江苏省南通市(数学学科基地命题)2017年高考模拟试卷(9) 含答案

合集下载

2017年高考模拟试卷(9)参考答案

2017年高考模拟试卷(9)参考答案

2017年高考模拟试卷(9)参考答案南通市数学学科基地命题一、填空题1. {}2,5.2. 15. 3.-4. 4. 0.5. 5. 26y x =-. 6. 60.7. 30. 线性规划或待定系数法,设甲、乙混货物分别为x ,y 克,由题意3x+4y 1005x+2y 120≥⎧⎨≥⎩,设x+y=34)(52)x y x y λμ+++(,解得,31==λμ,,即可. 8.. 9.. 设CA=x,则PQ=2CPcos<CAP=([3,))x ∈+∞,PQ ≤<. 10. 1e. 易知函数()f x 在(],0-∞上有一个零点,所以由题意得方程ln 0ax x -=在()0+∞,上恰有一解,即ln x a x =在()0+∞,上恰有一解. 令ln ()x g x x =,21ln ()0x g x x -'==,得e x =,当()0,e x ∈时,()g x 单调递增,当()e ,+x ∈∞时,()g x 单调递减,所以()1e e a g ==.11.9.223331212922k x x x x x=+=++≥=,也可以求导. 12. 116-.设弦AB 中点为M ,则()OP BP OM MP BP MP BP ⋅=+⋅=⋅ , 若MP BP ,同向,则0OP BP ⋅> ;若MP BP ,反向,则0OP BP ⋅< , 故OP BP ⋅的最小值在MP BP ,反向时取得,此时1||||2MP BP += ,2||||1||||()216MP BP OP BP MP BP +⋅=-⋅-=- ≥, 当且仅当1||||4MP BP == 时取等号,即OP BP ⋅ 的最小值是116-.13.(方法一)由题意,得sin sin ααββ⎧=⎪⎨=⎪⎩所以αβ,是方程sin x x即方程()πsin 3x -5ππ()26k k αβ+=+∈Z,所以tan()αβ+=(方法二)同上,αβ,sin 0x x -的两根.设()sin f x x x -()cos f x x x '=-.令()0f x '=,得0tan x =,所以02x αβ+=,所以(方法三)直线210x y +-=交单位圆于A B ,两点, 过O 作OH AB ⊥,垂足为H ,易知OH =因为OC 60COH ∠=︒,即1502αβ+=︒,所以tan()tan300αβ+=︒=14.9⎧-⎨⎩⎭.32()322x x a x f x x a x a x ⎧--⎪=⎨⎪--+-<⎩,≥,,,当x a ≥时,320x x --=,得11x =-,23x =,结合图形知,① 当1a <-时,313x -,,成等差数列,则35x =-,代入3220x a --+-=得,9a =-; ② 当13a -≤≤时,方程3220x a x--+-=,即22(1)30x a x +-+=的根为34x x ,, 则343x x =,且3432x x +=,解得4x ,又342(1)x x a +=-,所以a .③ 当3a >时,显然不符合. 所以a 的取值集合95⎧-⎨⎩⎭. 二、解答题:本大题共6小题,共90分.15. (1)因为tan α=2,所以sin αcos α=2,即sin α=2cos α.又sin 2α+cos 2α=1,所以5cos 2α=1,即cos 2α=15. 所以 cos2α=2cos 2α-1=-35.(2)由α∈(0,π),且tan α=2>1,得α∈(π4,π2),所以2α∈(π2,π). 由题知cos2α=-35,所以sin2α=45.又因为β∈(0,π),cos β=-7210∈(-1,0),所以β∈(π2,π), 所以sin β=210,且2α-β∈(-π2,π2).因为sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22, 所以2α-β=-π4.16.(1)因为BD 垂直平分AC ,所以BA BC =,在△ABC 中,因为120ABC ∠=︒, 所以30BAC ∠=︒.因为△ACD 是正三角形,所以60DAC ∠=︒, 所以90BAD ∠=︒,即AD AB ⊥.因为=1AB ,120ABC ∠=︒,所以AD AC == 又因为1PA =,2PD =,由222PA AD PD +=, 知90PAD ∠=︒,即AD AP ⊥.因为AB AP ⊂,平面PAB ,AB AP A = , 所以AD ⊥平面PAB .(2)(方法一)取AD 的中点H ,连结CH ,NH . 因为N 为PD 的中点,所以HN ∥PA , 因为PA ⊂平面PAB ,HN ⊄平面PAB , 所以HN ∥平面PAB .由△ACD 是正三角形,H 为AD 的中点,所以CH AD ⊥.由(1)知,BA AD ⊥,所以CH ∥BA , 因为BA ⊂平面PAB ,CH ⊄平面PAB ,HPA BCDMN所以CH ∥平面PAB .因为CH HN ⊂,平面CNH ,CH HN H = , 所以平面CNH ∥平面PAB . 因为CN ⊂平面CNH , 所以CN ∥平面PAB .(方法二)取PA 的中点S ,过C 作CT ∥AD 交AB 的延长线于T ,连结ST ,SN .因为N 为PD 的中点,所以SN ∥AD ,且12SN AD =,因为CT ∥AD ,所以CT ∥SN . 由(1)知,AB AD ⊥,所以CT AT ⊥, 在直角△ CBT 中,1BC =,60CBT ∠=︒,得CT =由(1)知,AD =12CT AD =,所以CT SN =.所以四边形SNCT 是平行四边形, 所以CN ∥TS .因为TS ⊂平面PAB ,CN ⊄平面PAB , 所以CN ∥平面PAB .17.(1)由题意知,124()2b b =-=,解得a =1b =,所以椭圆的方程为2212x y +=. (2)① 由(2)N t ,,(01)A ,,(01)B -,,则 直线NA 的方程为11y x t =+,直线NB 的方程为31y x t=-.P A BCDMNTS由221122y x t x y ⎧=+⎪⎨⎪+=⎩,得,222422.2t x t t y t ⎧=-⎪+⎨-⎪=+⎩,,故()2224222t t t t P --++,. 由223122y x t x y ⎧=-⎪⎨⎪+=⎩,得,222121818.18t x t t y t ⎧=⎪+⎨-⎪=+⎩,,故()22212181818t t t t Q -++,. 所以直线PM 的斜率222221262482PMt t t k t t t ---+==-+, 直线QM 的斜率22218161812818QMt t t k t t t ---+==+, 所以PM QM k k =,故P M Q ,,三点共线.② 由①知,11k t =,213k t =,2368t k t-=. 所以21323122463182t k k k k k k t t t-+-=⨯-=-, 所以132312k k k k k k +-为定值1-.18.(1)设OP =r ,则l =r ·2θ,即r =l2θ,所以S 1=12lr =l 24θ,θ∈(0,π2).(2)设OC =a ,OD =b .由余弦定理,得l 2=a 2+b 2-2ab cos2θ,所以 l 2≥2ab -2ab cos2θ.所以 ab ≤l 22(1-cos2θ),当且仅当a =b 时“=”成立.所以S △OCD =12ab sin2θ≤l 2sin2θ4(1-cos2θ)=l 24tan θ,即S 2=l 24tan θ.(3)1S 2-1S 1=4l 2(tan θ-θ),θ∈(0,π2),. 令f (θ)=tan θ-θ,则f '(θ)=(sin θcos θ)'-1=sin 2θcos 2θ.当θ∈[0,π2)时,f '(θ)>0,所以f (θ)在区间[0,π2)上单调增.所以,当θ∈(0,π2)时,总有f (θ)>f (0)=0,即1S 2-1S 1>0,即S 1>S 2.答:为使养殖区面积最大,应选择方案一. 19. (1)易得2143a =.(2)由111241n n n a a S +-=-,得11241n nn n n a a a a S ++-=-,所以11241n n n n na a S a a ++-=-①.所以12121241n n n n n a a S a a +++++-=-②,由②-①,得12112112n n n n n n n n na a a aa a a a a +++++++=---.因为10n a +≠,所以22112n nn n n na a ++++=-. 所以121112n n n n n n a a a a a a +++++-=--,即12111n nn n n na a a a a a ++++-=--,即11n n b b +-=,所以数列{}n b 是公差为1的等差数列. 因为112134a b a a ==-,所以数列{}n b 的通项公式为14n b n =-.(3)由(2)知,114n n n a n a a +=--,所以11431141n n an a n n ++=+=--,所以14(1)141n n a a n n +=+--,所以数列41n a n ⎧⎫⎨⎬-⎩⎭是常数列.由124113a =⨯-,所以2(41)3n a n =-.(方法一)由m p r a a a ,,(m p r <<)成等比数列,则41m -,41p -,41r -成等比数列,所以2(41)(41)(41)p m r -=--, 所以2168164()0p p mr m r --++=,即2424()0p p mr m r --++=(*). (途径一)(*)式即为2424()4p p mr m r mr -=-+<-,所以2211(2))22p -<,即11222p -<,所以p <2p mr <.(途径二)(*)式即为24241p p rm r -+=-.由222222(42)(42)(41)()0414141p p r p p r r r p p r mr p r p r r r -+-+----=⋅-==>---,所以2p mr <.(方法二)由m p r a a a ,,(m p r <<)成等比数列, 则41m -,41p -,41r -成等比数列, 记4m α=,4p β=,4r γ=(1αβγ<<<), 则有1α-,1β-,1γ-成等比数列,所以2(1)(1)(1)βαγ-=--,即22()ββαγαγ-=-+.若2βαγ=,即2p mr =时,则2αγβ+=,所以αβγ==,矛盾; 若2βαγ>,则22()0βαγβαγ-+=->,所以1()12βαγ>+>,所以[][]2221(2)()()()()()0αγββαγαγαγαγαγαγ+---+>-+--+=->, 矛盾.所以2βαγ<,即2p mr <.20. (1) 由题意知曲线()y f x =过点(1,0),且'(1)e f =;又因为222'()ln e x a f x a x b x x+=-++⎛⎫ ⎪⎝⎭,则有(1)e(2)0,'(1)e()e,f b f a b =+==+=⎧⎨⎩解得3,2a b ==-.(2) ①当2a =-时,函数()y f x =的导函数22'()e 2ln 0x f x x b x=--+=⎛⎫ ⎪⎝⎭,若'()0f x =时,得222ln b x x =+, 设22()2ln g x x x =+(0)x > .由2332424'()x g x x x x-=-=0=,得x =1ln 2g =+.当0x <<'()0g x <,函数()y g x =在区间上为减函数,()(1ln 2,)g x ∈++∞;仅当1ln 2b >+时,()b g x =有两个不同的解,设为1x ,2x 12()x x <.此时,函数()y f x =既有极大值,又有极小值.②由题意2e ln x a x b xkx ++⎛⎫≥ ⎪⎝⎭对一切正实数x 恒成立,取1x =得(2)e k b ≤+.下证2e ln e (2)x a x b xb x ++⎛⎫≥+ ⎪⎝⎭对一切正实数x 恒成立.首先,证明e e xx ≥. 设函数()e e xu x x =-,则'()e e xu x =-,当1x >时,'()0u x >; 当1x <时,'()0u x <;得e e (1)0xx u -=≥,即e e xx ≥,当且仅当都在1x =处取到等号.再证1ln 1x x+≥. 设1()ln 1v x x x=+-,则21'()x v x x -=,当1x >时,'()0v x >;当1x <时,'()0v x <;得()(1)0v x v =≥,即1ln 1x x+≥,当且仅当都在1x =处取到等号. 由上可得2e ln (2)e x a x b xb x ++⎛⎫≥+ ⎪⎝⎭,所以min()(2)e f x b x ⎛⎫=+⎪⎝⎭, 即实数k 的最大值为(2)e b +.数学Ⅱ(附加题)21. A. 连结PQ ,因为四边形ACQP 是1O 的内接四边形, 所以A PQD ∠=∠, 又在2O 中,PBD PQD ∠=∠,所以A PBD ∠=∠, 所以AC ∥BD .B .(1) 设1234A ⎛⎫= ⎪⎝⎭,则12234A ==-, 1213122A --⎛⎫ ⎪∴= ⎪-⎝⎭, 21582131461122M -⎛⎫⎛⎫⎛⎫ ⎪∴== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. (2)11112x x x x x M M y y y y y -'''-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=∴== ⎪ ⎪ ⎪ ⎪ ⎪⎪'''-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,即,2,x x y y x y ''=-⎧⎨''=-+⎩ 代入22221x xy y ++=可得 ()()()()2222221x y x y x y x y ''''''''-+--++-+=,即22451x x y y ''''-+=,故曲线C '的方程为22451x xy y -+=.C. (1)曲线1C :22(1)2x y ++=,极坐标方程为22cos 10ρθ+-= 曲线2C 的直角坐标方程为1y x =-; (2) 曲线1C 与曲线2C 的公共点的坐标为(0,1)-,极坐标为3(1,)2π. D. 因为0x >,0y >,0z >,所以1233x y z++,2463y x z++, 所以1239()()2462yx z x y z ++++≥.当且仅当::1:2:3x y z =时,等号成立.22.(1)从7个顶点中随机选取3个点构成三角形,共有37=35C种取法.其中X ABF ,这类三角形共有6个.因此(376635P X C ===. (2)由题意,X2,其中X ABF ,这类三角形共有6个;其中2X =的三角形有两类,如△PAD (3个),△PAB (6个),共有9个;其中X PBD ,这类三角形共有6个;其中X =CDF ,这类三角形共有12个;其中X =BDF ,这类三角形共有2个.因此(635P X =,()9235P X ==,(635P X =,(1235P X ==,(235P X ==. 所以随机变量X 的概率分布列为:所求数学期望()E X 69612223535353535+⨯++. 23. (1)①当n =2时,a 2=2,不等式成立.②假设当n =k (k ≥2)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=(1+1k (k +1))a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①,②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=(1+1n 2+n )a n +12n ≤(1+1n 2+n +12n +1)a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln(1+1n 2+n +12n +1)+ln a n <ln a n +1n 2+n +12n +1,第 11页,共 11页 故 ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12⨯3+1 3⨯4+…+1 (n -1)n+123+124+…+12n =(12-13)+(13-14)+…+(1n -1-1n )+123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2),而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(九)-答案

