河南省南阳市2014-2015学年高二上学期期中质量评估数学(理)试题(扫描版)

合集下载

河南省南阳市高二数学上学期期中质量评估试题 文(扫描

河南省南阳市高二数学上学期期中质量评估试题 文(扫描

勘误:22题(Ⅰ)为:求首项a12015年南阳市秋期期中考试高二数学试题答案(文)一.选择题:DACCD BACAD CA 二.填空题:13.81 14. 2- 15. 8116. 43三.解答题:17.解:(1)由题意得a n =3n-1………………………………2分 由数列{}n b 满足b 1=s 1=3 …………………………3分 当n ≥2时,b n =s n -s n -1=2n +1∴b n =2n +1(n ∈N +) ……………………………………6分(2)由(1)得c n =(2n +1)·3n -1∴Tn =3+5·3+7·32+…+(2n -1)·3n -2+(2n +1)·3n -1①∴3Tn = 3·3+5·32+…+ (2n -1)·3n -1+(2n +1)·3n②①-② -2Tn =-2n ·3n∴Tn =n ·3n………………………………………10分 18.(1)由题意得a <0,且31,21是方程ax 2+5x +c =0的两个实数根,则 ⎪⎪⎩⎪⎪⎨⎧=-=+ac a21·3152131 解得⎩⎨⎧-=-=16c a ………………………………………4分 (2)由(1)知原不等式可化为-6x 2+(6+b )x -b ≥0, 即(6x -b )(x -1)≤0 ………………………6分 ①当6b >1,即b >6时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤61 b x x ……………8分 ②当6b=1,即b =6时,原不等式的解集为{}1=x x ……………………………10分 ③当6b<1,即b <6时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤16x b x …………12分 19. (本小题共12分)解:(1) 由B a b sin 23=⇒2sin sin B A B =⇒sin 2A =,又A 是锐角, 所以60A =︒ ………………………………………………6分 (2)由面积公式1sin 2S bc A ===40bc ⇒=,………8分又由余弦定理:2222cos 4913a b c bc A b c =+-=⇒+=…………………………12分20.…………………………………12分21.(22)解:(I )由Λ,3,2,1 ,32231341=+⨯-=+n a S n n n ① …………………6分…………………6分…………………12分得 3243134111+⨯-==a S a 所以 a 1=2 ………………………………4分(Ⅱ)再由①有 Λ,3,2 ,322313411=+⨯-=--n a S n n n ② 将①和②相减得 Λ,3,2 ),22(31)(34111=-⨯--=-=+--n a a S S a nn n n n n n整理得 Λ,3,2 ),2(4211=+=+--n a a n n n n ,因而数列}2{nn a +是首项为a 1+2=4,公比为4的等比数列,……………………8分 即nn n n a 44421=⨯=+-,n=1,2,3,…,因而 ,24nn n a -= n=1,2,3,…, ………………………………………12分。

2014-2015学年高二上学期期中考试数学试题 Word版含答案

2014-2015学年高二上学期期中考试数学试题 Word版含答案

高二上学期期中考试数学试题一、填空题:本大题共14小题,每小题5分,共70分1.把命题“012,0200<+-∈∃x x R x ”的否定写在横线上__________. 2的倾斜角是 .3.已知一个球的表面积为264cm π,则这个球的体积为4. “两条直线不相交”是“两条直线是异面直线”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中的一个)5.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a =________. 6.若圆的方程为x 2+y 2+kx +2y +k 2=0,则当圆的面积最大时,圆心坐标为________. 7.已知圆锥的底面半径是3,高为4,这个圆锥的侧面积是________. 8.经过点(2,1)A 且到原点的距离等于2的直线方程是____________.9.设,αβ为使互不重合的平面,,m n 是互不重合的直线,给出下列四个命题: ①//,,//m n n m αα⊂若则 ②,,//////m n m n ααββαβ⊂⊂若,,则 ③//,,//m n m n αβαβ⊂⊂若,则 ④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; 其中正确命题的序号为 .10. 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .11. 在正三棱柱111C B A ABC -中,各棱长均相等,C B BC 11与的交点为D ,则AD 与平面C C BB11所成角的大小是_______.12.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是13.如图是一个正方体的表面展开图,A 、B 、C 均为棱的中点,D 是顶点,则在正方体中,异面直线AB 和CD 的夹角的余弦值为 。

2014-2015上期高二数学期中试题(理)(解析版)

2014-2015上期高二数学期中试题(理)(解析版)

