高考数学第二轮专题复习
2023新教材高考数学二轮专题复习第一部分专题攻略专题一小题专攻第一讲集合常用逻辑用语不等式课件

则A∪B=( )
A.(0,1)
B.(1,2)
C.(-∞,2)
D.(0,+∞)
答案: C 解析:因为B={x|x(x-2)<0}={x|0<x<2},则A∪B={x|x<2}.
3.[2022·新高考Ⅱ卷]已知集合A={-1,1,2,4},B={x||x-
1|≤1},则A∩B=( )
A.{-1,2}
B.{1,2}
3.[2022·浙江卷]设x∈R,则“sin x=1”是“cos x=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:A
解析:由sin x=1,得cos x=0,因此“sin x=1”是“cos x=0”的充分条件, 当cos x=0时,x=π2+kπ(k∈Z).当k为偶数时,sin x=1;当k为奇数时,sin x=- 1,因此“sin x=1”不是“cos x=0”的必要条件.所以“sin x=1”是“cos x=0” 的充分不必要条件.故选A.
则A∩B={x|x<-1或1<x<2}∩{x|x>-2}={x|-2<x<-1或1<x<2}.
(2)[2022·山东济南二模]已知集合A={1,2},B={2,4},C={z|z=
xy,x∈A,y∈B},则C中元素的个数为( )
A.1
B.2
C.3
D.4
答案:C
解析:由题意,当x=1时,z=xy=1,当x=2,y=2时,z=xy=4, 当x=2,y=4时,z=xy=16, 即C中有三个元素.
保分题 1.[2022·山东肥城模拟]命题p:有的等差数列是等比数列,则( ) A.¬p:有的等差数列不是等比数列 B.¬p:有的等比数列是等差数列 C.¬p:所有的等差数列都是等比数列 D.¬p:所有的等差数列都不是等比数列
2023高考数学二轮复习专项训练《导数的概念和几何意义》(含答案)

2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。
高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值一、单项选择题1.(2021·浙江丽水联考)若函数f(x)=(x-a)3-3x+b的极大值是M,极小值是m,则M-m的值()A.与a有关,且与b有关B.与a有关,且与b无关C.与a无关,且与b无关D.与a无关,且与b有关2.(2021·山东青岛期末)若函数f(x)=x2-ax+ln x在区间(1,e)上单调递增,则实数a的取值范围是() A.[3,+∞) B.(-∞,3]C.[3,e2+1]D.[-e2+1,3],则下列关于函数f(x)的说法正确的是()3.(2021·陕西西安月考)已知函数f(x)=3xe xA.在区间(-∞,+∞)上单调递增B.在区间(-∞,1)上单调递减,无极小值C.有极大值3eD.有极小值3,无极大值e4.(2021·湖南岳阳期中)已知直线y=kx(k>0)和曲线f(x)=x-a ln x(a≠0)相切,则实数a的取值范围是()A.(-∞,0)∪(0,e)B.(0,e)C.(0,1)∪(1,e)D.(-∞,0)∪(1,e)5.(2021·湖北十堰二模)已知函数f(x)=2x3+3mx2+2nx+m2在x=1处有极小值,且极小值为6,则m=() A.5 B.3C.-2D.-2或56.(2021·四川成都二模)已知P是曲线y=-sin x(x∈[0,π])上的动点,点Q在直线x-2y-6=0上运动,则当|PQ|取最小值时,点P的横坐标为()A.π4B.π2C.2π3D.5π67.(2021·湖北荆门期末)已知曲线y=sinxe x+1(x≥0)的一条切线的斜率为1,则该切线的方程为()A.y=x-1B.y=xC.y=x+1D.y=x+2二、多项选择题8.(2021·广东湛江一模)已知函数f(x)=x3-3ln x-1,则()A.f(x)的极大值为0B.曲线y=f(x)在点(1,f(1))处的切线为x轴C.f(x)的最小值为0D.f(x)在定义域内单调9.(2021·山东淄博二模)已知e是自然对数的底数,则下列不等关系中错误的是()A.ln 2>2e B.ln 3<3eC.ln π>πe D.ln3ln π<3π10.