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(九)-答案

由(1)知, ,故有 ,即 ,
而 ,所以对任意正整数n,有 .
江苏省南通市2017年高考(数学学科基地命题)模拟数学试卷(九)
解析
一、填空题
1~6.略
7. 30.线性规划或待定系数法,设甲、乙混货物分别为x,y克,由题意 ,
设 ,解得, ,即可.
8. .9. .设CA=x,则PQ=2CPcos<CAP= ,
13. .(方法一)由题意,得
所以 是方程 的两根.
即方程 ,所以 ,所以 .
(方法二)同上, 是方程 的两根.
设 ,则 .
令 ,得 ,所以 ,所以 .
(方法三)直线 交单位圆于 两点,
过 作 ,垂足为 ,易知 .
因为 ,所以 ,即 ,
所以 .
14. .
当 时, ,得 , ,
结合图形知,
①当 时, 成等差数列,则 ,代入 得, ;
即实数 的最大值为 .
B.(1)设 ,则 ,
∴ ,
∴ .
(2)∵ ,∴
即 代入 可得
,即 ,
故曲线 的方程为 .
C.(1)曲线 : ,极坐标方程为
曲线 的直角坐标方程为 ;
(2)曲线 与曲线 的公共点的坐标为 ,极坐标为 .
D.因为 , , ,
所以 , ,
所以 .
当且仅当 时,等号成立.
22.(1)从7个顶点中随机选取3个点构成三角形,
江苏省南通市2017年高考(数学学科基地命题)模拟数学试卷(九)
答案
一、填空题
1.
2.
3.
4.0.5
5.
6.60
7.30
8.
9.
10.
11.9
12.

