人教版九年级数学第二十二章一元二次方程单元测试(二)(附答案)

合集下载

人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析

人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析

第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A . y=(x +2)2﹣5 B . y=(x +2)2+5 C . y=(x ﹣2)2﹣5 D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12 D . 14或34 6.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表: x … ,1 0 1 2 2.5 3 4 … y 1 … 0 m 1 ,8 n 1 ,8.75 ,8 ,5 … y 2…5m 2,11n 2,12.5,11,5…则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc <0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数. 2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5.A【解析】【分析】首先根据题意确定a,b的符号,然后进一步确定a的取值范围,根据a,b为整数确定a,b的值,从而确定答案.【详解】,0,a+b,2=0,依题意知a,0,b2a故b,0,且b=2,a,a,b=a,,2,a,=2a,2,于是0,a,2,∴,2,2a,2,2,又a,b为整数,∴2a,2=,1,0,1, 故a=12,1,32,b=32,1,12,∴ab=34或1,故选A, 【点睛】根据开口和对称轴可以得到b 的范围。

一元二次方程测试题(一二)(试卷版)

一元二次方程测试题(一二)(试卷版)

九年级数学第二十二章一元二次方程测试题(一)清华附中初三备课组提供一、选择题1.下列方程中,关于x 的一元二次方程是( )A.()()23121x x +=+ B.21120xx+-=C.20ax bx c ++=D. 2221x x x +=-2.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.2 3.方程22x x =的解为( )A.x =2B. x 1=x 2=0C. x 1=2,x 2=0D. x =0 4.解方程2(51)3(51)x x -=-的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5.用配方法解下列方程时,配方有错误..的是( )A.x 2-2x -99=0化为(x -1)2=100B.x 2+8x +9=0化为(x +4)2=25C.2t 2-7t -4=0化为2781()416t -=D.3y 2-4y -2=0化为2210()39y -=6.下面是李明同学在一次测验中解答的填空题,其中答对的是( )A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy≠),则x y=6或x y=-1 D.若分式2321x x x-+-值为零,则x =1,2 7.用配方法解一元二次方程20ax bx c ++=,此方程可变形为( )A.222424b b ac x a a -⎛⎫-= ⎪⎝⎭B.222424b ac b x a a -⎛⎫-= ⎪⎝⎭ C.222424b b ac x a a -⎛⎫+= ⎪⎝⎭D.222424b ac b x a a -⎛⎫+= ⎪⎝⎭8.据《武汉市2002年国民经济和社会发展统计公报》报告:武汉市2002年国内生产总值达1493亿元,比2001年增长11.8%.下列说法:① 2001年国内生产总值为1493(1-11.8%)亿元;②2001年国内生产总值为1493111.8%-亿元;③2001年 国内生产总值为1493111.8%+亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是( )A.③④B.②④C.①④D.①②③9.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是 ( )A.9cm 2B.68cm 2C.8cm 2D.64cm 2二、填空题10.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 . 11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 , 其中二次项系数是 ,一次项系数是 ,常数项是 .12.配方:x 2 -3x+ = (x - )2; 4x 2-12x+15 = 4( )2+6 13.一元二次方程ax 2+bx+c=0 (a≠0)的求根公式是: . 14.认真观察下列方程,指出使用何种方法解比较适当:(1) 4x 2+16x =5,应选用 法;(2) 2(x +2)(x -1)=(x +2)(x +4),应选用 法; (3) 2x 2-3x -3=0,应选用 法.15.方程23x x =的解是____;方程()()230x x -+=的解是______________. 16.已知代数式7x (x +5)+10与代数式9x -9的值互为相反数,则x = . 17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 三、解答题18.用开平方法解方程:2(1)4x -=19.用配方法解方程:x 2—4x +1=020.用公式法解方程:3x2+5(2x+1)=021.用因式分解法解方程:3(x-5)2=2(5-x)四、应用题22.某校2005年捐款1万元给希望工程,以后每年都捐款,计划到2007年共捐款4.75万元,问该校捐款的平均年增长率是多少?23.有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.五、综合题24.已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根.求此三角形的周长.九年级数学第二十二章一元二次方程测试题(二)清华附中初三备课组提供一、选择题1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( )A .2m =±B .m =2C .m= -2D .2m ≠± 2.若方程()24x a -=有解,则a 的取值范围是( )A .0a ≤B .0a ≥C .0a >D .