(2021·辽宁沈阳二模)已知函数f(x)={2x+2,−2≤x≤1,lnx-1,1<x≤e,若关于x的方程f(x)=m恰有两个不同的根x1,x2(x1<x2),则(x2-x1)f(x2)的取值可能是()A.-3B.-1C.0D.2三、填空题11.(2021·福建三明二模)已知曲线y=ln x+ax与直线y=2x-1相切,则a=.12.(2021·江苏无锡月考)试写出实数a的一个取值范围,使函数f(x)=sinx-ae x有极值.13.(2021·四川成都月考)设函数f(x)=e x-2x,直线y=ax+b是曲线y=f(x)的切线,则2a+b的最大值是.四、解答题14.(2021·山东潍坊二模)已知函数f(x)=ax 2+bx+ce x的单调递增区间是[0,1],极大值是3e.(1)求曲线y=f(x)在点(-1,f(-1))处的切线方程;(2)若存在非零实数x0,使得f(x0)=1,求f(x)在区间(-∞,m](m>0)上的最小值.15.(2021·河北唐山期末)已知函数f(x)=a e x-x-1(a∈R),g(x)=x2.(1)讨论函数f(x)的单调性;(2)当a>0时,若曲线C1:y1=f(x)+x+1与曲线C2:y2=g(x)存在唯一的公切线,求实数a的值.16.(2021·浙江嘉兴月考)已知f(x)=a2ln x-1ax2-(a2-a)x(a≠0).2(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处取得极大值,求实数a的取值范围.答案及解析1.C解析因为f(x)=(x-a)3-3x+b,所以f'(x)=3(x-a)2-3,令f'(x)=3(x-a)2-3=0,得x=a-1或x=a+1,判断可得函数的极大值M=f(a-1)=-1-3(a-1)+b=2-3a+b,极小值m=f(a+1)=1-3(a+1)+b=-2-3a+b,因此M-m=4.故选C.2.B解析依题意f'(x)=2x-a+1x ≥0在区间(1,e)上恒成立,即a≤2x+1x在区间(1,e)上恒成立,令g(x)=2x+1x (1<x<e),则g'(x)=2-1x2=2x2-1x2=(√2x+1)(√2x-1)x2>0,所以g(x)在区间(1,e)上单调递增,而g(1)=3,所以a≤3,即实数a的取值范围是(-∞,3].故选B.3.C解析由题意得函数f(x)的定义域为R,f'(x)=3(1−x)e x.令f'(x)=0,得x=1,当x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,故f(1)是函数f(x)的极大值,也是最大值,且f(1)=3e,函数f(x)无极小值.故选C.4.A解析设直线y=kx(k>0)与曲线f(x)=x-a ln x(a≠0)相切于点P(x0,x0-a ln x0)(x0>0).由题意得,f'(x)=1-ax ,则以P为切点的切线方程为y-x0+a ln x0=1-ax0(x-x0),因为该切线过原点,所以-x0+a ln x0=1-ax0(-x0),因此ln x0=1,即x0=e,所以k=1-ae>0,得a<e,又a≠0,故实数a的取值范围是(-∞,0)∪(0,e).故选A.5.A解析f'(x)=6x2+6mx+2n.因为f(x)在x=1处有极小值,且极小值为6,所以{f'(1)=0, f(1)=6,即{6+6m+2n=0,2+3m+2n+m2=6,解得{m=5,n=−18或{m=−2,n=3.当m=5,n=-18时,f'(x)=6x2+30x-36=6(x+6)(x-1),则f(x)在区间(-∞,-6)上单调递增,在区间(-6,1)上单调递减,在区间(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=6.当m=-2,n=3时,f'(x )=6x 2-12x+6=6(x-1)2≥0, 则f (x )在R 上单调递增,f (x )无极值. 综上可得,m=5,n=-18. 6.C 解析 如图所示,要使|PQ|取得最小值,则曲线y=-sin x (x ∈[0,π])在点P 处的切线与直线x-2y-6=0平行,对函数y=-sin x 求导得y'=-cos x ,令y'=12,可得cos x=-12,由于0≤x ≤π,所以x=2π3.故选C . 7.C 解析 由题得y'=cosx·e x -sinx·e x(e x )2=cosx-sinxe x.