2017年江苏省南通市高考一模数学试卷【解析版】

2017年江苏省南通市高考一模数学试卷【解析版】

2017年江苏省南通市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)函数的最小正周期为.2.(5分)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B=.3.(5分)复数z=(1+2i)2,其中i为虚数单位,则z的实部为.4.(5分)口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为.5.(5分)如图是一个算法的流程图,则输出的n的值为.6.(5分)若实数x,y满足则z=3x+2y的最大值为.7.(5分)抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为.8.(5分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,则三棱锥D1﹣A1BD的体积为cm3.9.(5分)在平面直角坐标系xOy中,直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,则该双曲线的离心率为.10.(5分)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为升.11.(5分)在△ABC中,若•+2•=•,则的值为.12.(5分)已知两曲线f(x)=2sin x,g(x)=a cos x,x∈(0)相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为.13.(5分)已知函数f(x)=|x|+|x﹣4|,则不等式f(x2+2)>f(x)的解集用区间表示为.14.(5分)在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A (1,1),且AB⊥AC,则线段BC的长的取值范围为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=.(1)求cosβ的值;(2)若点A的横坐标为,求点B的坐标.16.(14分)如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,P A⊥PD.求证:(1)直线P A∥平面BDE;(2)平面BDE⊥平面PCD.17.(14分)如图,在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值.18.(16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF 翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.(1)当∠EFP=时,试判断四边形MNPE的形状,并求其面积;(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.19.(16分)已知函数f(x)=ax2﹣x﹣lnx,a∈R.(1)当时,求函数f(x)的最小值;(2)若﹣1≤a≤0,证明:函数f(x)有且只有一个零点;(3)若函数f(x)有两个零点,求实数a的取值范围.20.(16分)已知等差数列{a n}的公差d不为0,且,,…,,…(k1<k2<…<k n<…)成等比数列,公比为q.(1)若k1=1,k2=3,k3=8,求的值;(2)当为何值时,数列{k n}为等比数列;(3)若数列{k}为等比数列,且对于任意n∈N*,不等式恒成立,求a1的取值范围.南通市2017届高三第一次调研测试数学Ⅱ(附加题)[选做题本题包括四小题,请选2题作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.(10分)已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.[选修4-2:矩阵与变换]22.(10分)已知向量是矩阵A的属于特征值﹣1的一个特征向量.在平面直角坐标系xOy中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.[选修4-4:坐标系与参数方程]23.在极坐标系中,求直线被曲线ρ=4sinθ所截得的弦长.[选修4-5:不等式选讲]24.求函数的最大值.[必做题]共2小题,满分20分)25.(10分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).(1)若,求AP与AQ所成角的余弦值;(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.26.(10分)在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)上的点M (m,1)到焦点F的距离为2,(1)求抛物线的方程;(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.2017年江苏省南通市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)函数的最小正周期为.【解答】解:函数的最小正周期为,故答案为:.2.(5分)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B={1,3,5}.【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.3.(5分)复数z=(1+2i)2,其中i为虚数单位,则z的实部为﹣3.【解答】解:∵z=(1+2i)2=1+4i+(2i)2=﹣3+4i,∴z的实部为﹣3.故答案为:﹣3.4.(5分)口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为0.17.【解答】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1﹣0.48﹣0.35=0.17.故答案为0.17.5.(5分)如图是一个算法的流程图,则输出的n的值为5.【解答】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n =3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.6.(5分)若实数x,y满足则z=3x+2y的最大值为7.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=﹣x+z平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.7.(5分)抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为20.【解答】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65﹣75)2+(80﹣75)2+(70﹣75)2+(85﹣75)2+(75﹣75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80﹣75)2+(70﹣75)2+(75﹣75)2+(80﹣75)2+(70﹣75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.8.(5分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,则三棱锥D1﹣A1BD的体积为cm3.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1﹣A1BD的体积:=====(cm3).故答案为:.9.(5分)在平面直角坐标系xOy中,直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,则该双曲线的离心率为.【解答】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2﹣a2=4a2,可得=.故答案为:.10.(5分)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为升.【解答】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.11.(5分)在△ABC中,若•+2•=•,则的值为.【解答】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cos B+2bc•cos A=ba•cos C,由余弦定理得:(a2+c2﹣b2)+(b2+c2﹣a2)=(b2+a2﹣c2),化简得=2,∴=,由正弦定理得==.故答案为:.12.(5分)已知两曲线f(x)=2sin x,g(x)=a cos x,x∈(0)相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为.【解答】解:由f(x)=g(x),即2sin x=a cos x,即有tan x==,a>0,设交点P(m,n),f(x)=2sin x的导数为f′(x)=2cos x,g(x)=a cos x的导数为g′(x)=﹣a sin x,由两曲线在点P处的切线互相垂直,可得2cos m•(﹣a sin m)=﹣1,且tan m=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.13.(5分)已知函数f(x)=|x|+|x﹣4|,则不等式f(x2+2)>f(x)的解集用区间表示为.【解答】解:令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,x≥4时,g(x)=2x2﹣2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2﹣4>0,解得:x>或x<﹣,故<x<4;0≤x<时,g(x)=0>0,不合题意;﹣≤x<0时,g(x)=2x>0,不合题意;x<﹣时,g(x)=2x2+2x﹣4>0,解得:x>1或x<﹣2,故x<﹣2,故答案为:.14.(5分)在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A (1,1),且AB⊥AC,则线段BC的长的取值范围为[,].【解答】解:在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A (1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,﹣)解得BC min==,BC max==.故答案为:[,].二、解答题:本大题共6小题,共计90分.15.(14分)如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=.(1)求cosβ的值;(2)若点A的横坐标为,求点B的坐标.【解答】解:(1)在△AOB中,由余弦定理得,AB2=OA2+OB2﹣2OA•OB cos∠AOB,所以,=,即.(2)因为,,∴.因为点A的横坐标为,由三角函数定义可得,,因为α为锐角,所以.所以,,即点.16.(14分)如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,P A⊥PD.求证:(1)直线P A∥平面BDE;(2)平面BDE⊥平面PCD.【解答】证明:(1)连结OE,因为O为平行四边形ABCD对角线的交点,所以O为AC中点.又因为E为PC的中点,所以OE∥P A.…4分又因为OE⊂平面BDE,P A⊄平面BDE,所以直线P A∥平面BDE.…6分(2)因为OE∥P A,P A⊥PD,所以OE⊥PD.…8分因为OP=OC,E为PC的中点,所以OE⊥PC.…10分又因为PD⊂平面PCD,PC⊂平面PCD,PC∩PD=P,所以OE⊥平面PCD.…12分又因为OE⊂平面BDE,所以平面BDE⊥平面PCD.…14分.17.(14分)如图,在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值.【解答】解:(1)由题意得,,,…2分解得,c=1,b=1.所以椭圆的方程为.…4分(2)由题意知OP的斜率存在.当OP的斜率为0时,,,所以.…6分当OP的斜率不为0时,设直线OP方程为y=kx.由得(2k2+1)x2=2,解得,所以,所以.…9分因为OP⊥OQ,所以直线OQ的方程为.由得,所以OQ2=2k2+2.…12分所以.综上,可知.…14分.18.(16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF 翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC 于点P),再沿直线PE裁剪.(1)当∠EFP=时,试判断四边形MNPE的形状,并求其面积;(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.【解答】解:(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.所以∠FPE=.所以FN⊥BC,四边形MNPE为矩形.…3分所以四边形MNPE的面积S=PN•MN=2m2.…5分(2)解法一:设,由条件,知∠EFP=∠EFD=∠FEP=θ.所以,,.…8分由得所以四边形MNPE面积为====…12分.当且仅当,即时取“=”.…14分此时,(*)成立.答:当时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分解法二:设BE=tm,3<t<6,则ME=6﹣t.因为∠EFP=∠EFD=∠FEP,所以PE=PF,即.所以,.…8分由得所以四边形MNPE面积为==…12分=.当且仅当,即时取“=”.…14分此时,(*)成立.答:当点E距B点m时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分.19.(16分)已知函数f(x)=ax2﹣x﹣lnx,a∈R.(1)当时,求函数f(x)的最小值;(2)若﹣1≤a≤0,证明:函数f(x)有且只有一个零点;(3)若函数f(x)有两个零点,求实数a的取值范围.【解答】解:(1)当时,.所以,(x>0).…2分令f'(x)=0,得x=2,当x∈(0,2)时,f'(x)<0;当x∈(2,+∞)时,f'(x)>0,所以函数f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.所以当x=2时,f(x)有最小值.…4分(2)由f(x)=ax2﹣x﹣lnx,得.所以当a≤0时,,函数f(x)在(0,+∞)上单调递减,所以当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.…6分因为当﹣1≤a≤0时,f(1)=a﹣1<0,,所以当﹣1≤a≤0时,函数f(x)在(0,+∞)上有零点.综上,当﹣1≤a≤0时,函数f(x)有且只有一个零点.…8分(3)由(2)知,当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.因为函数f(x)有两个零点,所以a>0.…9分由f(x)=ax2﹣x﹣lnx,得,令g(x)=2ax2﹣x ﹣1.因为g(0)=﹣1<0,2a>0,所以函数g(x)在(0,+∞)上只有一个零点,设为x0.当x∈(0,x0)时,g(x)<0,f'(x)<0;当x∈(x0,+∞)时,g(x)>0,f'(x)>0.所以函数f(x)在(0,x0)上单调递减;在(x0,+∞)上单调递增.要使得函数f(x)在(0,+∞)上有两个零点,只需要函数f(x)的极小值f(x0)<0,即.又因为,所以2lnx0+x0﹣1>0,又因为函数h(x)=2lnx+x﹣1在(0,+∞)上是增函数,且h(1)=0,所以x0>1,得.又由,得,所以0<a<1.…13分以下验证当0<a<1时,函数f(x)有两个零点.当0<a<1时,,所以.因为,且f(x0)<0.所以函数f(x)在上有一个零点.又因为(因为lnx≤x﹣1),且f(x0)<0.所以函数f(x)在上有一个零点.所以当0<a<1时,函数f(x)在内有两个零点.综上,实数a的取值范围为(0,1).…16分下面证明:lnx≤x﹣1.设t(x)=x﹣1﹣lnx,所以,(x>0).令t'(x)=0,得x=1.当x∈(0,1)时,t'(x)<0;当x∈(1,+∞)时,t'(x)>0.所以函数t(x)在(0,1)上单调递减,在(1,+∞)上单调递增.所以当x=1时,t(x)有最小值t(1)=0.所以t(x)=x﹣1﹣lnx≥0,得lnx≤x﹣1成立.20.(16分)已知等差数列{a n}的公差d不为0,且,,…,,…(k1<k2<…<k n<…)成等比数列,公比为q.(1)若k1=1,k2=3,k3=8,求的值;(2)当为何值时,数列{k n}为等比数列;(3)若数列{k}为等比数列,且对于任意n∈N*,不等式恒成立,求a1的取值范围.【解答】解:(1)由已知可得:a1,a3,a8成等比数列,所以,…2分整理可得:4d2=3a1d.因为d≠0,所以.…4分(2)设数列{k n}为等比数列,则.又因为,,成等比数列,所以.整理,得.因为,所以a1(2k2﹣k1﹣k3)=d(2k2﹣k1﹣k3).因为2k2≠k1+k3,所以a1=d,即.…6分当时,a n=a1+(n﹣1)d=nd,所以.又因为,所以.所以,数列{k n}为等比数列.综上,当时,数列{k n}为等比数列.…8分(3)因为数列{k n}为等比数列,由(2)知a1=d,.,a n=a1+(n﹣1)d=na1.因为对于任意n∈N*,不等式恒成立.所以不等式,即,恒成立.…10分下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n1,使得.要证,即证lnn1<n1lnq+lnε.因为,则,解不等式,即,可得,所以.不妨取,则当n1>n0时,原式得证.所以,所以a1≥2,即得a1的取值范围是[2,+∞).…16分南通市2017届高三第一次调研测试数学Ⅱ(附加题)[选做题本题包括四小题,请选2题作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.(10分)已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.【解答】解:设CD=x,则CE=2x.因为CA=1,CB=3,由相交弦定理,得CA•CB=CD•CE,所以1×3=x•2x=2x2,所以.…2分取DE中点H,则OH⊥DE.因为,所以.…6分又因为,所以△OCE的面积.…10分.[选修4-2:矩阵与变换]22.(10分)已知向量是矩阵A的属于特征值﹣1的一个特征向量.在平面直角坐标系xOy中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.【解答】解:设,因为向量是矩阵A的属于特征值﹣1的一个特征向量,所以.所以…4分因为点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),所以.所以…8分解得a=1,b=2,c=2,d=1,所以.…10分.[选修4-4:坐标系与参数方程]23.在极坐标系中,求直线被曲线ρ=4sinθ所截得的弦长.【解答】解:以极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.直线的直角坐标方程为y=x①,…3分曲线ρ=4sinθ的直角坐标方程为x2+y2﹣4y=0②.…6分由①②得或…8分所以A(0,0),B(2,2),所以直线被曲线ρ=4sinθ所截得的弦长AB=.…10分.[选修4-5:不等式选讲]24.求函数的最大值.【解答】解:…2分由柯西不等式得,…8分所以y max=5,此时.所以函数的最大值为5.…10分.[必做题]共2小题,满分20分)25.(10分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).(1)若,求AP与AQ所成角的余弦值;(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.【解答】解:以为正交基底,建立如图所示空间直角坐标系A﹣xyz.(1)因为,,所以=.所以AP与AQ所成角的余弦值为.…4分(2)由题意可知,,.设平面APQ的法向量为=(x,y,z),则即令z=﹣2,则x=2λ,y=2﹣λ.所以=(2λ,2﹣λ,﹣2).…6分又因为直线AA1与平面APQ所成角为45°,所以|cos<,>|==,可得5λ2﹣4λ=0,又因为λ≠0,所以.…10分.26.(10分)在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)上的点M (m,1)到焦点F的距离为2,(1)求抛物线的方程;(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.【解答】解:(1)抛物线x2=2py(p>0)的准线方程为,因为M(m,1),由抛物线定义,知,所以,即p=2,所以抛物线的方程为x2=4y.…3分(2)因为,所以.设点,则抛物线在点E处的切线方程为.令y=0,则,即点.因为,F(0,1),所以直线PF的方程为,即2x+ty﹣t=0.则点到直线PF的距离为.…5分联立方程消元,得t2y2﹣(2t2+16)y+t2=0.因为△=(2t2+16)2﹣4t4=64(t2+4)>0,所以,,所以.…7分所以△EAB的面积为.不妨设(x>0),则.因为时,g'(x)<0,所以g(x)在上单调递减;上,g'(x)>0,所以g(x)在上单调递增.所以当时,.所以△EAB的面积的最小值为.…10分.。