无法确定3.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3,x 2=1,那么这个一元二次方程 是( )A. x 2+3x +4=0 B.x 2+4x -3=0 C.x 2-4x +3=0 D. x 2+3x -4=04.一元二次方程()224260m x m x m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 5.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 6.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 7.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠08.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定9.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .310.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( )A .24B .24或C .48D .二、填空题11.一元二次方程(x +1)(3x -2)=10的一般形式是 . 12.当m 时,关于x 的方程27(3)5mm x x ---=是一元二次方程;当m 时,此方程是一元一次方程.13.如果一元二次方程ax 2-bx +c =0有一个根为0,则c = ;关于x 的一元二次方程2x 2-ax -a 2=0有一个根为-1,则a = .14.把一元二次方程3x 2-2x -3=0化成3(x+m )2=n 的形式是 ;若多项式x 2-ax +2a -3是一个完全平方式,则a = .15.若方程20x m -=有整数根,则m 的值可以是 (只填一个). 16.已知两个连续奇数的积是15,则这两个数是__________. 17.已知2222(1)(3)5x y x y +++-=,则22x y +的值等于 . 18.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .19.当x = 时,. 三、解答题20.用配方法证明245x x -+的值不小于1.21.已知a 、b 、c 2|1|(3)0b c +++=,求方程20ax bx c ++=的根.四、应用题22.合肥百货大搂服装柜在销售中发现:―宝乐‖牌童装平均每天可售出20件,每件盈利40元.为了迎接―十·一‖国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?五、综合题23.设m为整数,且4<m<40,方程22--+-+=有两个不相等的整数根,x m x m m2(23)41480求m的值及方程的根.第二十二章一元二次方程测试题(一)参考答案一、选择题1.A 2.C 3.C 4.D 5.B 6.C 7.C 8.B 9.D 二、填空题10.m ≠3 11.2270x -= 2 0 —7 12.232⎛⎫⎪⎝⎭32;32x -13.240)2x b ac a=-≥ 14.(1)配方;(2)因式分解;(3)公式法15.120,3x x ==;122,3x x ==- 16.151142--或 17.10三、解答题18.解:开平方,得12x -=±, 即1212x x -=-=-或, 所以123,1x x ==-. 19.解:移项,得241,x x -=-配方,得2443x x -+=,2(2)3x -=,2x -=1222x x =+=-.20.解:方程化为一般形式,得231050x x ++=,223,10,5,41043540,a b c b ac ===-=-⨯⨯=2363x ===⨯1233x x ==.21.解:移项,得23(5)2(5)0x x -+-=,(5)[3(5)2]0,x x --+=即(5)(313)0,x x --=503130,x x -=-=或 12135,3x x ==.四、应用题22.解:设该校捐款的平均年增长率是x ,则211(1)1(1) 4.75x x +⨯++⨯+=,整理,得23 1.75x x +=,解得120.550%, 3.5(,)x x ===-不合题意舍去, 答:该校捐款的平均年增长率是50%.23.解:设鸡场的一边长为x 米,则另一边长为(35—2x ),列方程,得(352)150,x x -=解得1210,7.5x x ==,当x =10时,35—2x =15<18,符合题意; 当x =7.5时,35—2x =20>18,不符合题意,舍去. 答:鸡场的长为15米,宽为10米. 五、综合题24.解:解方程x 2-17x +66=0,得126,11x x ==,当x =6时,3+8>6,8-3<6,可以构成三角形; 当x =11时,3+8=11,不能构成三角形. 所以三角形的周长为3+8+6=17.第二十二章一元二次方程测试题(二)参考答案一、选择题1.B 2.B 3.C 4.D 5.B 6.A 7.C 8.A 9.C 10.B 二、填空题11.23120x x +-= 12.3 3±±或 13.0 —1或2 14.2110333x ⎛⎫-= ⎪⎝⎭ 2或6 15.m 为完全平方数均可,如取0,或1,或4等 16.3和5或—3和—5 17.4 18.2 19.—5 三、解答题20.证明:245x x -+=2(2)1x -+, ∵2(2)0,x -≥∴2(2)1x -+≥1, ∴245x x -+的值不小于1.2120,|1|0,(3)0b c ≥+≥+≥,又∵2|1|(3)0b c +++=,∴2|1|(3)0b c =+=+=, ∴a =1,b =-1,c =-3,∴方程20ax bx c ++=为230x x --=,解得1222x x ==四、应用题22.解:设每件童装应降价x 元,则(40)20812004x x ⎛⎫-+⨯= ⎪⎝⎭,解得1220,10x x ==.因为要尽快减少库存,所以x =20. 答:每件童装应降价20元. 五、综合题23.解:解方程222(23)41480x m x m m --+-+=,得(23)2x m ==-±∵原方程有两个不相等的整数根,∴2m +1为完全平方数, 又∵m 为整数,且4<m <40, ∴m =12或24.∴当m =12时,243215x =-±=±,1226,16x x ==;当m =24时,12483457,52,38x x x =-±±==。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