2014----2015学年上学期期中考试高二年级数学(理)试卷 考试时间:120分钟 命题人:耿耀辉一、选择题(本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.不等式221x x -≤的解集为( )A. ⎥⎦⎤⎢⎣⎡-1,21B. 10,2⎡⎤⎢⎥⎣⎦ C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,2.等差数列{}n a 中,19,793==a a ,则5a 为( ) A .13 B .12 C .11 D .103.已知数列,则是它的第( )项.A.19B.20C.21D.224.已知ABC ∆中,05,3,120a b C ===,则sin A 的值为( ) A 、1435 B 、1435- C 、1433 D 、1433- 5.已知等比数列{n a }满足:9273π=⋅a a ,则5cos a =( )A .21-B .21C .±21D .±236.设变量,x y 满足121y y x x y m ⎧⎪⎨⎪⎩≥≤-+≤,若目标函数1z x y =-+的最小值为0,则m 的值为( )A .4B .5C .6D .77.若不等式a b >与11a b>同时成立,则必有( )A. 0a b >>B. 110a b >>C. 0a b >>D. 110a b>>8.在△ABC 中,若2cosBsinA =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 9.已知正项等比数列{}n a 满足:7652a a a =+,若数列中存在两项,m n a a14a =,则14m n+的最小值为( ) A. 9 B. 43 C. 53 D. 3210.在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,则a b ≤“”是sin sin A B ≤“”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件11.已知1,1x y >>,且11ln ,,ln 44x y 成等比数列,则xy( )A .有最大值eB .有最小值e 12.在锐角..三角形ABC 中,,,a b c 分别为内角,,A B C 的对边,若2A B =,给出下列命题: ①ππ64B <<;②a b∈;③22a b bc =+.其中正确的个数是 ( ). A .0 B .1 C .2 D .3二、填空题(本大题共4个小题,每小题5分,满分20分)13.在△ABC 中,三边a 、b 、c 所对的角分别为A 、B 、C ,若2220a b c +-+=,则角C 的大小为 .14.等差数列{}n a 中,n S 是它的前n 项之和,且67S S <,78S S >,则: ①此数列的公差0d <; ②9S 一定小于6S ;③7a 是各项中最大的一项; ④7S 一定是n S 中的最大值. 其中正确的是____________________(填入你认为正确的所有序号).15.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且c o s c o s c Cb B-=,则B 的大小为_________. 16.设,x y R ∈,若2241x y xy ++=,则2x y +的最大值是_________. 三、解答题(本大题共6小题,满分70分) 17.(本题10分)已知()|||1|f x x x =-+. (1)求不等式()0f x ≤的解集A;(2)若不等式10mx m +->对任何x A ∈恒成立,求m 的取值范围.18.(本题12分)已知数列{}n a 与{}n b ,若13a =且对任意正整数n 满足12,n n a a +-= 数列{}n b 的前n 项和2n n S n a =+.(1)求数列{}{}n n a b ,的通项公式;(2)求数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和.n T19.(本题12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知C B C B cos cos 41)cos(2=+- (1)求角A 的大小;(2)若72=a ,△ABC 的面积为32,求c b +.20.(本题12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n a }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .21.(本题12分)在三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且三角形的面积为B ac S cos 23=. (1)求角B 的大小(2)已知4c aa c+=,求sinAsinC 的值22.(本题12分)如图,经过村庄A 有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M 、N (异于村庄A),要求PM =PN =MN =2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).郑州二中2014----2015学年上学期期中考试高二年级数学(理)答案一、选择题1.A2.C3.C4.A5.B6.B7.A8.C9.D 10.A 11.D 12.C二、填空题13.34π 14.①②④ 15.4π三、解答题(本大题共6小题,满分70分)17.【解析】(1)22|||1|(1)x x x x ≤+⇔≤+12x ⇔≥-∴1[,)2A =-+∞ 5分(2)1,102x mx m ∀≥-+->恒成立11m x ⇔>+对12x ≥-恒成立.max 1()21m x ⇔>=+∴m 取值范围是(2,)+∞ 10分 18.【解析】 (1)由题意知数列{}n a 是公差为2的等差数列 又因为13a = 所以21n a n =+ 当1n =时,114b S ==;当2n ≥时,()()()22121121121n n n b S S n n n n n -⎡⎤=-=++--+-+=+⎣⎦对1=4b 不成立所以,数列{}n b 的通项公式: 4,(1)2n 1,(n 2)n n b =⎧=⎨+≥⎩ 5分(2)1n =时,1121120T b b ==2n ≥时,111111()(21)(23)22123n n b b n n n n +==-++++ 所以1111111111612025779212320101520(23)n n n T n n n n --⎛⎫=+-+-++-=+= ⎪++++⎝⎭ 1n =仍然适合上式综上,116120101520(23)n n n T n n --=+=++ 12分 19.【解析】(1)∵C B C B cos cos 41)cos(2=+-,∴C B C B C B cos cos 41)sin sin cos (cos 2=++可得1)cos(2=+C B ,∴21)cos(=+C B . ∵π<+<C B 0,可得3π=+C B .∴32π=A . 5分(2)由(1)得32π=A .∵S △ABC =32 ∴3232sin21=πbc ,解得bc=8.① 7分 由余弦定理A bc c b a cos 2222-+=,得2822=++bc c b , 即28)(2=-+bc c b .② 将①代入②,可得6=+c b . 12分 20.【解析】(1)当1n =时,111121a a a +=⇒=; 当2n ≥时,1111212221(1)2n nn n n n n n n S n a a a a a a S n a ----+=⎫⇒+=-⇒=+⎬+-=⎭;即112(1)n n a a -+=+(2n ≥),且112a +=,故{}1n a +为等比数列1221n n n n a a +=⇒=-(*n N ∈). 5分(2)(21)2n n n b n n n =-⋅=⋅-设231222322n n K n =⨯+⨯+⨯++⨯… ①23121222(1)22n n n K n n +=⨯+⨯++-⨯+⨯… ②①-②:231112(12)222222(1)2212n n n n n n K n n n +++--=++++-⨯=-⨯=-⨯--…∴1(1)22n n K n +=-⨯+, ∴1(1)(1)222n n n n T n ++=-⨯+-, 21(1)22201582n n n n T n n +++=-⨯+>⇒≥,∴满足条件的最小正整数8n =. 12分21.【解析】(1)在三角形ABC中B ac S sin 21=,由已知B ac S cos 23=可得B ac B ac cos 23sin 21=∴=∴为三角形内角,B 3tan B 0﹤B ﹤π∴ 3B π= 5分 (2)4cos 2222=+=+=+acB ac b ac c a c a a c ac b B 332=∴=π由正弦定理可得 C A B sin sin 3sin 2= 41sin sin 3=∴=C A B π12分 22.【解析】解法一:设∠AMN =θ,在△AMN 中,sin 60MN︒=()sin 120AM θ︒-.因为MN =2,所以AM =sin(120°-θ). 2分 在△APM 中,cos ∠AMP =cos(60°+θ). 4分AP 2=AM 2+MP 2-2 AM ²MP ²cos ∠AMP =163sin 2(120°-θ)+4-2³2³3sin(120°θ)cos(60°+θ) 6分=163sin 2(θ+60°)θ+60°)cos(θ+60°)+4=83[1-cos (2θ+120°)]sin(2θ+120°)+4=-83θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). 10分当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值答:设计∠AMN 为60°时,工厂产生的噪声对居民的影响最小. 12分解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. 2分在△AMN 中,∠ANM =∠PMD =θ,∴sin 60MN ︒=sin AMθ,AM =3sin θ,∴AD =3sin θ+2cos θ,(θ≥2π时,结论也正确). 4分AP 2=AD 2+PD 2=θ+2cos θ)2+(2sin θ)2=163sin 2θsin θcos θ+4cos 2θ+4sin 2θ 6分=163²12cos 22θ-sin2θ+4sin2θ-83cos2θ+203=203+163sin(2θ-6π),θ∈(0,23π). 10分当且仅当2θ-6π=2π,即θ=3π时,AP 2取得最大值12,即AP 取得最大值此时AM =AN =2,∠PAB =30° 12分。