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(九)及答案解析

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(九)及答案解析

江苏省南通市2017年高考(数学学科基地命题)模拟数学试卷(九)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1.全集{1,2,3,4,5}U =,集合{1,3,4}A =,则U C A =________.2.设复数i z a b =+(,a b ∈R ,i 是虚数单位),若(2i)i z -=,则a b +的值为________. 3.在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为________.4.甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为________.5.顶点在原点且以双曲线2213x y -=的右准线为准线的抛物线方程是________.6.为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n 的值为________.7.甲,乙两种食物的维生素含量如下表:8,侧棱与底面所成的角为60°,则该棱锥的体积为________.9.在角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP 平面直,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为________. 10.若函数0,2,()0ln ,x x x f x x ax x ≤⎧+=⎨>-⎩在其定义域上恰有两个零点,则正实数a 的值为________.11.设直线l 是曲线343ln y x x =+的切线,则直线l 的斜率的最小值为________. 12.扇形AOB 中,弦1AB =,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则O P B P 的最小值是________.13.在平面直角坐标系xOy 中,已知(cos ,sin )A αα,(cos ,sin )B ββ是直线y =的两点,则tan()αβ+的值为________.14.已知函数3()||2f x x a a x=--+-有且仅有三个零点,且它们成等差数列,则实数a 的取值集合为________.(1)求cos2α的值;(2)求2αβ-的值. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,ACD △是正三角形,BD 垂直平分AC ,垂足为M ,120ABC ∠=,=1PA AB =,2PD =,N 为PD 的中点.(1)求证:AD ⊥平面PAB ; (2)求证:CN ∥平面PAB . 17.(本小题满分14分)在平面直角坐标系xOy 中,已知A ,B分别是椭圆22221(0)y x a b a b+=>>的上、下顶点,点1(0)2M ,为线段AO 的中点,AB .(1)求椭圆的方程(2)设(,2)N t (0t ≠),直线NA ,NB 分别 交椭圆于点P ,Q ,直线NA ,NB ,PQ 的斜率分别为1k ,2k ,3k . ①求证:P ,M ,Q 三点共线;②求证:132312k k k k k k +-为定值. 18.(本小题满分16分)如图,一个角形海湾AOB ,2AOB θ∠=(常数θ为锐角).拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择: 方案一:如图1,围成扇形养殖区OPQ ,其中PQ l =; 方案二:如图2,围成三角形养殖区OCD ,其中CD l =;(1)求方案一中养殖区的面积1S ;(2)求证:方案二中养殖区的最大面积224tan l S θ=;(3)为使养殖区的面积最大,应选择何种方案?并说明理由. 19.(本小题满分16分)已知数列{}n a 的首项为2,前n 项的和为nS ,且111241n n n a a S +-=-(*n ∈N ).(1)求2a 的值;(2)设1nnn na ba a +=-,求数列{}nb 的通项公式;(3)若ma ,pa ,ra (*,,m p r ∈N ,m p r <<,)成等比数列,试比较2p 与mr 的大小,并证明.20.(本小题满分16分)已知函数2()e ln )x f x a x b x=++(,其中,a b ∈R .e 2.71828=是自然对数的底数. (1)若曲线()y f x =在1x =处的切线方程为e(1)y x =-.求实数a ,b 的值; (2)①若2a =-时,函数()y f x =既有极大值,又有极小值,求实数b 的取值范围; ②若2a =,2b ≥-.若()f x kx ≥对一切正实数x 恒成立,求实数k 的最大值(用b 表示).第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域内作答. A .(选修4-1;几何证明选讲) 如图,1O ,2O 交于两点P ,Q ,直线AB 过点P ,与1O ,2O 分别交于点A ,B ,直线CD 过点Q ,与1O ,2O 分别交于点C ,D .求证:AC BD ∥.B .(选修4-2:矩阵与变换) 若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求二阶矩阵M ;(2)若曲线C :22221x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程.C .(选修4-4:坐标系与参数方程)已知点(1)P αα-(其中[0,2π)α∈),点P 的轨迹记为曲线1C ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点Q 在曲线2C:1π)4ρθ=+上.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)当0ρ≥,02πθ≤<时,求曲线1C 与曲线2C 的公共点的极坐标.D .(选修4-5:不等式选讲)【选做题】第22题、23题,每题10分,共计20分.22.已知正六棱锥S ABCDEF -的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率(P X=的值;(2)求X 的分布列,并求其数学期望()E X .23.已知数列{}n a 满足:11a =,对任意的*n ∈N ,都有121)1(12n nna a n n ++=++.(1)求证:当2n ≥时,2n a ≥;120,30.60,90,即120,所以90,即=,AB AP ACH HN H=60,2rθ,即.由余弦定理,得2)(4r p -=111113221232222412n n n n --+<-=--. 3<,即32e 2()a n <≥,,则()OP BP OM MP BP MP BP ⋅=+⋅=⋅,若MP BP ,同向,则0OP BP ⋅>;若MP BP ,反向,则0OP BP ⋅<, 故OP BP ⋅的最小值在MP BP ,反向时取得, 此时1||||MP BP +=,2||||||||(MP BP OP BP MP BP +⋅=-⋅-≥当且仅当1||||4MP BP ==时取等号,即OP BP ⋅的最小值是(方法一)由题意,得sin 3cos αα=。

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(三)-答案

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(三)-答案

为直角,有0=OB AB ,即有()0-=OB OB OA ,∴2=OA OB OB ; , 5. .[1,)-+∞. 13a b, b时,即,则(=-AP x ,(=-BP x ,根据2+=AP BP λ 2234403|334-+=<+)(7,)+∞1,函数f , )(7,)+∞15.解:(1)∵在△ABC 中,3=B ,2=AC 2=BC , 由余弦定理得2222cos =+-AC AB BC AB BC B , 得21242=+-AB AB ,即2280--=AB AB 解之得4=AB ,2=-AB (舍去).(2)cos 0=>A ,得π02<<A ,sin ==A sintan cos ==AA A ,又∵π3=B ,∴tan tan 333tan tan()1tan tan 33++=-+=-==-A B C A B A B . 16.解:(1)在△AOB 与△COD 中, ∵∥DC AB ,2=DC AB , ∴12==AO AB CO CD , 又∵2=PE AE , ∴在△APC 中,有12==AO AE CO PE ,则∥OE PC . 又∵⊄OE 平面PBC ,⊂PC 平面PBC , ∴∥OE 平面PBC .(2)∵⊥AB 平面PAD ,⊂DE 平面PAD , ∴⊥AB DE .又∵⊥AP DE ,⊂AB 平面PAB ,⊂AP 平面PAB ,⋂=AP AB A , ∴⊥DE 平面PAB ,⊂PB 平面PAD , ∴⊥DE PB .17.解:(1)当010<≤t 时,32()1124100100=+-+<V t t t t , 化简得211240-+<t t , 解得3<t 或8>t ,又∵010<≤t ,故04<<t 或810<≤t ,当1012<≤t 时,()4(10)(341)100100=--+<V t t t ,得41103<<t , 又∵1012<≤t ,故1012<≤t . 综上得04<<t ,或812<≤t .∴衰退期为1月,2月,3月,4月,…9月,10月,11,12月共8个月. (2)由(1)知:()V t 的最大值只能在(4,9)内取到. 由322()(1124100)32224''=-+-+=+-V t t t t t t 令()0'=V t , 得6=t 或43=t (舍去). 当t 变化时,()'V t 与()V t 的变化情况如下表:由上表,()V t 在6=t 时取最大值(6)136()=亿立方米V . 故该冰川的最大体积为136亿立方米.18.解:(1)∵圆222:+=x y r O与椭圆22221(0):+=>>x y ab a C b相交于点(0,1)M∴1==b r .又∵离心率为e 2==c a , ∴=a∴椭圆22:12+=y C x .(2)∵过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点,∴直线l 的方程为1(0)=+≠y kx k ,由22112=+⎧⎪⎨+=⎪⎩y kx x y 得22(21)40++=k x kx , ∴222421(,)2121--+++k k B k k , 同理2211=+⎧⎨+=⎩y kx x y 得到22(1)20++=k x kx , ∴22221(,)11--+++k k A k k ,∵23=MB MA ,则224223211--=++k kk k ∵0≠k ,∴=k ,即直线l 的方程为1=+y .②根据①222421(,)2121--+++k k B k k ,22221(,)11--+++k k A k k ,222111121-++-+====---+A N NAA N k y y k k k k x x k k ,22222111214221-++-+====---+B N NB B N k y y k k k k x x k k , ∴2112=k k 为定值.19.解:(1)∵e ,()e |e ,⎧-+≥⎪=--=⎨+-<⎪⎩x xx x a x af x x a x a x a ,则e 1,()e 1,⎧-≥⎪'=⎨+<⎪⎩x x x a f x x a ,∵()f x 在R 上单调递增, ∴()0'≥f x 恒成立,当<x a 时,()e 110'=+≥>x f x 恒成立, 当≥x a 时,()e 10'=-≥x f x 恒成立, 故()0'≥f a ,即0≥a .(2)由(1)知当0≥a 时,()f x 在R 上单调递增,不符题意, ∴有0<a .此时,当<x a 时,()e 110'=+≥>x f x ,()f x 单调递增, 当≥x a 时,()e 1'=-x f x ,令()0'=f x ,得0=x , ∴()0'<f x 在(,0)a 上恒成立,()f x 在(,0)a 上单调递减,()0'>f x 在(0,)+∞恒成立,()f x 在(0,)+∞上单调递增,∴()()e ==极大af x f a ,()(0)1==+极小f x f a ,即0<a 符合题意.由2121()()()-≥-f x f x k x x 恒成立,可得e 1--≥a a ka 对任意0<a 恒成立, 设()e (1)1=-+-a g a k a ,求导,得()e (1)'=-+a g a k , ①当1≥-k 时,()0'≥g a 恒成立,()g a 在(,0)-∞单调递增, 又∵1(1)0e-=+<g k ,与()0>g a 矛盾; ②当0≥k 时,()0'≤g a 在(,0)-∞上恒成立,()g a 在(,0)-∞单调递减, 又∵(0)0=g ,∴此时()0≥g a 恒成立,符合题意;③当10-<<k 时,令()0'>g a 在(,0)-∞上解集为(ln(1),0)+k , 即()g a 在(ln(1),0)+k 上单调递增, 又∵(0)0=g ,∴(ln(1))0+<g k 不符题意; 综上,实数k 的取值范围为[0,)+∞. 20.证明:(1)由312+++=n n n n a a a a ,可知323311...+++====n n n n a a aa a a a ,∴212232123212212()++---++==++n n n n n n n na a a a a a a a a a , 当1=n 时,123+=a a ,即数列212{}-+n n a a 是以3为首项,3a 为公比的等比数列.(2)法一:由(1),同理可知,数列221{}++n n a a 是以32+a 为首项,3a 为公比的等比数列.故当2=n k 时,32123421233(1)()()...()1--=++++++=-k k k k a S a a a a a a a 故当21=+n k 时,33211234513(2)(1)()()...()11+-+-=+++++++=+-k k n n a a S a a a a a a a a . 又∵{}+n S t 为等比数列,故有221()()()++++=+n n n S t S t S t ,对+∀∈N n 恒成立, ∴222221()()()++++=+k k k S t S t S t 和222322()()()++++=+k k k S t S t S t 对+∀∈N k 恒成立,即123333333112333333333(1)3(1)(2)(1)()()(1)111(2)(1)(2)(1)3(1)(1)(1)()111+++⎧--+-++=++⎨---⎩+-+--++++=+---k k k k k k a a a a t t t a a a a a a a a t t t a a a 对+∀∈N k 恒成立, 解得34=a ,1=t ,此时2132(1)(1)(1)++=+S S S 也成立.∴34=a ,1=t ,即21=-nn S 得到12-=n n a .法二:由(1),同理可知,数列221{}++n n a a 是以32+a 为首项,3a 为公比的等比数列.故当2=n k 时,3212342123333(1)33()()...()111--=++++++==----k kk k ka S a a a a a a a a a a 要使得{}+n S t 为等比数列必有2{}+k S t 为等比数列,即有331=-t a 成立① 故当21=+n k 时,333321123451333(2)(1)22()()...()11111+-+-++=+++++++=+=-+---k k k n n a a a a S a a a a a a a a a a a .要使得{}+n S t 为等比数列必有2{}+k S t 为等比数列,即有33211+=--a t a 成立② 联立①②得1=t ,34=a 以下同解法一法三:由(1),同理可知,数列221{}++n n a a 是以32+a 为首项,3a 为公比的等比数列.故当2=n k 时,32123421233(1)()()...()1--=++++++=-k k k k a S a a a a a a a 故当21=+n k 时,33211234513(2)(1)()()...()11+-+-=+++++++=+-k k n n a a S a a a a a a a a . 要使得{}+n S t 为等比数列必有2243()()()++=+S t S t S t 和2132()()()++=+S t S t S t 解得1=t ,34=a ,通过验证1=t ,31=a 时,{}+n S t 为等比数列.以下同解法一第Ⅱ卷(附加题,共40分)21.解:A .连接AD , ∵AB 为圆O 的直径, ∴90∠=︒ADB ,又∵⊥EF AB ,90∠=︒AFE ,则A ,D ,E ,F 四点共圆, ∴=BD BE BA BF ,又~△△ABC AEF ,即=AB AF AE AC .∴2()-=-=-=BE BD AE AC BA BF AB AF AB BF AF AB .B .∵212()5614--⎡⎤==-+⎢⎥-⎣⎦f λλλλλ,由()0=f λ,得2=λ或3=λ. 当2=λ时,对应的一个特征向量为121⎡⎤=⎢⎥⎣⎦α;当3=λ时,对应的一个特征向量为211⎡⎤=⎢⎥⎣⎦α;设321211⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m n ,解得11=⎧⎨=⎩m n ,∴33333312122143()12131135⎡⎤⎡⎤⎡⎤=+=+=⨯+⨯=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A A αααααC .∵直线l 的极坐标方程为π()3=∈θρR ,∴直线l的直角坐标方程为y ,又∵曲线C 的参数方程为2cos 1cos2=⎧⎨=-⎩x y αα,∴曲线C 的普通方程为212,[2,2]2=-+∈-y x x ,联立解方程组2122⎧=⎪⎨=-+⎪⎩y y x .解得3⎧=⎪⎨=-+⎪⎩x y3⎧=⎪⎨=-⎪⎩x y∴点P的直角坐标方程为(3-+. D .∵0>a b ,0>b a , ∴要证>a b b a , 只要证ln ln >a b b a只要证ln ln >b ab a,构造函数ln (),(e,)=∈+∞x f x x x . 21ln (),(e,)-'=∈+∞x f x x x,()0'<f x 在区间(e,)+∞恒成立, ∴函数()f x 在(e,)∈+∞x 上是单调递减,∴当e >>a b 时,有()()>f b f a 即ln ln >b ab a,得证. 22.解:(1)记“第三局结束后小明获胜”为事件A ,则3327()()464==P A .(2)由题意可知X 的所有可能取值为3,4,5.33317(3)()()4416==+=P X131333311345(4)()()()()4444128==+=P X C C ,27(5)(3)(4)128===-==P X P X P X .∴比赛局数X 的分布列为∴比赛局数X 的数学期望是74527483()34516128128128=⨯+⨯+⨯=E X .23.解:(1)当1=m 时,1100111(,1)(1)(1)111++--=∑-=∑-=+++nn kkk k nn k k P n C C k n n , 又∵11(,1)1+==+n Q n C n ,显然(,1)(,1)1=P n Q n . (2)0(,)(1)-=∑-+nk knk mP n m C m k111111(1)()(1)-----=+∑-++-++n k k k nn n k m mC C m k m k111(1,)(1)---=-+∑-+n k k n k m P n m C m k 0(1,)(1)-=-+∑-+n k knk m m P n m C n m k (1,)(,)=-+mP n m P n m n即(,)(1,)=-+nP n m P n m m n, 由累乘,易求得!!1(,)(0,)()!+==+n n mn m P n m P m n m C ,又∵1(,)+=nn Q n m C ,∴(,)(,)1=P n m Q n m .。