人教版九年级数学《一元二次方程》单元测试题(含答案)

人教版九年级数学《一元二次方程》单元测试题(含答案)

人教版九年级数学《一元二次方程》单元测试题(含答案)人教版九年级数学《一元二次方程》单元测试题一、选择题(每题3分,共18分):1.下列关于X的方程中,一定是一元二次方程的是()A.x-2=(x+3)B.ax+bx+c=2C.x+2D.x-1=2改写为:下列关于X的方程中,是一元二次方程的是()A.x-2=(x+3)B.ax+bx+c=2C.x+2D.x-1=22.x=2不是下列哪一个方程的解()A.3(x-2)=2B.2x-3x=2C.(x+2)(x-2)=23D.x-x+2=2改写为:下列哪一个方程的解不是x=2?A.3(x-2)=2B.2x-3x=2C.(x+2)(x-2)=23D.x-x+2=23.一元二次方程x-6x-5=配方可变形为()A.(x-3)=14B.(x-3)=42C.(x+3)=14D.(x+3)=42改写为:将一元二次方程x-6x-5配方可变形得到()A.(x-3)=14B.(x-3)=42C.(x+3)=14D.(x+3)=424.下列对一元二次方程要根的情况的判断,正确的是()A.有两个不相等的实数根.B.有两个相等的实数根.C.有且只有一个实数根.D.没有实数根.改写为:下列关于一元二次方程根的判断正确的是()A.有两个不相等的实数根.B.有两个相等的实数根.C.有且只有一个实数根.D.没有实数根.5.已知方程x+7x-1=的两个实数根为a,b,则代数式ab-a-b+1的值为()A.-7B.7C.9D.-9改写为:已知方程x+7x-1的两个实数根为a,b,则代数式ab-a-b+1的值为()A.-7B.7C.9D.-96.定义新运算,规定运算“★”是a★b=ab,如2★5=2´5,若3★x=36,则x为()A.x=4,x=-4B.x=±4C.x=23,x=-23D.x=3,x=-3改写为:定义新运算,规定运算“★”是a★b=ab,若3★x=36,则x为()A.x=4,x=-4B.x=±4C.x=23,x=-23D.x=3,x=-3二、填空题(每题3分,共18分):7.一元二次方程3x(x-3)=2x+1化成一般形式为______。

人教版九年级上册数学第二十二章 二次函数 单元测试卷(Word版,含答案)

人教版九年级上册数学第二十二章 二次函数 单元测试卷(Word版,含答案)

第 1 页 共 9 页人教版九年级上册数学第二十二章 二次函数 单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值62.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A .第7秒B .第9秒C .第11秒D .第13秒3.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m4.已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .45.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是( )A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对6.二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )第 2 页 共 9 页 A . B . C .D .7.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如表,下列说法错误的是( )A .a <0B .方程ax 2+bx +c =﹣2的正根在4与5之间C .2a +b >0D .若点(5,y 1)、(﹣32,y 2)都在函数图象上,则y 1<y 2 8.已知二次函数2202020212022y x x =++的图象上有两点A (x 1,2023)和B (x 2,2023),则当12x x x =+时,二次函数的值是( )A .2020B .2021C .2022D .20239.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,。

人教版九年级数学上册第二十二章《二次函数》单元测试题(含答案)