设切点为(x 0,y 0)(x 0≥0),则y'|x=x 0=cos x 0-sin x 0e x 0,由y'|x=x 0=1,得e x 0=cos x 0-sin x 0.令f (x )=e x -cos x+sin x (x ≥0),则f'(x )=e x +sin x+cos x=e x +√2sin x+π4,当0≤x<1时,f'(x )>0,当x ≥1时,e x ≥e,√2sin (x +π4)≥-√2,f'(x )>0,所以∀x ≥0,f'(x )>0,所以f (x )在区间[0,+∞)上单调递增,则f (x )≥f (0)=0,所以方程e x 0=cos x 0-sin x 0只有一个实根x 0=0,所以y 0=sin0e 0+1=1,故切点为(0,1),切线斜率为1,所以切线方程为y=x+1.8.BC 解析 函数f (x )=x 3-3ln x-1的定义域为(0,+∞),f'(x )=3x 2-3x =3x (x 3-1).令f'(x )=3x (x 3-1)=0,得x=1,列表得:f (x ) 单调递减单调递增所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调,故C 正确,A,D 错误;对于B,由f (1)=0及f'(1)=0,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-0=0(x-1),即y=0,故B 正确,故选BC .9.ACD 解析 令f (x )=ln x-xe ,x>0,则f'(x )=1x −1e ,令f'(x )=0,得x=e,当0<x<e 时,f'(x )>0,当x>e 时,f'(x )<0,所以f (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,故f (x )max =f (e)=ln e -ee =0,则f (2)=ln 2-2e <0得ln 2<2e ,故A 错误;f (3)=ln 3-3e <0得ln 3<3e ,故B 正确;f (π)=ln π-πe <0得ln π<πe ,故C 错误;对于D 项,令g (x )=lnx x,x>0,则g'(x )=1−lnx x 2,当0<x<e时,g'(x )>0,当x>e 时,g'(x )<0,所以g (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,则g (3)>g (π),得ln33>ln ππ,即ln3ln π>3π,故D 错误.故选ACD .10.BC 解析 画出函数f (x )的图象,如图,因为f (x )=m 的两根为x 1,x 2(x 1<x 2),所以x 1=m-22,x 2=e m+1,m ∈(-1,0],从而(x 2-x 1)·f (x 2)=e m+1-m-22m=m e m+1-m 22+m.令g (x )=x e x+1-12x 2+x ,x ∈(-1,0],则g'(x )=(x+1)e x+1-x+1.因为x ∈(-1,0],所以x+1>0,e x+1>e 0=1,-x+1>0, 所以g'(x )>0,从而g (x )在区间(-1,0]上单调递增.又g (0)=0,g (-1)=-52,所以g (x )∈-52,0,即(x 2-x 1)·f (x 2)的取值范围是-52,0,故选BC . 11.1 解析 由题意得函数y=ln x+ax 的定义域为x>0,y'=1x +a.设曲线y=ln x+ax 与直线y=2x-1相切于点P (x 0,y 0),可得1x 0+a=2,即ax 0=2x 0-1①,y 0=ln x 0+ax 0,y 0=2x 0-1,所以ln x 0+ax 0=2x 0-1②,联立①②,可得x 0=1,a=1. 12.(-√2,√2)(答案不唯一) 解析 f (x )=sinx-a e x的定义域为R ,f'(x )=cosx-sinx+ae x,由于函数f (x )=sinx-a e x有极值,所以f'(x )=cosx-sinx+ae x有变号零点,因此由cos x-sin x+a=0,即a=sin x-cosx=√2sin x-π4,可得a ∈(-√2,√2),答案只要为(-√2,√2)的子集都可以. 13.e 2-4 解析 f'(x )=e x -2.