2017年江苏省南通市高考数学一模试卷

2017年江苏省南通市高考数学一模试卷

2017年江苏省南通市高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.函数的最小正周期为______ .【答案】【解析】解:函数的最小正周期为,故答案为:.根据函数y=A sin(ωx+φ)的周期等于,得出结论.本题主要考查三角函数的周期性及其求法,利用了y=A sin(ωx+φ)的周期等于,属于基础题.2.设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= ______ .【答案】{1,3,5}【解析】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.本题考查集合的交集、并集运算,注意运用定义法,以及集合中元素的互异性,属于基础题.3.复数z=(1+2i)2,其中i为虚数单位,则z的实部为______ .【答案】-3【解析】解:∵z=(1+2i)2=1+4i+(2i)2=-3+4i,∴z的实部为-3.故答案为:-3.直接利用复数代数形式的乘法运算化简得答案.本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为______ .【答案】0.17【解析】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1-0.48-0.35=0.17.故答案为0.17.利用对立事件的概率公式,可得结论.本题考查对立事件的概率公式,熟练掌握概率的基本性质是求解本题的关键.5.如图是一个算法的流程图,则输出的n的值为______ .【答案】5【解析】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.本题考查的知识点是程序框图,由于循环的次数不多,故可采用模拟程序运行的方法进行.6.若实数x,y满足则z=3x+2y的最大值为______ .【答案】7【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=-x+z平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.【答案】20【解析】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.根据题意,分别求出甲、乙的平均数与方差,比较可得S甲2>S乙2,则乙的成绩较为稳定;即可得答案.本题考查方差的计算,注意掌握方差的计算公式.8.如图,在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,则三棱锥D1-A1BD的体积为______ cm3.【答案】【解析】解:∵在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1-A1BD的体积:=====(cm3).故答案为:.三棱锥D1-A1BD的体积==,由此能求出结果.本题考查三棱锥的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.9.在平面直角坐标系x O y中,直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,则该双曲线的离心率为______ .【答案】【解析】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2-a2=4a2,可得=.故答案为:.利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,考查计算能力.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为______ 升.【答案】【解析】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.本题考查等差数列的首项的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的灵活运用.11.在△ABC中,若•+2•=•,则的值为______ .【答案】【解析】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cos B+2bc•cos A=ba•cos C,由余弦定理得:(a2+c2-b2)+(b2+c2-a2)=(b2+a2-c2),化简得=2,∴=,由正弦定理得==.故答案为:.根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.本题考查了平面向量的数量积以及余弦定理和正弦定理的应用问题,是综合性题目.12.已知两曲线f(x)=2sinx,g(x)=acosx,,相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为______ .【答案】【解析】解:由f(x)=g(x),即2sinx=acosx,即有tanx==,a>0,设交点P(m,n),f(x)=2sinx的导数为f′(x)=2cosx,g(x)=acosx的导数为g′(x)=-asinx,由两曲线在点P处的切线互相垂直,可得2cosm•(-asinm)=-1,且tanm=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.联立两曲线方程,可得tanx==,a>0,设交点P(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为-1,再由同角基本关系式,化弦为切,解方程即可得到a的值.本题考查导数的运用:求切线的斜率,两直线垂直的条件:斜率之积为-1,同时考查同角三角函数的基本关系式,考查化简整理的运算能力,属于中档题.13.已知函数f(x)=|x|+|x-4|,则不等式f(x2+2)>f(x)的解集用区间表示为______ .【答案】,,【解析】解:令g(x)=f(x2+2)-f(x)=x2+2+|x2-2|-|x|-|x-4|,x≥4时,g(x)=2x2-2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2-4>0,解得:x>或x<-,故<x<4;0≤x<时,g(x)=0>0,不合题意;-≤x<0时,g(x)=2x>0,不合题意;x<-时,g(x)=2x2+2x-4>0,解得:x>1或x<-2,故x<-2,故答案为: ,,.令g(x)=f(x2+2)-f(x)=x2+2+|x2-2|-|x|-|x-4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.14.在平面直角坐标系x O y中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,则线段BC的长的取值范围为______ .【答案】[,]【解析】解:在平面直角坐标系x O y中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,-)解得BC min==,BC max==.故答案为:[,].画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.本题考查直线与圆的方程的综合应用、考查数形结合以及转化思想的应用,考查计算能力,属于难题.二、解答题(本大题共12小题,共154.0分)15.如图,在平面直角坐标系x O y中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=.(1)求cosβ的值;(2)若点A的横坐标为,求点B的坐标.【答案】解:(1)在△AOB中,由余弦定理得,AB2=OA2+OB2-2OA•OB cos∠AOB,所以,∠=,即.(2)因为,,,∴.因为点A的横坐标为,由三角函数定义可得,,因为α为锐角,所以.所以,,即点,.【解析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.本题主要考查余弦定理,任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式的应用,属于基础题.16.如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:(1)直线PA∥平面BDE;(2)平面BDE⊥平面PCD.【答案】证明:(1)连结OE,因为O为平行四边形ABCD对角线的交点,所以O为AC中点.又因为E为PC的中点,所以OE∥PA.…4分又因为OE⊂平面BDE,PA⊄平面BDE,所以直线PA∥平面BDE.…6分(2)因为OE∥PA,PA⊥PD,所以OE⊥PD. (8)分因为OP=OC,E为PC的中点,所以OE⊥PC. (10)分又因为PD⊂平面PCD,PC⊂平面PCD,PC∩PD=P,所以OE⊥平面PCD.…12分又因为OE⊂平面BDE,所以平面BDE⊥平面PCD.…14分.【解析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.本题考查平面与平面垂直的判定定理的应用,直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理能力.17.如图,在平面直角坐标系x O y中,已知椭圆(a>b>0)的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值.【答案】解:(1)由题意得,,,…2分解得,c=1,b=1.所以椭圆的方程为.…4分(2)由题意知OP的斜率存在.当OP的斜率为0时,,,所以.…6分当OP的斜率不为0时,设直线OP方程为y=kx.由得(2k2+1)x2=2,解得,所以,所以.…9分因为OP⊥OQ,所以直线OQ的方程为.由得,所以OQ2=2k2+2.…12分所以.综上,可知.…14分.【解析】(1)由已知条件可得,,然后求解椭圆的方程.(2)由题意知OP的斜率存在.当OP的斜率为0时,求解结果;当OP的斜率不为0时,设直线OP方程为y=kx.联立方程组,推出.OQ2=2k2+2.然后求解即可.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.18.如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.(1)当∠EFP=时,试判断四边形MNPE的形状,并求其面积;(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.【答案】解:(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.所以∠FPE=.所以FN⊥BC,四边形MNPE为矩形.…3分所以四边形MNPE的面积S=PN•MN=2m2.…5分(2)解法一:设∠<<,由条件,知∠EFP=∠EFD=∠FEP=θ.所以,,.…8分由>><<得>>,<<所以四边形MNPE面积为== ==…12分.当且仅当,即,时取“=”.…14分此时,(*)成立.答:当∠时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分解法二:设BE=tm,3<t<6,则ME=6-t.因为∠EFP=∠EFD=∠FEP,所以PE=PF,即.所以,.…8分由<<>>得<<>,<所以四边形MNPE面积为==…12分=.