河南省南阳市2015届高三上学期期中质量评估数学(理)试题(扫描版)

河南省南阳市2015届高三上学期期中质量评估数学(理)试题(扫描版)

2014年秋期高三年级理科期中考试答案一.选择题: 题目1 2 3 4 5 6 7 8 9 10 11 12 答案 DDBADCDAAABD二.填空题:13.5 14.0 15.1 16.①②③④ 三.解答题:17.解:(I )∵f x ()为偶函数()()∴s i n s i n -+=+ωϕωϕx x 即20s i n c o s ωϕx =恒成立∴cos ϕ=0 ∵,∴02≤≤=ϕπϕπ……………………………………………………………3分 又其图象上相邻对称轴之间的距离为π ∴T =2π ∴ω=1 ∴f x x ()c o s = ……………………………………………………………………5分(II )∵原式=-++=s i n c o s t a n s i n c o s22112αααα ……………………………7分 又∵,∴s i n c o s s i n c o s αααα+=+=231249 …… ………………………9分 即259s i n c o s αα=-, 故原式=-59………………………………………10分18.解:由⎩⎨⎧+=+=xx y x y 321,得0123=-+-x x x ,即0)1)(1(2=+-x x ,1=∴x ,∴交点为)2,1(.…………………………………2分又x x f 2)('=,2)1('=∴f ,∴曲线)(x f y =在交点处的切线1l 的方程为)1(22-=-x y ,……………………5分即x y 2=,又13)('2+=x x g . ∴4)1('=g .∴曲线)(x g y =在交点处的切线2l 的方程为)1(42-=-x y ,即24-=x y . ………………………………………………………………8分取切线1l 的方向向量为)2,1(=a ,切线2l 的方向向量为)4,1(=b ,…………10分 则858591759||||cos =⨯=⋅=b a b a θ. ……………………………………12分19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得 由ac b =2及正弦定理得 .sin sin sin 2C A B = 则CA AC A C C C A A C A sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+22sin()sin 147.sin sin sin 7A CB B B B +==== …………………………6分(Ⅱ)由32BA BC ⋅=,得23cos =B ac ,由43cos =B ,可得ac =2,即b 2=2.…………………………………………………………8分由余弦定理B ac c a b cos 2222-+=,得5cos 2222=+=+B ac b c a ,3,9452)(222=+=+=++=+c a ac c a c a ……………………12分20.解:(Ⅰ)∵*n N ∈时,n n n a S a -=22, ①当2≥n 时,21112n n n a S a ---=-, ② ………………………………2分 由①-②得,22111(2)(2)n n n n n n a a S a S a ----=---即2211n n n n a a a a ---=+,∵01>+-n n a a ∴)2(11≥=--n a a n n ,………………4分由已知得,当1=n 时, 21112a S a =-,∴11=a .………………………………5分 故数列}{n a 是首项为1,公差为1的等差数列.∴*()N n a n n =∈. …………6分 (Ⅱ)∵*()N n a n n =∈,∴n n n n b 2)1(31⋅-+=-λ,…………7分∴111133(1)2(1)2n n n n n n n n b b λλ++-+-=-+-⋅--⋅1233(1)2n n n λ-=⨯-⋅-⋅.要使得1n n b b +>恒成立,只须113(1)()2n n λ---⋅<. …………8分(1)当n 为奇数时,即13()2n λ-<恒成立.又13()2n -的最小值为1,∴1λ<. ……9分(2)当n 为偶数时,即13()2n λ->-恒成立.又13()2n --的最大值为32-,∴32λ>- ……………………………………10分∴由(1),(2)得312λ-<<,又0λ≠且λ为整数,……………………11分∴1λ=-对所有的*N n ∈,都有1n n b b +>成立. ………………12分21.解:(I )ax x x x f 22131)(23++-= ,a x x x f 2)('2++-=∴ …………………2分 函数)(x f 在),32(+∞上存在单调递增区间,即导函数在),32(+∞上存在函数值大于零的部分,0232)32()32('2>++-=∴a f 91->∴a ……………………………………6分(II))(x f 取到最小值316-,而a x x x f 2)('2++-=的图像开口向下,且对称轴方程为21=x ,02)1('>=a f , 0122)4('<-=a f则必有一点使得0'()0=f x ……………………………………8分此时函数)(x f 在0[1,]x 上单调递增,在0[,4]x 单调递减.612)1(+=a f ,a f 8340)4(+-=,)1()4(f f <∴3168340)4()(min -=+-==∴a f x f , 1=∴a , …………………10分此时,由200000'()202,1()=-++=∴==-舍去f x x x x x ,所以函数max 10()(2)3==f x f ………………………………………………………12分22.解答:[],4,10∈x.3分8分12分。