设切点为(t ,f (t )),则f (t )=e t -2t ,f'(t )=e t -2,所以切线方程为y-(e t -2t )=(e t -2)(x-t ),即y=(e t -2)x+e t (1-t ),所以a=e t -2,b=e t (1-t ),则2a+b=-4+3e t -t e t .令g (t )=-4+3e t -t e t ,则g'(t )=(2-t )e t .当t>2时,g'(t )<0,g (t )在区间(2,+∞)上单调递减;当t<2时,g'(t )>0,g (t )在区间(-∞,2)上单调递增,所以当t=2时,g (t )取最大值g (2)=-4+3e 2-2e 2=-4+e 2,即2a+b 的最大值为e 2-4. 14.解 (1)因为f (x )=ax 2+bx+ce x,所以f'(x )=-ax 2+(2a-b)x+b-ce x.因为e x >0,所以f'(x )≥0的解集与-ax 2+(2a-b )x+b-c ≥0的解集相同,且同为[0,1].所以有{a>0,2a-ba=1,b-c-a=0,解得a=b=c.所以f(x)=a(x 2+x+1)e x(a>0),f'(x)=-ax2+axe x(a>0).因为a>0,所以当x<0或x>1时,f'(x)<0,函数f(x)单调递减,当0≤x≤1时,f'(x)≥0,函数f(x)单调递增,且f'(1)=0,所以f(x)在x=1处取得极大值,又由题知,极大值为3e,所以f(1)=3ae =3e,解得a=1,所以a=b=c=1.所以f(x)=x 2+x+1e x,f'(x)=-x2+xe x.所以f(-1)=1e-1=e,f'(-1)=-2e-1=-2e.所以曲线y=f(x)在点(-1,f(-1))处的切线方程为y-e=-2e(x+1),即y=-2e x-e.(2)由(1)知函数f(x)在区间(-∞,0)上单调递减,在区间(0,1)上单调递增,且f(0)=1e0=1, 所以满足f(x0)=1(x0≠0)的x0∈(1,+∞).所以当0<m≤x0时,由函数f(x)的单调性易知,f(x)在区间(-∞,m]上的最小值为f(0)=1;当m>x0时,f(m)<f(x0)=f(0)=1,f(x)在区间(-∞,m]上的最小值为f(m)=m 2+m+1 e m.综上所述,f(x)在区间(-∞,m]上的最小值为{1,0<m≤x0, m2+m+1e m,m>x0.15.解 (1)f'(x)=a e x-1.当a≤0时,f'(x)<0恒成立,f(x)在区间(-∞,+∞)上单调递减.当a>0时,由f'(x)=0,得x=-ln a.当x<-ln a时,f'(x)<0,f(x)单调递减;当x>-ln a时,f'(x)>0,f(x)单调递增.综上,当a ≤0时,f (x )在区间(-∞,+∞)上单调递减;当a>0时,f (x )在区间(-∞,-ln a )上单调递减,在区间(-ln a ,+∞)上单调递增.(2)因为曲线C 1:y 1=a e x 与曲线C 2:y 2=x 2存在唯一的公切线,设该公切线与曲线C 1,C 2分别切于点(x 1,a e x 1),(x 2,x 22),显然x 1≠x 2.由于y 1'=a e x,y 2'=2x ,所以a e x 1=2x 2=ae x 1-x 22x 1-x 2,因此2x 2x 1-2x 22=a e x 1−x 22=2x 2-x 22,所以2x 1x 2-x 22=2x 2,即x 2=2x 1-2.由于a>0,故x 2>0,从而x 2=2x 1-2>0,因此x 1>1.此时a=2x2e x 1=4(x 1-1)e x 1(x 1>1).设F (x )=4(x-1)e x(x>1),则问题等价于当x>1时,直线y=a 与曲线y=F (x )有且只有一个公共点.又F'(x )=4(2−x)e x,令F'(x )=0,解得x=2,所以F (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减.而F (2)=4e 2,F (1)=0,当x →+∞时,F (x )→0, 所以F (x )的值域为0,4e 2,故a=4e 2. 16.解 (1)由题意得,当a=1时,函数f (x )=ln x-12x 2,其定义域为(0,+∞),因此f'(x )=1x -x=1−x 2x.