当且仅当,即时取“=”.…14分此时,(*)成立.答:当点E距B点m时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分.【解析】(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四边形MNPE 为矩形.即可得出.(2)解法一:设∠<<,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四边形MNPE面积为==,化简利用基本不等式的性质即可得出.解法二:设BE=tm,3<t<6,则ME=6-t.可得PE=PF,即.,NP=3-T+,四边形MNPE面积为==,利用基本不等式的性质即可得出.本题考查了函数的性质、矩形的面积计算公式、基本不等式的性质、三角函数的单调性应与求值,考查了推理能力与计算能力,属于中档题.19.已知函数f(x)=ax2-x-lnx,a∈R.(1)当时,求函数f(x)的最小值;(2)若-1≤a≤0,证明:函数f(x)有且只有一个零点;(3)若函数f(x)有两个零点,求实数a的取值范围.【答案】解:(1)当时,.所以′,(x>0).…2分令f'(x)=0,得x=2,当x∈(0,2)时,f'(x)<0;当x∈(2,+ )时,f'(x)>0,所以函数f(x)在(0,2)上单调递减,在(2,+ )上单调递增.所以当x=2时,f(x)有最小值.…4分(2)由f(x)=ax2-x-lnx,得′,>.所以当a≤0时,′<,函数f(x)在(0,+ )上单调递减,所以当a≤0时,函数f(x)在(0,+ )上最多有一个零点.…6分因为当-1≤a≤0时,f(1)=a-1<0,>,所以当-1≤a≤0时,函数f(x)在(0,+ )上有零点.综上,当-1≤a≤0时,函数f(x)有且只有一个零点.…8分(3)由(2)知,当a≤0时,函数f(x)在(0,+ )上最多有一个零点.因为函数f(x)有两个零点,所以a>0.…9分由f(x)=ax2-x-lnx,得′,>,令g(x)=2ax2-x-1.因为g(0)=-1<0,2a>0,所以函数g(x)在(0,+ )上只有一个零点,设为x0.当x∈(0,x0)时,g(x)<0,f'(x)<0;当x∈(x0,+ )时,g(x)>0,f'(x)>0.所以函数f(x)在(0,x0)上单调递减;在(x0,+ )上单调递增.要使得函数f(x)在(0,+ )上有两个零点,只需要函数f(x)的极小值f(x0)<0,即<.又因为,所以2lnx0+x0-1>0,又因为函数h(x)=2lnx+x-1在(0,+ )上是增函数,且h(1)=0,所以x0>1,得<<.又由,得,所以0<a<1.…13分以下验证当0<a<1时,函数f(x)有两个零点.当0<a<1时,>,所以<<.因为>,且f(x0)<0.所以函数f(x)在,上有一个零点.又因为>(因为lnx≤x-1),且f(x0)<0.所以函数f(x)在,上有一个零点.所以当0<a<1时,函数f(x)在,内有两个零点.综上,实数a的取值范围为(0,1).…16分下面证明:lnx≤x-1.设t(x)=x-1-lnx,所以′,(x>0).令t'(x)=0,得x=1.当x∈(0,1)时,t'(x)<0;当x∈(1,+ )时,t'(x)>0.所以函数t(x)在(0,1)上单调递减,在(1,+ )上单调递增.所以当x=1时,t(x)有最小值t(1)=0.所以t(x)=x-1-lnx≥0,得lnx≤x-1成立.【解析】(1)当时,.求出函数的导数,得到极值点,然后判断单调性求解函数的最值.(2)由f(x)=ax2-x-lnx,得′,>.当a≤0时,函数f(x)在(0,+ )上最多有一个零点,当-1≤a≤0时,f(1)=a-1<0,>,推出结果.(3)由(2)知,当a≤0时,函数f(x)在(0,+ )上最多有一个零点.说明a>0,由f(x)=ax2-x-lnx,得′,>,说明函数f(x)在(0,x0)上单调递减;在(x0,+ )上单调递增.要使得函数f(x)在(0,+ )上有两个零点,只需要<.通过函数h(x)=2lnx+x-1在(0,+ )上是增函数,推出0<a<1.验证当0<a<1时,函数f(x)有两个零点.证明:lnx≤x-1.设t(x)=x-1-lnx,利用导数求解函数的最值即可.本题考查函数的导数的综合应用,函数的单调性以及函数的极值,构造法以及分类讨论思想的应用,考查计算能力.20.已知等差数列{a n}的公差d不为0,且,,…,,…(k1<k2<…<k n<…)成等比数列,公比为q.(1)若k1=1,k2=3,k3=8,求的值;(2)当为何值时,数列{k n}为等比数列;(3)若数列{k n}为等比数列,且对于任意n∈N*,不等式>恒成立,求a1的取值范围.【答案】解:(1)由已知可得:a1,a3,a8成等比数列,所以,…2分整理可得:4d2=3a1d.因为d≠0,所以.…4分(2)设数列{k n}为等比数列,则.又因为,,成等比数列,所以.整理,得.因为,所以a1(2k2-k1-k3)=d(2k2-k1-k3).因为2k2≠k1+k3,所以a1=d,即.…6分当时,a n=a1+(n-1)d=nd,所以.又因为,所以.所以,数列{k n}为等比数列.综上,当时,数列{k n}为等比数列.…8分(3)因为数列{k n}为等比数列,由(2)知a1=d,>.,a n=a1+(n-1)d=na1.因为对于任意n∈N*,不等式>恒成立.所以不等式>,即>,<<恒成立.…10分下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n1,使得<.要证<,即证lnn1<n1lnq+lnε.因为<,则<,解不等式<,即>,可得>,所以>.不妨取,则当n1>n0时,原式得证.所以<,所以a1≥2,即得a1的取值范围是[2,+ ).…16分【解析】(1)由已知得:a1,a3,a8成等比数列,从而4d2=3a1d,由此能求出的值.(2)设数列{k n}为等比数列,则,推导出,从而,进而.由此得到当时,数列{k n}为等比数列.(3)由数列{k n}为等比数列,a1=d,>.得到>,<<恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1,使得<.要证<,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.本题考查等差数列的首项与公差的比值的求法,考查满足等比数列的等差数列的首项与公差的比值的确定,考查数列的首项的取值范围的求法,综合性强,难度大,对数学思维要求较高.21.已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.【答案】解:设CD=x,则CE=2x.因为CA=1,CB=3,由相交弦定理,得CA•CB=CD•CE,所以1×3=x•2x=2x2,所以.…2分取DE中点H,则OH⊥DE.因为,所以.…6分又因为,所以△OCE的面积.…10分.【解析】由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE 的面积.本题考查的是相交弦定理,垂径定理与勾股定理,考查学生分析解决问题的能力,属于中档题.22.已知向量是矩阵A的属于特征值-1的一个特征向量.在平面直角坐标系x O y中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.【答案】解:设,因为向量是矩阵A的属于特征值-1的一个特征向量,所以.所以…4分因为点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),所以.所以…8分解得a=1,b=2,c=2,d=1,所以.…10分.【解析】设,根据矩阵变换,列方程组,即可求得a、b、c和d的值,求得A.本题考查矩阵的变换,考查方程思想,体现转化思想,属于中档题.23.在极坐标系中,求直线被曲线ρ=4sinθ所截得的弦长.【答案】解:以极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.直线的直角坐标方程为y=x①,…3分曲线ρ=4sinθ的直角坐标方程为x2+y2-4y=0②.…6分由①②得或…8分所以A(0,0),B(2,2),所以直线被曲线ρ=4sinθ所截得的弦长AB=.…10分.【解析】极坐标方程化为直角坐标方程,联立,求出A,B的坐标,即可求直线被曲线ρ=4sinθ所截得的弦长.本题考查极坐标方程化为直角坐标方程,考查方程思想,比较基础.24.求函数的最大值.【答案】解:…2分由柯西不等式得,…8分所以y max=5,此时.所以函数的最大值为5.…10分.【解析】利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.本题考查是的最值,柯西不等式在最值中的应用,考查转化思想以及计算能力.25.如图,在棱长为2的正方体ABCD-A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).(1)若,求AP与AQ所成角的余弦值;(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.【答案】解:以,,为正交基底,建立如图所示空间直角坐标系A-xyz.(1)因为,,,,,,所以<,>=.所以AP与AQ所成角的余弦值为.…4分(2)由题意可知,,,,,,.设平面APQ的法向量为=(x,y,z),则即令z=-2,则x=2λ,y=2-λ.所以=(2λ,2-λ,-2).…6分又因为直线AA1与平面APQ所成角为45°,所以|cos<,>|==,可得5λ2-4λ=0,又因为λ≠0,所以.…10分.【解析】(1)以,,为正交基底,建立如图所示空间直角坐标系A-xyz.求出,,,,,,利用数量积求解AP与AQ所成角的余弦值.(2),,,,,.求出平面APQ的法向量,利用空间向量的数量积求解即可.本题考查空间向量数量积的应用,直线与平面所成角的求法,异面直线所成角的求法,考查计算能力.26.在平面直角坐标系x O y中,已知抛物线x2=2py(p>0)上的点M(m,1)到焦点F的距离为2,(1)求抛物线的方程;(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.【答案】解:(1)抛物线x2=2py(p>0)的准线方程为,因为M(m,1),由抛物线定义,知,所以,即p=2,所以抛物线的方程为x2=4y.…3分(2)因为,所以′.设点,,,则抛物线在点E处的切线方程为.令y=0,则,即点,.因为,,F(0,1),所以直线PF的方程为,即2x+ty-t=0.则点,到直线PF的距离为.…5分联立方程消元,得t2y2-(2t2+16)y+t2=0.因为△=(2t2+16)2-4t4=64(t2+4)>0,所以,,所以.…7分所以△EAB的面积为.不妨设(x>0),则′.因为,时,g'(x)<0,所以g(x)在,上单调递减;,上,g'(x)>0,所以g(x)在,上单调递增.所以当时,.所以△EAB的面积的最小值为.…10分.【解析】(1)求出抛物线x2=2py(p>0)的准线方程为,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的′.设点,,,得到抛物线在点E处的切线方程为.求出,.推出直线PF的方程,点,到直线PF的距离,联立求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.本题考查抛物线与直线的位置关系的应用,函数的导数与函数的最值的求法,考查转化思想以及构造法的应用,难度比较大.。

