 3.选D. 答案:D2.已知函数f (x )=13x 3-2x 2+3m ,x ∈[0,+∞),若f (x )+5≥0恒成立,则实数m 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫179,+∞ B.⎝ ⎛⎭⎪⎫179,+∞ C .(-∞,2]D.(-∞,2) 解析:f ′(x )=x 2-4x ,由f ′(x )<0,得0<x <4, 由f ′(x )>0,得x >4或x <0,∴f (x )在(0,4)上单调递减,在(4,+∞)上单调递增, ∴当x ∈[0,+∞)时,f (x )min =f (4).∴要使f (x )+5≥0恒成立,只需f (4)+5≥0恒成立即可,代入解得m ≥179.选A. 答案:A3.(2019·潍坊期中)已知函数y =f (x )的图象如图所示,则它的导函数y =f ′(x )的图象可以是( )解析:根据题意,由f (x )的图象分析可得,在y 轴左侧,函数f (x )先减再增,最后减,其导数对应为先负后正,最后为负,即导数图象先在x 轴下方,后在x 轴上方,最后在x 轴下方;在y 轴右侧,函数f (x )为增函数,其导数对应为正,即导数图象在x 轴上方,据此分析选项,D 符合. 答案:D4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( ) A .[0,1) B.(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D.(0,1)解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增;当x ∈(-a ,a )时,f (x )单调递减.所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.选D. 答案:D5.若f (x )的定义域为R ,f ′(x )>2恒成立,f (-1)=2,则f (x )>2x +4的解集为( ) A .(-1,1) B.(-1,+∞) C .(-∞,-1)D.(-∞,+∞)解析:设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2恒成立,所以F ′(x )=f ′(x )-2>0,即函数F (x )在R 上单调递增.因为f (-1)=2,所以F (-1)=f (-1)-2×(-1)-4=2+2-4=0.所以由F (x )=f (x )-2x -4>0,得F (x )=f (x )-2x -4>F (-1),所以x >-1,即不等式f (x )>2x +4的解集为(-1,+∞).选B. 答案:B6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B.bf (a )≤af (b ) C .af (a )≤f (b )D.bf (b )≤f (a )解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减.由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).选A. 答案:A7.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2]D.[-4,-3]解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t .令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].选C. 答案:C8.(2019·蚌埠三模)已知函数f (x )=x +a 2x .若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是( ) A .(-∞,1)∪(2,+∞) B .(-∞,-1)∪(2,+∞) C .(-∞,0)∪(2,+∞) D .(-∞,-2)∪(0,+∞)解析:f (x )=x +a 2x ,f ′(x )=1-a 2x 2,设切点坐标为⎝ ⎛⎭⎪⎫x 0,x 0+a 2x 0,则切线方程为y -x 0-a 2x 0=⎝ ⎛⎭⎪⎫1-a 2x 20(x -x 0),又切线过点(1,0),可得-x 0-a 2x 0=⎝ ⎛⎭⎪⎫1-a 2x 20(1-x 0),整理得2x 20+2ax 0-a =0,曲线存在两条切线,故方程有两个不相等的实根,即满足Δ=4a 2-8(-a )>0,解得a >0或a <-2.选D. 答案:D9.已知函数f (x )=ax -1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( ) A .a >2 B.a <3 C.a ≤1D.a ≥3解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解.令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1.当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h(x)=x-x ln x取得最大值1,要使不等式a≤x-x ln x在(0,+∞)上有解,只要a小于等于h(x)的最大值即可,即a≤1.选C.答案:C10.已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x +x-2的零点为b,则下列不等式中成立的是()A.f(a)<f(1)<f(b) B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b) D.f(b)<f(1)<f(a)解析:由题意,知f′(x)=e x+1>0恒成立,所以函数f(x)在R上是单调递增的,而f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)的零点a∈(0,1).由题意,知g′(x)=1x+1>0,所以g(x)在(0,+∞)上是单调递增的,又g(1)=ln 1+1-2=-1<0,g(2)=ln 2+2-2=ln 2>0,所以函数g(x)的零点b∈(1,2).综上,可得0<a<1<b<2.因为f(x)在R上是增函数,所以f(a)<f(1)<f(b).选A.答案:A11.已知f(x)是定义在R上的函数,f′(x)是f(x)的导函数,若f(x)>1-f′(x),且f(0)=2,则不等式e x f(x)>e x+1(其中e为自然对数的底数)的解集为() A.(0,+∞) B.(-∞,0)∪(1,+∞)C.(-1,+∞) D.(-∞,-1)∪(0,+∞)解析:设g(x)=e x f(x)-e x,x∈R,则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1].∵f(x)>1-f′(x),∴f(x)+f′(x)-1>0,∴g′(x)>0,∴g(x)在定义域上单调递增.∵e x f(x)>e x+1,∴g(x)>1.又∵g(0)=e0f(0)-e0=1,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞).选A. 答案:A12.