河南省实验中学2014-2015学年高二上学期期中考试 数学(理) Word版含答案

河南省实验中学2014-2015学年高二上学期期中考试 数学(理) Word版含答案

河南省实验中学2014——2015学年上期期中试卷高二 理科数学命题人:李士彬 审题人:李红霞(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .4B .0C .2D .32.在△ABC 中,若a =2,b =2,A =π4,则B 等于 ( )A.π12B.π6C.π6或56πD.π12或1112π 3.在△ABC 中,sin A ∶sin B ∶sin C =4∶3∶2,则cos A 的值是 ( ) A .-14B.14C .-23D.234.已知x >1,y >1且lg x +lg y =4,则lg x lg y 的最大值是 ( ) A .4B .2C .1D.145 .设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数z =4x +2y 的最大值为 ( )A .12B .10C .8D .26. 在ABC ∆中,3B π∠=,三边长a ,b ,c 成等差数列,且6ac =,则b 的值是 ( )A B C D7.数列{a n }的通项式902+=n na n ,则数列{a n }中的最大项是( )A 、第9项B 、第10项和第9项C 、第10项D 、第9项和第8项8.已知等差数列{}n a 中,有011011<+a a ,且该数列的前n 项和n S 有最大值,则使得0n S > 成立的n 的最大值为( ) A .11B .20C . 19D .21 9 设x ,y 都是正数,且21x y += ,则11x y+的最小值是( )A B C 2+ D 3+10.数列{a n }的首项为1,{b n }是以2为首项,以2为公比的等比数列,且b n =a n +1-a n (n ∈N *)则n a =( )A .21n-B .2n C .121n +-D .22n-11.若两个等差数列{}n a ,{}n b 的前n 项的和为n A ,n B .且4555n n A n B n +=-,则135135b b a a ++= ( ) A.97 B.78 C.2019 D.8712 已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=mA. 2-B. 1-C. 1D. 4二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上)13.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.14.已知不等式20x ax b --<的解集为(2,3),则不等式210bx ax -->的解集为___________________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,…循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为________. 16.在三角形ABC 中,若角A B C 、、所对的三边a 、b 、c 成等差数列,则下列结论中正确的是____________.(把所有正确结论的序号都填上)①b 2≥ac; ②b c a 211≤+; ③2222c a b +≤; ④(0,]3B π∈三、解答题(本大题共6小题,70分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)设命题p :22310x x -+≤,命题2:(21)(1)0q x a x a a -+++≤,若命题p 是命题q 的充分不必要条件,求实数a 的取值范围.18 (本小题12分)△ABC 在内角A 、B 、C 的对边分别为,,a b c ,已知cos sin a b C c B =+ (1)求B ;(2)若2b =,求△ABC 面积的最大值。

河南省南阳市2014-2015学年高二上学期期中质量评估化学试卷 扫描版含答案.pdf

河南省南阳市2014-2015学年高二上学期期中质量评估化学试卷 扫描版含答案.pdf

2014年秋期南阳市高中二年级化学期中考试答案及评分标准
一、选择题(本题共16小题,每小题3分,共48分。

每小题只有一个符合题意的选项,答对给3分,答错或不答均为0分)
1-5 ACBCD 6-10 DBBAC 11-16 CDACAB
二、(共5小题满分52分)
17、(每空1分,共7分)
(1) ①电化学
吸氧 O2+2H2O+4e-4OH-2H+ +2e-==H2↑;C→B; D>A>B>C(答C<B; 放热
(3)吸热 (4)否。

20、(每空2分,本题共12分)
(1)50% (2) 锌如失电子则形成Zn2+进入溶液则溶液显正电性,Cu2+如得电子则溶液显负电性,两种因素均阻碍电子流向铜板(或直接答:未形成闭合回路)
(3) ZnSO4 Zn和Cu2+不直接接触发生置换反应,电子只能通过导线发生转移(其它合理答案也可以)
(4)ABC(2分,选对一个或两个均给1分,全对给2分,只要有错不给分) (5)BD(2分,选对一个给1分,只要有错不给分)
21、(前三问每空2分,第四问3分,共11分)
(1)NH4Cl + 2HCl3H2↑+ NCl3
(2)NCl3+3H2O+6 ClO2-===6ClO2↑+3Cl-+3OH-+NH3↑
(3)2ClO2+2CN-===N2↑+ 2CO2↑+2Cl- 、 50a/13(或答3.85a或答3.9a均可)
(4)ACD(3分,每选对一个给1分,只要有错不给分)。

2014-2015年河南省南阳市高二上学期数学期中试卷带答案(理科)

2014-2015年河南省南阳市高二上学期数学期中试卷带答案(理科)