人教版九年级数学上册第二十二章《二次函数》单元测试题(含答案)

人教版九年级数学上册第二十二章《二次函数》单元测试题(含答案)一、单选题1.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣6(t ﹣2)2+7,则小球距离地面的最大高度是( ) A .2米B .5米C .6米D .7米2.已知抛物线y=x 2+x-1经过点P(m ,5),则代数式m 2+m+2016的值为( ) A .2021 B .2022 C .2023 D .20243.如图,二次函数2y ax bx c =++(0)a ≠图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为(1,0)-.则下面的四个结论:①0abc >;②22()a c b +<;③240b ac ->;④当0y <时,1x <-或2x >.其中正确的有( )个.A .1B .2C .3D .44.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .5.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:x1- 02 3 4y54-3-下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若()()12, , 2, 3A x B x 是抛物线上两点,则12x x <;⑥0abc >. 其中正确的个数是( )A .2B .3C .4D .56.抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①3a -c <0;② abc <0; ③点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<; ④4a -2b ≥at 2+bt (t 为实数);正确的个数有()个A.1B.2C.3D.47.函数y=mx2+2x﹣3m(m为常数)的图象与x轴的交点有()A.0个B.1个C.2个D.1个或2个8.抛物线y=2(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)9.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.ac<0 B.a+b+c<0 C.b2﹣4ac<0 D.b=8a10.已知函数6yx=的图象与()20,0y ax bx a b=+><的图象交于点Q,点Q的纵坐标为1,则关于x的方程26ax bxx+-=的解为()A.1B.2C.3D.611.二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2.其中正确的结论是( )A.①②B.①③C.②④D.③④12.函数y =ax 2+bx 与y =ax+b(ab ≠0)的图象大致是( )A .B .C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.二次函数y =ax 2+bx +c (a ≠0)的图象如图,若|ax 2+bx +c |=k 有两个不相等的实数根,则k 的取值范围是____.14.抛物线3)2(2+--=x y 的顶点坐标是 . 15.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.16.如图,已知正方形OBCD 的三个顶点坐标分别为B(1,0),C(1,1), D(0,1). 若抛物线2=-与正方形OBCD的边共有3个公共点,则h的取值范围是___________.()y x h17.二次函数y=ax2+bx+c的部分对应值如下表.利用二次函数的图象可知,当函数值y<0时,x的取值范围是_____.18.如图所示,在同一坐标系中,作出,,的图象,比较、、大小是______.三、解答题19.如图,已知直线过点和,是轴正半轴上的动点,的垂直平分线交于点,交轴于点.(1)直接写出直线的解析式;(2)当时,设,的面积为,求S关于t的函数关系式;并求出S的最大值;(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.20.如图,在平面直角坐标系中,已知抛物线2142y x x ﹣﹣与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的解析式.(2)点P 是线段BC 下方抛物线上的一个动点.①求四边形PBAC 面积的最大值,并求四边形PBAC 面积的最大时P 点的坐标; ②如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形是平行四边形.求点Q 的坐标.21.已知二次函数y =ax 2+bx+c (a ≠0)的图象过点(1,﹣2)和(﹣1,0)和(0,﹣32). (1)求此二次函数的解析式;(2)按照列表、描点、连线的步骤,在如图所示的平面直角坐标系内画出该函数的图象(要求至少5点).22.如图,抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点. (1)求该抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标;(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.23.如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B 的左边),点B的横坐标是1.(1) 求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3) 如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标. 24.在平面直角坐标系中,已知抛物线212y x bx c =-++(b 、c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为()0,1-,C 的坐标为()4,3,直角顶点B 在第四象限.(1)如图,若该抛物线经过A 、B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . ①若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标; ②取BC 的中点N ,连接NP ,BQ ,求PQMP BQ+的最大值.25.已知抛物线y =x 2+bx ﹣3经过点A (1,0),顶点为点M . (1)求抛物线的表达式及顶点M 的坐标; (2)求∠OAM 的正弦值. 26.如图①,已知抛物线与轴交于A 和B 两点(点A 在点B 的左侧),与y轴相交于点C .顶点为D . (1)求出点A,B,D 的坐标(2)如图①,若线段OB 在x 轴上移动,点O,B 移动后的对应点为O´,B´.首尾顺次连接点O´、B´、D 、C 构成四边形O´B´DC,当四边形O´B´DC 的周长有最小值时,在第四象限的抛物线上找一点P,使得△PO´C 的面积最大,求出此时点P 的坐标: (3)如图②,若点M 是抛物线上一点,点N 在y 轴上,连接CM 、MN.是否存在一点N,使△CMN为等腰直角三角形,若存在,直接写出点N 的坐标;若不存在,说明理由.27.在平面直角坐标系中,直线y =﹣12x+2与x 轴交于点B ,与y 轴交于点C ,二次函数y =﹣12x 2+bx+c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的表达式;(2)如图1,点D 是抛物线第四象限上的一动点,连接DC ,DB ,当S △DCB =S △ABC 时,求点D 坐标;(3)如图2,在(2)的条件下,点Q 在CA 的延长线上,连接DQ ,AD ,过点Q 作QP ∥y 轴,交抛物线于P ,若∠AQD =∠ACO+∠ADC ,请求出PQ 的长.参考答案1.D 2.B .3.A4.D5.B6.C7.D8.B9.D10.D11.C12.A 13.k =0或k >2. 14.)3,2( 15.12 16.0<h<1 17.﹣1<x <3.18. 19.(1);(2),当时,S 有最大值;(3)在上存在点,使得是以为直角顶点的等腰直角三角形.20.(1)12y =x 2﹣x ﹣4,4y x =-;(2)①16;②点Q 的坐标为(2,0)或(6,0) 21.(1) 21322y x x =--(2)见解析.22.(1)y=x 2-2x-3;(2)P 点的坐标为( 0,15)或( 0,7);(3)点Q (32, - 154 ).23.(1)顶点P 的为(-2,-5),a =59(2)抛物线C 3的表达式为 y=-59(x-4)2+5 (3)当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形. 24.(1)21212y x x =-+-;(2)①1(4,1)M -,2(2,7)M --,3(15,25)M +-+,4(15,25)M ---;②PQ NP BQ +的最大值为105.25.(1)M 的坐标为(﹣1,﹣4);(2).26.(1)A (﹣2,0),B (4,0),D (1,﹣);(2)P (,﹣);(3)当△CMN 是以MN为直角边的等腰直角三角形时,点N 的坐标为(0,)、(0,)、(0,﹣)或(0,﹣).27.(1)213222y x x =-++;(2)(5,3)D -;(3)6。