(2019·郑州三模)设函数f (x )在R 上存在导函数f ′(x ),∀x ∈R ,有f (x )-f (-x )=x 3,在(0,+∞)上有2f ′(x )-3x 2>0,若f (m -2)-f (m )≥-3m 2+6m -4,则实数m 的取值范围为( ) A .[-1,1] B.(-∞,1]C .[1,+∞)D.(-∞,-1]∪[1,+∞)解析:令g (x )=f (x )-12x 3,∴g (x )-g (-x )=f (x )-12x 3-f (-x )+12(-x )3=0,∴函数g (x )为偶函数,∵x ∈(0,+∞)时,g ′(x )=f ′(x )-32x 2>0,∴函数g (x )在(0,+∞)上是增函数,∴函数g (x )在(-∞,0)上是减函数,∴f (m -2)-f (m )=g (m -2)+12(m -2)3-g (m )-12m 3=g (m -2)-g (m )-3m 2+6m -4≥-3m 2+6m -4,∴g (m -2)≥g (m ),∴|m -2|≥|m |,解得m ≤1,∴实数m 的取值范围(-∞,1].选B. 答案:B 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是 .解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.答案:⎝ ⎛⎭⎪⎫-22,014.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为 .解析:若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0时,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3. 令g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎣⎢⎡⎦⎥⎤12,1上单调递减.因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4.当x <0时,即x ∈[-1,0)时,同理a ≤3x 2-1x 3. g (x )在区间[-1,0)上单调递增,所以g (x )min =g (-1)=4,从而a ≤4,综上可知a =4. 答案:415.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有3f (x )+xf ′(x )>0,则不等式(x +2 015)3f (x +2 015)+27f (-3)>0的解集是 . 解析:令g (x )=x 3f (x )(x <0),则g ′(x )=x 2[3f (x )+xf ′(x )]>0,所以g (x )在(-∞,0)上单调递增.不等式(x +2 015)3f (x +2 015)+27f (-3)>0等价于g (x +2 015)-g (-3)>0,所以x +2 015>-3,解得x >-2 018.又x +2 015<0,解得x <-2 015,所以不等式(x +2 015)3f (x +2 015)+27f (-3)>0的解集是{x |-2 018<x <-2 015}. 答案:(-2 018,-2 015) 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是 . 解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94. 答案:⎣⎢⎡⎭⎪⎫94,+∞专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·汕头二模)已知函数f (x )=a ln x -x +1(其中a ∈R ). (1)讨论函数f (x )的极值;(2)对任意x >0,f (x )≤12(a 2-1)成立,求实数a 的取值范围. 解析:(1)f (x )的定义域为(0,+∞). 又f ′(x )=ax-1.①当a ≤0时,在(0,+∞)上,f ′(x )<0,f (x )为单调减函数,f (x )无极值; ②当a >0时,由f ′(x )=0,得x =a ,在(0,a )上,f ′(x )>0,f (x )为增函数,在(a ,+∞)上,f ′(x )<0,f (x )为减函数, ∴当x =a 时,f (x )有极大值为f (a )=a ln a -a +1,无极小值.综上,当a ≤0时,f (x )无极值;当a >0时,f (x )有极大值f (a )=a ln a -a +1,无极小值;(2)由(1)知,①当a ≤0,f (x )是减函数,又令b =e a2<1,ln b <0, f (b )-12(a 2-1)=12a 2-e a 2+1-12(a 2-1)=32-e a2>0,不等式不成立; ②当a >0时,f (x )有极大值也是最大值,∴f (x )max =f (a )=a ln a -a +1, 要使对任意x >0,f (x )≤12(a 2-1)成立,即a ln a -a +1≤12(a 2-1),则a ln a +32-a -12a 2≤0成立. 令u (a )=a ln a +32-a -12a 2(a >0), ∴u ′(a )=ln a +1-1-a =ln a -a , 令k (a )=u ′(a )=ln a -a ,则k ′(a )=1a -1=1-a a =0,得a =1.在(0,1)上,k ′(a )>0,k (a )=u ′(a )是增函数, 在(1,+∞)上,k ′(a )<0,k (a )=u ′(a )是减函数, ∴当a =1时,k (a )=u ′(a )取极大值也是最大值, ∴u ′(a )max =u ′(1)=-1<0.在(0,+∞)上,u ′(a )<0,u (a )是减函数,又u (1)=0, 要使u (a )≤0恒成立,则a ≥1. ∴实数a 的取值范围为[1,+∞).2.(2019·蓉城名校联盟联考)已知函数f (x )=ax 2-2(a +1)x +2ln x ,a ∈R . (1)讨论函数f (x )的单调性;(2)是否存在最大整数k ,当a ≤k 时,对任意的x ≥2,都有f (x )<e x (x -1)-ax -ln x 成立?(其中e 为自然对数的底数,e =2.718 28…)若存在,求出k 的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2,更多资料关注公众号:高中学习资料库 所以2a <e 2+4-ln 8<8+4-2=10,所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2),则g ′(x )=2ax -(a +2)+3x -x e x .令h (x )=2ax -(a +2)+3x -x e x ,则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0,即当x ∈[2,+∞)时,g ′(x )<0,所以g (x )在[2,+∞)上单调递减,所以g (x )=ax 2-(a +2)x +3ln x -e x (x -1)≤g (2)=2a -4+3ln 2-e 2<8-4+3-e 2=7-e 2<0,所以a ≤4时,不等式①恒成立,所以k 的最大值为4.。

相关文档
最新文档