2014-2015学年河南省南阳市高二(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知数列,则是它的第()项.A.19 B.20 C.21 D.222.(5分)在△ABC中,∠A=30°,AB=4,满足此条件的△ABC有两解,则BC边长度的取值范围为()A.(2,4)B.(2,4) C.(4,+∞)D.(2,4)3.(5分)若关于x的不等式ax﹣b>0的解集是(1,+∞),则关于x的不等式的解集是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣1,2)D.(﹣∞,1)∪(2,+∞)4.(5分)已知{a n}为等比数列,下面结论中正确的是()A.a1+a3≥2a2B.a12+a32≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a25.(5分)△ABC的内角A,B,C所对的边分别为a,b,c,已知三角形ABC的面积S=,则∠C的大小是()A.45°B.30°C.90°D.135°6.(5分)对于数列{a n},定义数列{a n+1﹣a n}为数列a n的“差数列”若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=()A.3n﹣1 B.3n+1+2 C.D.7.(5分)在△ABC中,若tanAtanB>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定8.(5分)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是()A.48 B.30 C.24 D.169.(5分)若方程x2+ax﹣2=0在区间(1,+∞)上有解,则实数a的取值范围为()10.(5分)已知数列{a n}为等差数列,若<﹣1,且它们的前n项和S n有最大值,则使得S n>0的n的最大值为()A.21 B.20 C.19 D.1811.(5分)设a>b>0,则的最小值是()A.1 B.2 C.3 D.412.(5分)数列{a n}的前n项和S n=n2+n+1;b n=(﹣1)n a n(n∈N*);则数列{b n}的前50项和为()A.49 B.50 C.99 D.100二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)不等式组的解集为.14.(5分)已知3是9m与3n的等比中项,且m,n均为正数,则+的最小值为.15.(5分)如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为海里/时.16.(5分)已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.数列{a n}满足a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为等差数列,且a3=﹣6,a6=0.(1)求{a n}的通项公式.(2)若等比数列{b n}满足b1=8,b2=a1+a2+a3,求{b n}的前n项和公式.18.(12分)已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).(1)求f(x)的解析式;(2)对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的范围.19.(12分)△ABC的内角A,B,C的对边分别是a,b,c,已知A,B,C成等差数列,△ABC的面积为,(1)求证:a,2,c,成等比数列;(2)求△ABC的周长L的最小值,并说明此时△ABC的形状.20.(12分)某人上午7:00乘汽车以v1千米/小时(30≤v1≤100)匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以v2千米/小时(4≤v2≤20)匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地.设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?21.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c.已知csinA=acosC.(Ⅰ)求C;(Ⅱ)若c=,且sinC+sin(B﹣A)=3sin2A,求△ABC的面积.22.(12分)已知数列{a n}中,a1=1,a1+2a2+3a3+…+na n=(1)求数列{a n}的通项a n;(2)求数列{n2a n}的前n项和T n;(3)若存在n∈N*,使得a n≥(n+1)λ成立,求实数λ的取值范围.2014-2015学年河南省南阳市高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知数列,则是它的第()项.A.19 B.20 C.21 D.22【解答】解:数列,中的各项可变形为:,,,,,…,∴通项公式为a n==,令=,得,n=21故选:C.2.(5分)在△ABC中,∠A=30°,AB=4,满足此条件的△ABC有两解,则BC边长度的取值范围为()A.(2,4)B.(2,4) C.(4,+∞)D.(2,4)【解答】解∵三角形ABC有两解,∴ABsin30°<BC<4,∴2<BC<4,故选:B.3.(5分)若关于x的不等式ax﹣b>0的解集是(1,+∞),则关于x的不等式的解集是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣1,2)D.(﹣∞,1)∪(2,+∞)【解答】解:因为不等式ax﹣b>0的解集是(1,+∞),所以a=b>0,所以等价于(x+1)(x﹣2)>0,所以x<﹣1或x>2故选:A.4.(5分)已知{a n}为等比数列,下面结论中正确的是()A.a1+a3≥2a2B.a12+a32≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a2【解答】解:设等比数列的公比为q,则a1+a3=,当且仅当a2,q同为正时,a1+a3≥2a2成立,故A不正确;,∴,故B正确;若a1=a3,则a1=a1q2,∴q2=1,∴q=±1,∴a1=a2或a1=﹣a2,故C不正确;若a3>a1,则a1q2>a1,∴a4﹣a2=a1q(q2﹣1),其正负由q的符号确定,故D 不正确故选:B.5.(5分)△ABC的内角A,B,C所对的边分别为a,b,c,已知三角形ABC的面积S=,则∠C的大小是()A.45°B.30°C.90°D.135°【解答】解:∵△ABC中,S=absinC,a2+b2﹣c2=2abcosC,且S=,∴absinC=abcosC,整理得:sinC=cosC,即tanC=1,则∠C=45°,故选:A.6.(5分)对于数列{a n},定义数列{a n+1﹣a n}为数列a n的“差数列”若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=()A.3n﹣1 B.3n+1+2 C.D.【解答】解:∵a1=1,a n+1﹣a n=3n,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=3n﹣1+3n﹣2+…+31+1==.故选:C.7.(5分)在△ABC中,若tanAtanB>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【解答】解:因为A和B都为三角形中的内角,由tanAtanB>1,得到1﹣tanAtanB<0,且得到tanA>0,tanB>0,即A,B为锐角,所以tan(A+B)=<0,则A+B∈(,π),即C都为锐角,所以△ABC是锐角三角形.故选:A.8.(5分)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是()A.48 B.30 C.24 D.16【解答】解:满足约束条件的可行域如图所示在坐标系中画出可行域,平移直线5y﹣x=0,经过点B(8,0)时,5y﹣x最小,最小值为:﹣8,则目标函数z=5y﹣x的最小值为﹣8.经过点A(4,4)时,5y﹣x最大,最大值为:16,则目标函数z=5y﹣x的最大值为16.z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是:24.故选:C.9.(5分)若方程x2+ax﹣2=0在区间(1,+∞)上有解,则实数a的取值范围为()【解答】解:x2+ax﹣2=0在区间(1,+∞)上有解,即a=﹣x在在区间(1,+∞)上有解令y=﹣x,则y′=﹣﹣1<0对x∈(1,+∞)恒成立,∴y=﹣x在(1,+∞)上是递减函数故y<y(1)=1,故函数的值域为:(﹣∞,1),故a的取值范围是:(﹣∞,1),故答案为:(﹣∞,1).10.(5分)已知数列{a n}为等差数列,若<﹣1,且它们的前n项和S n有最大值,则使得S n>0的n的最大值为()A.21 B.20 C.19 D.18【解答】解:由<﹣1,可得<0,由它们的前n项和S n有最大可得数列的d<0,∴a10>0,a11+a10<0,a11<0,∴a1+a19=2a10>0,a1+a20=a11+a10<0.∴使得S n>0的n的最大值n=19.故选:C.11.(5分)设a>b>0,则的最小值是()A.1 B.2 C.3 D.4【解答】解:=≥4当且仅当取等号即取等号.∴的最小值为4故选:D.12.