一元二次方程测试题和答案

一元二次方程测试题和答案

九年级数学第二十二章一元二次方程测试题〔人教版〕一、选择题 (每题3分,共30分):1.以下方程中不一定是一元二次方程的是( )A.(a-3〕x 2=8 (a ≠3) 2+bx+c=0 C.(x+3)(x-2)=x+5232057x +-= 2.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的选项是( )A. 23162x ⎛⎫-= ⎪⎝⎭;B.2312416x ⎛⎫-= ⎪⎝⎭;C. 231416x ⎛⎫-= ⎪⎝⎭; 3.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,那么a 值为〔 〕A 、1B 、1-C 、1或1-D 、124.三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 那么这个三角形的周长为( )A.11B.17C.17或19D.195.一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,那么这个直角三角形的斜边长是〔 〕AB 、3C 、6D 、96、〔x 2+y 2+1〕〔x 2+y 2+3〕=8,那么x 2+y 2的值为〔 〕.A .-5或1B .1C .5D .5或-12561x x x --+ 的值等于零的x 是( )A.6B.-1或62-4y-3=3y+4有实根,那么k 的取值范围是( ) A.k>-74≥-74 且k ≠≥-74 D.k>74 且k ≠022=+x x ,那么以下说中,正确的选项是〔 〕〔A 〕方程两根和是1 〔B 〕方程两根积是2〔C 〕方程两根和是1- 〔D 〕方程两根积比两根和大210.某超市一月份的营业额为200万元,第一季度的总营业额共1000万元, 如果平均每月增长率为x,那么由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2=1000二、填空题:(每题3分,共30分)11方程3(x-2)2=2x-4的解为________.12.如果2x 2+1与4x 2-2x-5互为相反数,那么x 的值为________.21x -2x -8=0,那么1x 的值是________2+bx+c=0(a ≠0)有一个根为-1,那么a 、b 、c 的关系是______.2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 那么a= ______, b=______.2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.x 2+mx+7=0的一个根,那么m=________,另一根为_______.α,β是方程x 2+2006x+1=0的两个根,那么〔1+2021α+α2〕〔1+2021β+β2〕的值为___________.x x 12,是方程x x 2210--=的两个根,那么1112x x +等于__________.x 的二次方程20x mx n ++=有两个相等实根,那么符合条件的一组,m n 的实数值可以是 m = __________.n = __________..三、用适当方法解方程:〔每题4分,共12分〕21.22(3)5x x -+=22.230x ++= 23.〔x+3〕2+3〔x+3〕-4=0.四、列方程解应用题:〔每题5分,共48分〕24.某电视机厂方案用两年的时间把某种型号的电视机的本钱降低36%, 假设每年下降的百分数一样,求这个百分数.围墙养鸡场18m 25.如下图,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,〔互相垂直〕,把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?26.如图、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙〔墙长18m 〕,另三边用木栏围成,木栏长35m 。