令f'(x )>0,即1-x 2>0,得0<x<1,所以f (x )在区间(0,1)上单调递增; 令f'(x )<0,即1-x 2<0,得x>1,所以f (x )在区间(1,+∞)上单调递减. 故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)由题意,函数f (x )=a 2ln x-12ax 2-(a 2-a )x (a ≠0)的定义域为(0,+∞),11且f'(x )=a 2x -ax-(a 2-a )=-a(x+a)(x-1)x .当a<0时,-a>0, ①若-1<a<0,令f'(x )>0,即(x+a )(x-1)>0,得x>1或0<x<-a ;令f'(x )<0,即(x+a )(x-1)<0,得-a<x<1,所以函数f (x )在区间(1,+∞),(0,-a )上单调递增,在区间(-a ,1)上单调递减.所以当x=1时,函数f (x )取得极小值,不符合题意.②若a=-1,可得f'(x )=(x-1)2x ≥0,此时函数f (x )在区间(0,+∞)上单调递增,函数f (x )无极值,不符合题意.③若a<-1,令f'(x )>0,即(x+a )(x-1)>0,得x>-a 或0<x<1,令f'(x )<0,即(x+a )(x-1)<0,得1<x<-a ,所以函数f (x )在区间(1,-a )上单调递减,在区间(0,1),(-a ,+∞)上单调递增,所以当x=1时,函数f (x )取得极大值,符合题意.当a>0时,-a<0.令f'(x )>0,即(x+a )(x-1)<0,得0<x<1;令f'(x )<0,即(x+a )(x-1)>0,得x>1,所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,所以当x=1时,函数f (x )取得极大值,符合题意.综上可得,实数a 的取值范围是(-∞,-1)∪(0,+∞).。
新高考新教材高考数学二轮复习专题检测6函数与导数pptx课件

却,经过10 min物体的温度为50 ℃,则若使物体的温度为20 ℃,需要冷却
( C )
A.17.5 min
B.25.5 min
C.30 min
D.32.5 min
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 由题意得 50=10+(90-10)e
( D )
2.(2023 北京,4)下列函数中,在区间(0,+∞)上单调递增的是( C )
A.f(x)=-ln x
1
C.f(x)=
1
B.f(x)=2
D.f(x)=3|x-1|
解析 因为 y=ln x 在(0,+∞)上单调递增,所以 f(x)=-ln x 在(0,+∞)上单调递减,
故 A 错误;
3
3 +2
g(x)= ,则函数
3 +2
x≠0,所以-a=
.
设
f(x)存在 3 个零点等价于函数
y=-a 有三个不同的交点.
2(3 -1)
g'(x)= 2 .当
3 +2
g(x)= 的图象与直线
x>1 时,g'(x)>0,
函数 g(x)在(1,+∞)内单调递增,
当 x<1 且 x≠0 时,g'(x)<0,
专题检测六
函数与导数
单项选择题
lg, > 0,
1.(2023 广东高三学业考试)已知函数 f(x)=
若 a=f
2 , < 0,
A.-2
解析 a=f
B.-1
高三数学二轮专题复习第1讲 直线与圆

∴切线方程为
y=±
3x-2,和直线 y=2
的交点坐标分别为-4
3
3,2,4
3
3,2.
故要使视线不被⊙O
挡住,则实数
的取值范围是-∞,-4
3
3∪4
3
3,+∞.
答案 (1)-53 (2)B
考法2 圆的弦长相关计算 【例3-2】 (2017·全国Ⅲ卷)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B
归纳总结 思维升华
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数 的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【训练1】 (1)(2018·贵阳质检)已知直线l1:mx+y+1=0,l2:(m-3)x+2y-1=0,
但m=-1时,直线l1与l2重合.
当m=-7时,l1的方程为2x-2y=-13,直线l2:2x-2y=8,此时l1∥l2.