(5分)数列{a n}的前n项和S n=n2+n+1;b n=(﹣1)n a n(n∈N*);则数列{b n}的前50项和为()A.49 B.50 C.99 D.100【解答】解:∵数列{a n}的前n项和S n=n2+n+1,∴a1=s1=3,当n≥2时,a n=S n ﹣s n﹣1=n2+n+1﹣[(n﹣1)2+(n﹣1)+1]=2n,故a n=.∴b n=(﹣1)n a n =,∴数列{b n}的前50项和为(﹣3+4)+(﹣6+8)+(﹣10+12)+…(﹣98+100)=1+24×2=49,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)不等式组的解集为(1,0]∪[2,3).【解答】解:不等式组解不等式①得1<x<3,解不等式②得x≤0,或x≥2,故不等式组的解集为(1,0]∪[2,3),故答案为;(1,0]∪[2,3),14.(5分)已知3是9m与3n的等比中项,且m,n均为正数,则+的最小值为.【解答】解:∵3是9m与3n的等比中项,∴9m•3n=(3)2,即32m+n=33,即2m+n=3,∴+=(+)(2m+n)=(3+)≥,当且仅当n=m时取等号∴+的最小值为.故答案为:.15.(5分)如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为20(﹣)海里/时.【解答】解:由题意知PM=20海里,∠PMB=15°,∠BMN=30°,∠PNC=45°,∴∠NMP=45°,∠MNA=90°﹣∠BMN=60°,∴∠PNM=105°,∴∠MPN=30°,∵sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°=,∴在△MNP中利用正弦定理可得,解得:MN=10(﹣)海里,∴货轮航行的速度v==20(﹣)海里/小时.故答案为:20(﹣)16.(5分)已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.数列{a n}满足a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=n2n.【解答】解:由于a n=f(2n)则a n+1=f(2n+1)且a1=2=f(2)∵对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)∴令x=2n,y=2则f(2n+1)=2n f(2)+2f(2n)=2a n+2×2n∴a n+1∴∴数列{}是以为首项公差为1的等差数列∴∴a n=n2n三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为等差数列,且a3=﹣6,a6=0.(1)求{a n}的通项公式.(2)若等比数列{b n}满足b1=8,b2=a1+a2+a3,求{b n}的前n项和公式.【解答】解:(1)∵{a n}为等差数列,且a3=﹣6,a6=0,∴,解得a1=﹣10,d=2,∴a n=﹣10+(n﹣1)×2=2n﹣12.(2)∵等比数列{b n}满足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,∴q===﹣3,∴{b n}的前n项和公式:S n==2﹣2(﹣3)n.18.(12分)已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).(1)求f(x)的解析式;(2)对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的范围.【解答】解:(1)∵f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).∴2x2+bx+c=0的两根为0,5∴∴b=﹣10,c=0∴f(x)=2x2﹣10x;(2)要使对于任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,只需f(x)max ≤2﹣t即可∵f(x)=2x2﹣10x=2,x∈[﹣1,1],∴f(x)max=f(﹣1)=12∴12≤2﹣t∴t≤﹣1019.(12分)△ABC的内角A,B,C的对边分别是a,b,c,已知A,B,C成等差数列,△ABC的面积为,(1)求证:a,2,c,成等比数列;(2)求△ABC的周长L的最小值,并说明此时△ABC的形状.【解答】解(1)证明:∵A、B、C成等差数列,∴B=60°,又△ABC的面积为,∴acsin60°=,即ac=4,∵ac=22,∴a、2、c成等比数列;(2)在△ABC中,根据余弦定理,得b2=a2+c2﹣2accos60°=a2+c2﹣ac≥2ac﹣ac=ac=4,∴b≥2,当且仅当a=c时,等号成立,∴△ABC的周长L=a+b+c≥2+b=4+b,当且仅当a=c时,等号成立,∴L≥4+2=6,当且仅当a=c时,等号成立,∴△ABC周长的最小值为6,∵a=c,B=60°,∴此时△ABC为等边三角形.20.(12分)某人上午7:00乘汽车以v1千米/小时(30≤v1≤100)匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以v2千米/小时(4≤v2≤20)匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地.设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?【解答】解:由题意得,,∵30≤v1≤100,4≤v2≤20∴由题设中的限制条件得9≤x+y≤14于是得约束条件目标函数p=100+3(5﹣x)+2(8﹣y)=131﹣3x﹣2y(6分)做出可行域(如图),当平行移动到过(10,4)点时纵截距最大,此时p最小.所以当x=10,y=4,即v1=30,v2=12.5时,p min=93元(12分)(没有图扣2分)21.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c.已知csinA=acosC.(Ⅰ)求C;(Ⅱ)若c=,且sinC+sin(B﹣A)=3sin2A,求△ABC的面积.【解答】解:(Ⅰ)∵csinA=acosC,∴由正弦定理,得sinCsinA=sinAcosC结合sinA>0,可得sinC=cosC,得tanC=∵C是三角形的内角,∴C=60°;(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sinBcosA,而3sin2A=6sinAcosA∴由sinC+sin(B﹣A)=3sin2A,得sinBcosA=3sinAcosA当cosA=0时,∠A=,可得b==,可得三角△ABC的面积S==当cosA≠0时,得sinB=3sinA,由正弦定理得b=3a…①,∵c=,∠C=60°,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=7…②,联解①①得a=1,b=3,∴△ABC的面积S=absinC=×1×3×sin60°=.综上所述,△ABC的面积等于或.22.(12分)已知数列{a n}中,a1=1,a1+2a2+3a3+…+na n=(1)求数列{a n}的通项a n;(2)求数列{n2a n}的前n项和T n;(3)若存在n∈N*,使得a n≥(n+1)λ成立,求实数λ的取值范围.【解答】解:(1)因为a1+2a2+3a3+…+na n=所以a1+2a2+3a3+…+(n﹣1)a n=(n≥2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1﹣1分)两式相减得na n=所以=3(n≥2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)因此数列{na n}从第二项起,是以2为首项,以3为公比的等比数列所以na n=2•3n﹣2(n≥2)﹣﹣﹣﹣(3分)故a n=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由(1)可知当n≥2n2a n=2n•3n﹣2当n≥2时,T n=1+4•30+6•31+…+2n•3n﹣2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∴3T n=3+4•31+…+2(n﹣1)•3n﹣2+2n•3n﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)两式相减得(n≥2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)又∵T1=a1=1也满足上式,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)所以T n=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(3)a n≥(n+1)λ等价于λ≤,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)由(1)可知当n≥2时,设f(n)=,则f (n +1)﹣f (n )=<0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)∴,又及,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)∴所求实数λ的取值范围为λ≤﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +bx -b-ab 45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。