人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案

人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案

第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案)1.下列函数中,属于二次函数的是( )A. y=x ﹣3B. y=x 2﹣(x +1)2C. y=x (x ﹣1)﹣1D.2.抛物线y=﹣x 2不具有的性质是( )A. 对称轴是y 轴B. 开口向下C. 当x <0时,y 随x 的增大而减小D. 顶点坐标是(0,0)3.已知抛物线()20y ax a =>过()12,A y -, ()21,B y 两点,则下列关系式一定正确的( )A. 120y y >>B. 210y y >>C. 120y y >>D. 210y y >>4.对于二次函数 的图像,给出下列结论:①开口向上;②对称轴是直线 ;③顶 点坐标是 ;④与 轴有两个交点.其中正确的结论是( )A. ①②B. ③④C. ②③D. ①④5.如图,二次函数 的图象开口向下,且经过第三象限的点 若点P 的横坐标为 ,则一次函数 的图象大致是A. B. C. D.6.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b+c=0;④若点(﹣0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <0.其中正确的个数有( )A. 2B. 3C. 4D. 57.抛物线y=x2+x-1与x轴的交点的个数是()A. 3个B. 2个C. 1个D. 0个8.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.9.若二次函数的x与y的部分对应值如下表:则抛物线的顶点坐标是A. B. C. D.10.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A. -1B. 2C. 0或2D. -1或211.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个12.小张同学说出了二次函数的两个条件:(1)当x<1时,y随x的增大而增大;(2)函数图象经过点(-2,4).则符合条件的二次函数表达式可以是( )A. y=-(x-1)2-5B. y=2(x-1)2-14C. y=-(x+1)2+5D. y=-(x-2)2+20二、填空题13.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.14.抛物线y=2(x+2)2+4的顶点坐标为_____.15.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________ 16.若二次函数y=x2+3x-c(c为整数)的图象与x轴没有交点,则c的最大值是________. 17.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是____________________三、解答题18.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.19.传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)20.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.21.已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.22.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.参考答案1.C2.C3.C4.D5.D6.B7.B8.B9.C10.D11.B12.D13.21614.(﹣2,4).15.0或416.-317.64m218.(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.19.(1)李明第10天生产的粽子数量为280只.(2)第13天的利润最大,最大利润是578元. 【解析】分析:(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.详解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,==,解得==,∴p=0.1x+1,①0≤x≤6时,w=(4-2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4-2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,∵a=-3<0,∴当x=-=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.点睛:本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.20.(1)y=x-3;(2)当y1>y2时,x<0和x>3.【解析】分析:(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.详解:(1)抛物线y1=x2-2x-3,当x=0时,y=-3,当y=0时,x=3或1,即A的坐标为(-1,0),B的坐标为(3,0),C的坐标为(0,-3),把B、C的坐标代入直线y2=kx+b得:=,=解得:k=1,b=-3,即直线BC的函数关系式是y=x-3;(2)∵B的坐标为(3,0),C的坐标为(0,-3),如图,∴当y1>y2时,x的取值范围是x<0或x>3.点睛:本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.21.(1)证明见解析;(2)1;(3)±8【解析】分析:(1)通过提公因式法,对函数的解析式变形,然后构成方程求解出交点的坐标即可;(2)根据第一问的交点坐标得到AB的长,判断出AB的长与a、m无关;(3)通过配方法得到函数的顶点式,然后根据三角形的面积公式求解即可.详解:(1)由y=a(x-m)2-a(x-m)=a(x-m)( x-m-1),得抛物线与x轴的交点坐标为(m,0)和(m+1,0).因此不论a与m为何值,该抛物线与x轴总有两个公共点.(也可用判别式Δ做)(2)线段AB的长度与a、m的大小无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学第二十二章一元二次方程单元测试(二)
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.一元二次方程2210x x --=的根的情况为( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
2.关于x 的一元二次方程220x x +-=的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .无实数根
D .无法判断
3.方程x 2=2x 的解是 ( )
A .x=2
B .x 1=2,x 2=0
C .x 1=2-,x 2=0
D .x=0
4.关于x 的一元二次方程22(1)10m x x m -++-=的一个根是0,则m 的值为
A .1
B .1-
C .1或1-
D .
12
5.下列方程中,是关于x 的一元二次方程的是 A.()()12132
+=+x x B.02112=-+x x
C.02=++c bx ax
D. 1222-=+x x x 6.关于x 的一元二次方程(m -1)x 2+x+m 2-1=0的一个根是0,则m 的值为( )
A .1
B .-1
C .1或-1
D .0.5
7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )
A .13
B .11或13
C .11
D .12
8.三角形两边的长分别是4和6,第三边的长是一元二次方程060162
=+-x x 的一个实数根,则该三角形的周长是( )
A 、20
B 、20或16
C 、16
D 、18或21
9.已知关于x 的一元二次方程x ²-kx -4=0的一个根为2,则另一根是( )
A 、4
B 、1
C 、-2
D 、2
10.方程)2(3)2(2-=-x x 的解为( ).
A .2=x
B .5=x
C .21=x ,52=x
D .21=x ,32=x
二、填空题
11.已知关于x 的方程0232=+-k x x 的一个根是1,则k = 。