南通市(数学学科基地命题)2017年高考模拟试卷 含答案

南通市(数学学科基地命题)2017年高考模拟试卷 含答案

20XX 年高考模拟试卷(2)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 . 1. 若集合2{|11},{|20}M x x N x x x =-≤≤=-≤,则MN = ▲ .2. 已知复数(2)z i i =--,其中i 是虚数单位,则复数z 在复平面上对应的点位于第 ▲ 象限.3. 某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为 ▲ .4. 双曲线22132x y -=的离心率为 ▲ .5. 执行右边的伪代码后,输出的结果是 ▲ .6. 从2个黄球,2个红球,一个白球中随机取出两个球,则两球颜色不同的概率是 ▲ .7. 若一个圆锥的母线长为2,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .8. 在等比数列{}n a 中,已知3754,2320a a a =--=,则7a = ▲ . 9. 若函数)(x f 为定义在R 上的奇函数,当0>x 时,x x x f ln )(=,则不等式e xf -<)(的解集为 ▲ .10. 已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.设函数π()π)3f x x =+和π()sin(π)6g x x =-的图象在y 轴左、右两侧靠近y 轴的交点分别为M 、N ,已知O 为原点,则OM ON ⋅= ▲ .12.若斜率互为相反数且相交于点(1,1)P 的两条直线被圆O :224x y +=所截得的弦长之比,则这两条直线的斜率之积为 ▲ . 13. 设实数1m ≥,不等式||2x x m m -≥-对[1,3]x ∀∈恒成立,则实数m 的取值范围是 ▲ .yAB 14.在斜三角形ABC 中,若114tan tan tan A B C+=,则sinC 的最大值为 ▲ . 二、解答题:本大题共6小题,共90分.15.(本小题满分14分)己知向量(1,2sin ),(sin(),1)3a b πθθ==+,R θ∈.(1)若a b ⊥,求tan θ的值:(2)若//a b ,且(0,)2πθ∈,求以||a 、||b 为边,夹角为θ的三角形的面积.16.(本小题满分14分)如图,在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CP ⊥PB ,求证:CP ⊥PA :(2)若过点A 作直线l ⊥平面ABC ,求证:l //平面PBC .17.(本小题满分14分)如图,ABCD 是一块边长为100米的正方形地皮,其中ATPS 是一半径为90米的底面为扇形小山(P 为圆弧TS 上的点),其余部分为平地.今有开发商想在平地上建一个两边落在BC 及CD 上的长方形停车场PQCR ..(1)设PAB θ∠=,试将矩形PQCR 面积表示为θ的函数; (2)求停车场PQCR 面积的最大值及最小值. .18.(本小题满分14分)如图,点A (1,3)为椭圆1222=+ny x 上一定点,过点A 引两直线与椭圆分别交于B 、C 两点. (1)求椭圆方程;(2)若直线AB 、AC 与x 轴围成以点A 为顶点的等腰三角形.()i 求直线BC 的斜率;()ii 求△ABC 的面积最大值,并求出此时直线BC 的方程.19.(本小题满分16分)已知数列{n a }中,121,a a a ==,且12()n n n a k a a ++=+对任意正整数n都成立,数列{n a }的前n 项和为Sn.(1)若12k =,且20172017S =,求a ; (2)是否存在实数k ,使数列{n a }是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列,若存在,求出所有k 的值;若不存在,请说明理由; (3)若1,2n k S =-求.20.(本小题满分16分)已知函数'()ln ,()f x x a x f x =+为()f x 的导数,()f x 有两个零点1212,,()x x x x < ,且1202x x x +=.(1)当3a =-时,求 ()f x 的单调区间;(2)证明:'0()0f x > ;(3)证明:02(,),t x x ∃∈使得'020()()f x f t x x =--.第II 卷(附加题,共40分)O E D C B A21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的.....答题区域内作答........ A ,(选修4-1;几何证明选讲)如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的 中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE .B .(选修4-2:矩阵与变换) 已知矩阵 ⎥⎦⎤⎢⎣⎡=a A 203,A 的逆矩阵⎥⎥⎦⎤⎢⎢⎣⎡=-10311b A (1)求a,b 的值;(2)求A 的特征值.C .(选修4-4:坐标系与参数方程) 己知在平面直角坐标系xOy 中,圆M 的参数方程为532cos 72sin 2x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点3,3π⎛⎫⎪⎝⎭为圆心,且过点)2,2(π的圆.(1)求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2)求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D .(选修4-5:不等式选讲)已知x,y,z 都是正数且xyz =8,求证:(2+x )(2+y )(2+z )≥64【选做题】第22题、23题,每题10分,共计20分.22.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).23.对于给定的大于1的正整数n ,设2012n n x a a n a n a n =++++,其中i a ∈{0,1,2,,1n -},1,2,,0,,1i n n =-,且0n a ≠,记满足条件的所有x 的和为A n .(1)求A 2(2)设n A =(1)()2n n n f n -,求f (n ).20XX 年高考模拟试卷(2)参考答案一、填空题1.[]0,1 2.四 3.16 4/3 5.286. 4/5. 1—(2222C C +)/25C =4/5 .7.3.圆锥母线长2,可求底面半径为1,故高,故V=3. 8. 64. 先得公比q 2=4,知7a =64 .9. (,-∞-e). 11()ln 1,(0,),(,),().f x x f e e e e'=++∞=为减区间为增区间 由于)(x f 是奇函数,结合函数图像得,不等式的解集是(,-∞-e) . 10. [1,7].根据可行域知,目标函数化为z=x-y+3(去掉绝对值是关键) 11. -8/9.令f(x)-g(x)=0,化简得2sin()0,,,66x x k k Z πππππ+=+=∈则15((66M N -,故OM ON ⋅=158((669-⋅12. -9或-1/9.设斜率为k,-k,则两条直线方程为kx-y+1-k=0,kx+y-1-k=0,两条弦心距为12d d ==12l l ==弦长之比得231030k k -+=,求出k=3,或k=-1/3,故结果为-9或-1/9.13.7(1,2][,)2+∞.(1)当12m≤≤时,不等式显然成立;(2)当3m≥时,由1(1)32(2)3m mm m-≥-⎧⎨-≥-⎩得72m≥;(3)当23m<<时,由02m≥-得m<2, 矛盾,综上,7[1,2][,)2m∈+∞..切化弦得22232()c a b=+,222221cos263a b c a bCab ab+-+==≥,于是知sinC的最大二、解答题15.(1)因为⊥a b,所以=0⋅a b,所以π2sin sin03θθ⎛⎫++=⎪⎝⎭,即5sin cos022θθ+=.因为cos0θ≠,所以tan5θ=-.(2)由a∥b,得π2sin sin13θθ⎛⎫+=⎪⎝⎭,即2ππ2sin cos2sin cos sin133θθθ+=,即()11cos2212θθ-+=,整理得,π1sin262θ⎛⎫-=⎪⎝⎭又π0,2θ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,666θ⎛⎫-∈-⎪⎝⎭,所以ππ266θ-=,即π6θ=.所以三角形的面积1sin302=16.(1)因为平面PBC⊥平面ABC,平面PBC平面ABC BC=,AB⊂平面ABC,AB⊥BC,所以AB⊥平面PBC.因为CP⊂平面PBC,所以CP⊥AB.又因为CP⊥PB,且PB AB B=,,AB PB⊂平面PAB,所以CP⊥平面PAB,又因为PA⊂平面PAB,所以CP⊥PA.(2)在平面PBC内过点P作PD⊥BC,垂足为D.因为平面PBC⊥平面ABC,又平面PBC∩平面ABC=BC,PD⊂平面PBC,所以PD⊥平面ABC.APBDxyAB CO又l ⊥平面ABC ,所以l //PD . 又l ⊄平面PBC ,PD ⊂平面PBC , 所以l //平面PBC .17.(1)S P Q C R =f (θ)=(100-90cos θ)(100-90sin θ)=8100sin θcos θ-9000(sin θ+cos θ)+10000 , θ∈[0,2π]. (2)由(1)知S P Q C R =f (θ)=8100sin θcos θ-900(sin θ+cos θ)+10000 ,θ∈[0,2π] .令sin θ+cos θ=t ,则t =2sin (θ+4π)∈[1, 2]. ∴S P Q CR =28100t 2-9000t +10000-28100当t =910时,S P Q CD 最小值为950(m 2)当t =2时,S P Q CD 最大值为14050-90002 (m 2).答:停车场面积的最大值和最小值分别为 14050-90002 (m 2)和950(m 2).18. (1)把点A (1,3)代入1222=+n y x 得n =6,故椭圆方程为22126x y +=. (2)(i )显然题中等腰三角形腰所在的直线不可能与x 轴垂直,因此其斜率必存在,设两腰的斜率分别为1k 、2k ,由⎪⎩⎪⎨⎧=+-=-162)1(3221y x x k y得点B 的横坐标为33261211++-=k k x (1=x 为点A 的横坐标), ∴点B 的纵坐标为3632321121++-=k k k y ,即)36323,33261(21121211++-++-k k k k k B .同理可得点C 的坐标为)36323,33261(22222222++-++-k k k k k C∵ 021=+k k ,∴ 直线BC 的斜率为3=BC k .(ii)设直线BC 的方程为m x y +=3,代入方程16222=+y x 得0632622=-++m mx x ,∴ 212332||m BC -=又点A 到直线BC 的距离为2||m d =∴ 36)6(63)12(63||212222+--=-=⋅=m m m d BC S ∴ 当62=m ,即6=m 或6-=m 时,△ABC 面积取得最大值为3.此时,直线BC 的方程为63±=x y .19.⑴12k =时,121()2n n n a a a ++=+,211n n n n a a a a +++-=-,所以数列{}n a 是等差数列, 此时首项11a =,公差211d a a a =-=-,数列{}n a 的前n 项和是1(1)(1)2n S n n n a =+--,故12017201720172016(1)2a a =+⨯⨯-,得1a =;⑵设数列{}n a 是等比数列,则它的公比21a q a a ==,所以1m m a a -=,1m m a a +=,12m m a a ++=,①若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+,解得1a =,不合题意;②若m a 为等差中项,则122m m m a a a ++=+,即112m m m aa a -+=+,化简得:220a a +-=,解得2a =-,1a =(舍去);11122215m m m m m m a a a k a a a a a +-++====-+++; ③若2m a +为等差中项,则212m m m a a a ++=+,即112m m m aa a +-=+,化简得:2210a a --=,解得12a =-;11122215m m m m m m a a a k a a a a a +-++====-+++; 综上可得,满足要求的实数k 有且仅有一个,25k =-; ⑶12k =-则121()2n n n a a a ++=-+, 211()n n n n a a a a ++++=-+,32211()n n n n n n a a a a a a ++++++=-+=+,当n 是偶数时, 12341n n n S a a a a a a -=++++++12341()()()n n a a a a a a -=++++++12()(1)22n na a a =+=+, 当n 是奇数时, 12341n n n S a a a a a a -=++++++123451()()()n n a a a a a a a -=+++++++1231()2n a a a -=++1121[()]2n a a a -=+-+11(1)2n a -=-+,1n =也适合上式,综上可得,n S ⎧=⎨⎩11(1),2(1),2n a n a --++n n 是奇数是偶数.20.(1) '3()3ln ,()x f x x x f x x-=-=,可得f (x)的单调减区间为(0,3),单调增区间为(3,+∞). (2) 设2(1)()ln (1)1x x x x x ϕ-=->+,可证此函数在(1,+∞)是增函数,且(1)0ϕ>,令211x x x =>,代入得到211221ln ln 2x x x xx x -+<-, 而由21112221ln ,ln ln ln x x x a x x a x a x x -=-=-⇒=-->122x x +-,故有12''12012122()22()()1102x x x x af x f x x x x +-+==+>+=++. (3)令2200()ln()x G x x x x x =--,'2020(,),()ln 0,xx x x G x x ∈=>G(x)是增函数,D令201x t x =>,则有0022()[ln (1)]01()[ln (10G x x t t G x x t t =--<⎧⎪⎨=-->⎪⎩(用到lnx<x-1), 由零点定理知,存在02(,),()0t x x G t ∈=, 即20202020ln ln ln ln 111x x x x aa tx x t x x --=⇔+=+--即'020()()f x f t x x =--.第II 卷(附加题,共40分)21.A .因为CA 为圆O 的切线,所以2CA CE CD =⋅, 又CA CB =, 所以2CB CE CD =⋅, 即CB CDCE CB=, 又BCD BCD ∠=∠, 所以BCE ∽DCB , 所以∠CBE =∠BDE .B .(1)因为A A -1=⎣⎡⎦⎤302a⎣⎢⎢⎡⎦⎥⎥⎤13 0 b 1=⎣⎢⎢⎡⎦⎥⎥⎤ 1 023+ab a =⎣⎡⎦⎤1001. 所以⎩⎪⎨⎪⎧a =1,23+ab =0.解得a =1,b =-23. (2)由(1)得A =⎣⎡⎦⎤3021, 则A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-30-2 λ-1=(λ-3)( λ-1).令f (λ)=0,解得A 的特征值λ1=1,λ2=3.C .(1)⊙M :227(()42x y -+-=,)3π对应直角坐系下的点为3)2,(2,2π对应直角坐系下的点为(0,2),∴⊙N :223(()122x y -+-=(2)PQ =MN -3=431-=.D .因为x 为正数,所以2+x ≥22x .同理 2+y ≥22y ,2+z ≥22z .(5分)所以(2+x )( 2+y )( 2+z )≥22222288x y z xyz = 因为xyz =8, 所以(2+x )( 2+y )( 2+z )≥64.22.( 1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 比赛结束后甲的进球数比乙的进球数多1个的概率: p=++=.(2)由已知得ξ的可能取值为0,1,2,3,P (ξ=0)=+++==,P (ξ=1)=+++=, P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=1﹣=,∴ξ的分布列为: ξ 0 1 2 3 PEξ==1.23.⑴当2n =时,01224x a a a =++,0{0,1}a ∈,1{0,1}a ∈,21a =, 故满足条件的x 共有4个,分别为004x =++,024x =++,104x =++,124x =++, 它们的和是22. ⑵由题意得,0121,,,,n a a a a -各有n 种取法;n a 有1n -种取法,由分步计数原理可得0121,,,,n a a a a -,n a 的不同取法共有(1)(1)n n n n n n n ⋅⋅⋅-=-,即满足条件的x 共有(1)nn n -个, 当0a 分别取0,1,2,,1n -时,121,,,n a a a -各有n 种取法,n a 有1n -种取法, 故n A 中所有含0a 项的和为21(1)(0121)(1)2n n n n n nn --++++--=;同理,n A 中所有含1a 项的和为21(1)(0121)(1)2n n n n n nn n n --++++--⋅=⋅;n A 中所有含2a 项的和为2122(1)(0121)(1)2n n n n n nn n n --++++--⋅=⋅;n A 中所有含1n a -项的和为2111(1)(0121)(1)2n n n n n n n nn nn ----++++--⋅=⋅;当n a 分别取1,2,,1i n =-时,0121,,,,n a a a a -各有n 种取法,故n A 中所有含n a 项的和为1(1)(121)2n nnnn n n n n n +-+++-⋅=⋅;所以n A =2121(1)(1)(1)22n n n n n n n n n n nn +---+++++⋅;21(1)1(1)212n n n n n n n n n n n +---=⋅+⋅-1(1)(1)2n n n n n n n +-=+-故1()1n n f n n n +=+-.。