河南省南阳市2014-2015学年高二上期期末质量评估英语试题 扫描版含答案

河南省南阳市2014-2015学年高二上期期末质量评估英语试题 扫描版含答案

河南省南阳市2014-2015学年高二上期期末质量评估2014年秋期高中二年级期终质量评估英语试题参考答案【听力】(每小题1分,满分20分)1-10 ACBCB BBCAB 11-20ACABC CAACB【阅读理解】(每小题2分,满分40分)21-24 ABCA 25-28 BDAD 29-32 ABCC 33-35 CDA 36-40 BGDCE【完形填空】(每小题1.5分,满分30分)41-50 BDCAC BDCDB 51-60 CDAAD BCAAD【语法填空】(每小题1.5分,满分15分)61.for 62.will give 63.congratulations 64.working 65.while/when66.With 67.In 68.efficiently 69.to hire 70.applicants完成句子(每小题1分,满分10分)71.independently/on his own 72.has committed 73.Put 74.(should) be taken 75.surrounding 76.equally 77.(to be) beneficial; of benefit78.effect/influence/impact 79.anxiety 80.extremely短文改错(每改对一处1分,共10处错误10分)1.best前加the2.Personal--Personally3.lesson--lessons4.paid--paying或之前加anded前were去掉6.them--it7.but--and8.can--could te--later 10.it去掉书面表达参考答案(满分25分)Dear Sir,I’m LiHua, a senior two student from Guangming Middle School. I’m eager to join your English club this winter vacation. Now I’m writing for further information.First, I’d like to know when the activities will be held so that I can make daily plans. Second, I’m interested in who will join the club. As you know, it is better to communicate with native speakers. Furthermore, as a middle school student, need I pay? If so, how much is the fee?Believe it or not, I am an English lover. In my opinion, it is necessary for us to have a good master of the language. As the most widely used language in the world, English is playing a more and more important role in international communication as well as daily life. Unfortunately, we Chinese students have few chances to practise it, especially spoken English. Therefore I want to get it improved in this precious winter holiday. Meanwhile I’d like to make more friends from different backgrounds in your club.I’d appreciate it if you could reply to me soon.Yours truly,LiHua。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(理)参考答案与评分标准
一、选择题(本大题共12个小题,每小题5分,共60分)
1 2 3 4 5 6 7 8 9 10 11 12 C
B
B
B
A
C
A
C
B
C
D
A
二、填空题(本大题共4个小题,每小题5分,共20分) 13.[)2,3 14. 2213
+
15. 20(62)- 16. 2n
n ∙ 17.解:(Ⅰ)设等差数列{}n a 的公差d . 因为3660a a =-=,, 所以112650.
a d a d +=-⎧⎨
+=⎩,
解得1102a d =-=,.
所以10(1)2212n a n n =-+-⋅=-. ------------5分
(Ⅱ)设等比数列{}n b 的公比为q .
因为21231248b a a a b =++=-=-,,
所以824q -=-,即3q =.
所以{}n b 的前n 项和公式为1(1)
4(13)1n n n b q S q
-=
=--.-----------10分 18. 解:(Ⅰ)2
()2f x x bx c =++,不等式()0f x <的解集是()0,5,
所以的解集是()0,5,
所以
是方程
的两个根,
由韦达定理知, 2()210f x x x =-. ------------5分
(Ⅱ)()2f x t +≤ 恒成立等价于021022≤-+-t x x 恒成立,
设2
()2102g x x x t =-+-,则()g x 的最大值小于或等于
则由二次函数的图象可知2102)(2
-+-=t x x x g 在区间]1,1[-为减函数,
所以t g x g +=-=10)1()(max ,所以10t ≤-. -----------12分
19. 解:(Ⅰ)证明:∵A、B 、C 成等差数列,∴B =600