∴“m=-7或m=-1”是“l1∥l2”的必要不充分条件. (2)设 l 的方程为ax+by=1(a>0,b>0),则1a+2b=1. ∵a>0,b>0,∴1a+2b≥2 a2b.则 1≥2 a2b, ∴ab≥8(当且仅当1a=2b=12,即 a=2,b=4 时,取“=”). ∴当a=2,b=4时,△OAB的面积最小. 此时 l 的方程为2x+4y=1,即 2x+y-4=0. 答案 (1)B (2)A
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)过点(1,2)的直线l与两坐标轴的正半轴分别交于A、B两点,O为坐标原点,当
高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高考数学二轮专题复习:选修系列

选修系列【考纲解读】1.了解平行线截割定理,会证明并应用直角三角形射影定理、圆周角定理、圆的切线的判定及性质定理;会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。
2.了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆).3.理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;能在极坐标系中及极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程;理解用方程表示平面图形时选择适当坐标系的意义。
5.了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.6.了解参数方程及参数的意义;能选择适当的参数写出直线、圆和圆锥曲线的参数方程.7.了解平摆线、渐开线的生成过程,并能推导出它们的参数方程;了解其他摆线的生成过程,了解摆线在实际中的应用。
8.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:+≤+.①a b a b-≤-+-.②a b a c c b9.会利用绝对值的几何意义求解以下类型的不等式:+≤+≥-+-≥;;.ax b c ax b c x a x b c10.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.11.了解矩阵的概念、常见的平面变换;理解二阶矩阵与平面向量、矩阵的复合与乘法、二阶逆矩阵及特征值、特征向量.【考点预测】高考对本部分知识的考查比较基础,其中含绝对值的不等式是考查的重点;几何证明多为初中直线和圆相关命题的证明;坐标系和参数方程主要考查参数方程、极坐标方程与直角坐标方程的互化;矩阵与变换主要考查矩阵的基本运算.目前各省自主命题,选做的难度不大,均为基础性题目,所以复习时要以课本为主,熟练掌握基本运算.【要点梳理】1.相似三角形的判定及性质,是几何证明的基础,常常利用相似三角形的性质找出几何图形中等量关系,列方程计算。
高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。
此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。
2专题二:数列、推理与证明。
数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。
3专题三:三角函数、平面向量和解三角形。
平面向量和三角函数的图像与性质、恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。
平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。
4专题四:立体几何。
注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。
5专题五:解析几何。
直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。
近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。
我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。
6专题六:概率与统计、算法与复数。
要求具有较高的阅读理解和分析问题、解决问题的能力。
高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。
高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、反复析题,去伪存真
析题就是剖析题意。在认真审题的基础上, 对全题进行反复的分析和解剖,从而为正确 解题寻得路径。因此,析题的过程就是根据 题意,联系知识,形成思路的过程。由于选 择题具有相近、相关的特点,有时“真作假 时假亦真”,对于一些似是而非的选项,我 们可以结合题目,将选项逐一比较,用一些 “虚拟式”的“如果”,加以分析与验证, 从而提高解题的正确率。
面对选择题,我们的口号是:
选择,“无需忍痛——芬(分)必得!”
三、数学选择题的三个特点
俗话说得好:“一母生九子,九子各不同。” 即使同是《数学》这门学科,选择题和其它题 目相比,解题思路和方法也有着一定的区别。 产生这种现象的原因在于:数学选择题有着与 其它题型明显不同的特点。
1、立意新颖、构思精巧、迷惑性强,题材内容 相关相近,真伪难分。
3.解数学选择题的常用方法,主要分直接 法和间接法两大类.直接法是解答选择题最 基本、最常用的方法;但高考的题量较大, 如果所有选择题都用直接法解答,不但时 间不允许,甚至有些题目根本无法解答.因 此,我们还要掌握一些特殊的解答选择题 的方法.