12.一元二次方程2260x -=的解为
13.将一元二次方程1)1)(12(=+-x x 化成一般形式可得 .
14.已知一元二次方程
0437122=-+++-a a ax x a )(有一个根为零,则a 的值 为 _。

15.将一元二次方程5x(x -3)=1化成一般形式为 ,常数项是_______.
16.若()21189a a x x +++=是关于x 的一元二次方程,则a=________.
17.一元二次方程x 2-3=-10x 的一次项系数为 ____ .
18.已知m 是方程022=--x x 的一个根,那么代数式______2=-m m 三、计算题
19.
0)4()52(22=+--x x
20.解方程:0)12(532=++x x
四、解答题
21.若m 是非负整数,且关于x 的一元二次方程2(1)220m x
mx m --++=有两个实
数根,求m 的值及其对应方程的根.
22.如图①,要设计一幅宽20cm 、长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2χ,则每个竖彩条的宽为3χ.将横、竖彩条分别集中,则原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:
如图②,用含有χ的代数式表示:AB = cm ,AD = cm.列出方程并完成本题解答。

23.如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m 的围栏.已知墙长9m,问围成矩形的长和宽各是多少?
24.某市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售。

(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子,开发商给予以下两种优惠方案供选择:
①求打九折销售;②不打折,送两年物业管理费。

物业管理费每平方米每月1.5元,请问那种方案更优惠?
25.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.
本资料来自于资源最齐全的21世纪教育网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

版权所有@21世纪教育网 参考答案
1.B
2.A
3.B
4.B
5.A
6.B
7.B
8.C
9.C
10.C
11.1
12.±3
13.2220x x +-=
14.-4
15.011552=--x x ,-1
16.1
17.10
18.2
19..93121==
x x , 20.3
105,310521--=+-=x x 21.当m=0时,12=2,=-2x x ;当m=2时,12==2x x
22.AB = 20-6x cm ,AD =30-4x cm ,每个横彩条宽3
5cm ,每个竖彩条宽25cm 。

23.长为8m 、宽为6m
24.(1)0.1;(2)方案一
25.三角形周长为12. ……………7分。

相关文档
最新文档