220
x bx c ++<05
和220
x bx c ++=5,0,10,0,22
b c
b c -
==∴=-=
又∆ABC 的面积为3,∴
360sin ac 2
1
0=,∴ac=4 ∴a、2、c 成等比数列 --------------------------4分 (Ⅱ)在∆ABC 中,根据余弦定理,得 b 2
=a 2
+c 2
-2accos600
=a 2
+c 2
-ac≥2ac -ac=ac=4,∴ b≥2, 当且仅当a=c 时,等号成立 ----------------8分 ∴∆ABC 的周长L =a+b+c≥b ac 2+=4b +.当且仅当a=c 时,等号成立 ∴426L ≥+=, 当且仅当a=c 时,等号成立 ∴∆ABC 周长的最小值为6,
因为a=c ,B=600
,此时∆ABC 为等边三角形. -----------------12分 20.解:由题意得,1300v x =
,2
50
v y =
∵1230100,,420v v ≤≤≤≤ ∴525
310,
22
x y ≤≤≤≤
由题设中的限制条件得149≤+≤y x
于是得约束条件⎪⎪⎩⎪
⎪⎨⎧
≤≤≤≤≤+≤2252
5103149y x y x
目标函数y x y x p 23131)8(2)5(3100--=-+-+= ………6分
做出可行域(如图),(没有图扣2分) 当2
23,23z
x y y x z +-
=+=即平行移动到过(10,4)点时纵截距最大,此时p 最小. 所以当4,10==y x ,即5.12,3021==v v 时,93min =p 元 ……12分 21.(Ⅰ)由正弦定理,得sin sin 3sin cos C A A C =,
因为sin 0A ≠,解得tan 3C =,3
C π
=
. ……… 4分
(Ⅱ)解法一:由(Ⅰ)得2sin
sin(
2)3sin 23
3
A A π
π
+-=, 即
331cos 2sin 23sin 2222A A A ++=. 35(1cos 2)sin 222
A A += 23cos 5sin cos A A A = ……… 8分
若cos 0A =,则2
A π
=

tan 3
c b π
=,213b =, ABC ∆的面积173
26
S bc ==

若cos 0A ≠,则3cos 5sin A A =,
5721cos ,sin ,1414
A A =
= 由正弦定理,得1a =. 321sin sin()14B A C =+=
, ABC ∆的面积133
sin 24S ac B ==
. 综上,ABC ∆的面积为
736或33
4
. ……… 12分
解法二:由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=,
整理,得sin cos 3sin cos B A A A =. 若cos 0A =,则2
A π
=

tan 3
c b π
=,213b =, ABC ∆的面积173
26
S bc ==.
……… 8分
若cos 0A ≠,则sin 3sin B A =,3b a =.
由余弦定理,得2222cos c a b ab C =+-,解得1,3a b ==.
ABC ∆的面积133
sin 24
S ab C ==.
综上,ABC ∆的面积为
736或33
4
. ……… 12分
22. (Ⅰ)
12311
232n n n a a a na a +++++⋅⋅⋅+=
,n N *∈① 123123(1)2
n n n
a a a n a a -∴+++⋅⋅⋅+-=,2n ≥②
①-②:1122n n n n n na a a ++=-,131
22
n n n n a a ++∴=, ……… 2分 即1(1)3n n n a na ++=⨯(2n ≥),又由①得n=1时,121a a ==222a ∴=,
2n ∴≥时,数列{}n na 是以2为首项,3为公比的等比数列.
223(2)n n na n -∴=⋅≥,故2
1,123,2n n n a n n
-=⎧⎪
=⎨⋅≥⎪⎩ ……… 4分
(Ⅱ)由(Ⅰ)可知当2n ≥时,2223n n n a n -=⋅,
∴当1n =时,11T =;
当2n ≥时,0121436323n n T n -=+⋅+⋅+⋅⋅⋅+⋅,①
12213343632(1)323n n n T n n --=+⋅+⋅+⋅⋅⋅+-⋅+⋅,②
①-②得,1221222(333)23n n n T n ---=+++⋅⋅⋅+-⋅
=1123323n n n ---+-⋅ =11(12)3n n --+-⋅
111
()3(2)22n n T n n -∴=
+-≥,又11T =也满足 111
()3()22n n T n n N -*∴=+-∈ ……… 8分
(Ⅲ)()11
n
n a a n n λλ≤+⇔≥
+,由(Ⅰ)可知: 当2n ≥时,()2231n n n λ-⋅≥+,令()()2
231n f n n n -⋅=+,
则()()()()
()12
11233112232n n f n n n n
f n n n n --++⋅=⋅=>++⋅+, 又()0f n >,∴()()1f n f n +>
∴当2n ≥时,()f n 单增,∴()f n 的最小值是()1
23
f = 而1n =时,
11112a =+,综上所述,1n a n +的最小值是1
3 ∴13λ≥,即λ的最小值是1
3
……… 12分。

相关文档
最新文档