二、关于数学选择题的四点说明
1、占据《数学》试卷“半壁江山”的选择 题,自然是三种题型(选择题、填空题、解 答题)中的 “大姐大”。她,美丽而善变, 常以最基本的“姿态”出现,却总能让不少 人和她“对面不偶”,无缘相识。
3、抓往关键,全面分析
在解题过程中,通过审题、析题后找到题 目的关键所在是十分重要的,从关键处入 手,找突破口,联系知识进行全面的分析 形成正确的解题思路,就可以化难为易, 化繁为简,从而解出正确的答案。
4、反复检查,认真核对
在审题、析题的过程中,由于思考问题不 全面,往往会导致“失根”、“增根”等 错误,因而,反复地检查,认真地进行核 对,也是解选择题必不可少的步骤之一。
可以掌握用于解题的第一手资料——已知 条件,弄清题目要求。
审题的第一个关键在于:将有关概念、公式、 定理等基础知识加以集中整理。凡在题中出现 的概念、公式、性质等内容都是平时理解、记 忆、运用的重点,也是我们在解选择题时首先 需要回忆的对象。
审题的第二个关键在于:发现题材中的“机 关”——— 题目中的一些隐含条件,往往是 该题“价值”之所在,也是我们失分的“隐 患”。
解答选择题的基本策略是:要充分利用题设 和选择支两方面提供的信息作出判断。一般 说来,能定性判断的,就不再使用复杂的定 量计算;能使用特殊值判断的,就不必采用 常规解法;能使用间接法解的,就不必采用 直接解;对于明显可以否定的选择应及早排 除,以缩小选择的范围;对于具有多种解题 思路的,宜选最简解法等。解题时应仔细审 题、深入分析、正确推演、谨防疏漏;初选 后认真检验,确保准确。
如:抛物线y=ax2 (a≠0)的焦点的坐标是( C)
A (a ,0 )B ( a ,0 )C (0 ,1)D (0 ,1)44Fra bibliotek4 a
4 a
2、技巧性高、灵活性大、概念性强,题材内容含蓄多 变,解法奇特。
如:设f (x )为奇函数,当x ∈ ( 0 , ∞ ) 时,f ( x ) = x –
4、据有关专家测试:选择题在作出正确选择的前题 下,正常解答时间应在100秒以内,其中20秒审题、 30秒理顺关系、30秒推理运算、20秒验证选项。
因为能力有大小不等、题目有难易各异、基础有好差 之分,所以仅仅从时间上,来加以规范,也许会略显 “机械”。但为防止“省时出错”、“超时失分”现 象的发生,定时、定量、定性地加以训练还是有必要 的。
五、数学选择题的解题方法
当然,仅仅有思路还是不够的,“解题思 路”在某种程度上来说,属于理论上的 “定性”,要想解具体的题目,还得有科 学、合理、简便的方法。
有关选择题的解法的研究,可谓是:仁者 见仁,智者见智。其中不乏真知灼见,现 选择部分实用性较强的方法,供参考:
六、方法技巧
1. 直接法 3. 筛选法 5. 图象法 7. 极限法
数学轮专题复习 第1讲数学选择题的解题策略
Email:
一、知识整合
1.高考数学试题中,选择题注重多个知 识点的小型综合,渗透各种数学思想和方 法,体现以考查“三基”为重点的导向, 能否在选择题上获取高分,对高考数学成 绩影响重大.解答选择题的基本要求是四 个字——准确、迅速.
2.选择题主要考查基础知识的理解、基 本技能的熟练、基本计算的准确、基本方 法的运用、考虑问题的严谨、解题速度的 快捷等方面.
2. 特例法 4. 验证法 6. 割补法 8. 估值法
1. 直接法
有些选择题是由计算题、应用题、证明题、 判断题改编而成的。
2、人们一直在问:“谁是出卖耶酥的犹 大?”,我们总想知道:“谁是最可爱的 人?”。其实,答案有如一朵羞答答的玫瑰, 早已静悄悄地开放在了“识别”与“选择” 背后。
3、“选择”是一个属于心智范畴的概念,尽管她的 “家”总是徜徉于A、B、C、D之间,但对于“情有 独钟”的“数学美眉”而言,理想的归宿,怎一个 “猜”字了得!
( )B
(A) 43 3 10
(B) 43 3 10
(C) 43 3 10
(D) 43 3 10
四、数学选择题的解题思路
要想确保在有限的时间内,对10多条选择 题作出有效的抉择,明晰解题思路是十分 必要的。一般说来, 数学选择题有着特 定的解题思路,具体概括如下:
1、仔细审题,吃透题意 审题是正确解题的前题条件,通过审题,
1 , 则使 f ( x ) > 0的x取值范围是(D )
A、x﹥1 B、 x ﹥1 且 - 1﹤x﹤0
C、- 1﹤x﹤0 D、x ﹥1 或 - 1﹤x﹤0
3、知识面广、切入点多、综合性强,题材内容知识点 多,跨度较大。
如:若π/2 < θ < π,且cosθ= - 3/5 ,则sin(θ+π/3)等于