【江苏省南通市】2017届高三年级第二次模拟考试理科数学试卷(附答案与解析)

【江苏省南通市】2017届高三年级第二次模拟考试理科数学试卷(附答案与解析)

江苏省南通市2017届高三第一次调研测试理科数学试卷参考公式:样本数据1x ,2x ,…,n x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.棱锥的体积公式:1V Sh =棱锥,其中S 为棱锥的底面积,h 为高.{3}AB =,则A B =________为虚数单位,则z 的实部为________.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.已知摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为________.5.如图是一个算法的流程图,则输出的n 的值为________.6.若实数x ,y 满足24,37,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则32z x y =+的最大值为________.7.抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:8.如图,在正四棱柱1111–ABCD A B C D 中,3cm AB =,11cm AA =,则三棱锥11D A BD -的体积为 ______3cm .9.在平面直角坐标系xOy 中,直线20x y +=为双曲线22221(00)x y a b a b-=>>,的一条渐近线,则该双曲线的离心率为________.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升. 中,若2BC BA AC AB CA CB +=,则sin sin AC12.已知两曲线()2sin f x x =,()cos g x a x =,π(0,)2x ∈相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为________.13.已知函数()|||4|f x x x =+-,则不等式2(2)()f x f x +>的解集用区间表示为________.14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(1,1)A ,且A B A C ⊥,则线段BC 的长的取值范围为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A .以OA 为始边作锐角β,其终边与单位圆交于点B ,5AB =. (1)求cos β的值; (2)若点A 的横坐标为513,求点B 的坐标.16.(本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E PC 为的中点,OP OC =,PA PD ⊥.求证:(1)直线PA BDE ∥平面; (2)平面BDE PCD ⊥平面.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的离心率为2,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O OP 作的垂线交直线y 于点Q ,求2211OP OQ +的值. 18.(本小题满分16分)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F AD 为的中点,点E BC 在边上,裁剪时先将四边形CDFE EF MNFE 沿直线翻折到处(点C ,D BC M 分别落在直线下方点,N 处,FN BC P 交边于点),再沿直线PE 裁剪.(1)当4EFP ∠=π时,试判断四边形MNPE 的形状,并求其面积; (2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由.19.(本小题满分16分)已知函数2()ln f x ax x x =--,a ∈R .(1)当38a =时,求函数()f x 的最小值; (2)若10a -≤≤,证明:函数()f x 有且只有一个零点;(3)若函数()f x 有两个零点,求实数a 的取值范围. 20.(本小题满分16分)已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…(12k k <<…n k <<…)成等比数列,公比为q . (1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列; (3)若数列{}n k 为等比数列,且对于任意n *∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值范围.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41-:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C AO 为的中点,弦2DE C CE CD =过点且满足,求OCE △的面积.B .[选修42-:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点(1,1)P 在矩阵A 对应的变换作用下变为(3,3)P ',求矩阵A .C .[选修44-:坐标系与参数方程](本小题满分10分) 在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长. D .[选修45-:不等式选讲](本小题满分10分)求函数3sin y x =+【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在棱长为11112ABCD A B C D -的正方体中,11P C D 为棱的中点,1Q BB 为棱上的点,且1(0)BQ BB λλ=≠.(1)若12λ=,求AP AQ 与所成角的余弦值; (2)若直线1AA APQ 与平面所成的角为45︒,求实数λ的值. 23.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线22(0)x py p =>上的点(,1)M m 到焦点2F 的距离为. (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E x P 处的切线与轴相交于点,直线PF 与抛物线相交于A ,B 两点,求EAB △面积的最小值.江苏省南通市2017届高三第一次调研测试数学试卷∞2)(2,+)+2,62]二、解答题:本大题共∠OA OB AOBcos2-ABOA OB3,PC PD P=,PCD.PN MN=2m )解法一:=0 EFDθ(<19.【解】(1)当38a =时,23()ln 8f x x x x =--.所以31(32)(2)()144x x f x x x x+-'=--=,(0x >).2分令()0f x '=,得2x =,当(0,2)x ∈时,()0f x '<;当(2,)x ∈+∞时,()0f x '>, 所以函数()f x 在(0,2)上单调递减,在(2,)+∞上单调递增. 所以当2x =时,()f x 有最小值1(2)ln 22f =--.4分(2)由2()ln f x ax x x =--,得2121()21,0ax x f x ax x x x--'=--=>.所以当0a ≤时,221()<0ax x f x x--'=,函数()f x 在(0,+)∞上单调递减,所以当0a ≤时,函数()f x 在(0,+)∞上最多有一个零点. 6分因为当10a -≤≤时,(1)1<0f a =-,221e e ()>0e e af -+=,所以当10a -≤≤时,函数()f x 在(0,+)∞上有零点.综上,当10a -≤≤时,函数()f x 有且只有一个零点.8分(3)解法一:由(2)知,当0a ≤时,函数()f x 在(0,+)∞上最多有一个零点. 因为函数()f x 有两个零点,所以>0a .9分由2()ln f x ax x x =--,得221(),(0)ax x f x x x--'=>,令2()21g x ax x =--.因为(0)10g =-<,2>0a ,所以函数()g x 在(0,)+∞上只有一个零点,设为0x .当0(0,)x x ∈时,()0,()0g x f x '<<;当0(,)x x ∈+∞时,()0,()0g x f x '>>. 所以函数()f x 在0(0,)x 上单调递减;在0(,)x +∞上单调递增.要使得函数()f x 在(0,+)∞上有两个零点,只需要函数()f x 的极小值0()0f x <,即200ln 0ax x x --<. 又因为2000()210g x ax x =--=,所以002ln 10x x +->, 又因为函数h()=2ln 1x x x +-在(0,+)∞上是增函数,且h(1)=0, 所以01x >,得0101x <<. 又由20210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<.13分以下验证当01a <<时,函数()f x 有两个零点. 当01a <<时,21211()10a a g a a a a-=--=>, 所以011x a <<. 因为22211e e ()10e e e e a af -+=-+=>,且0()0f x <.所以函数()f x 在01(,)ex 上有一个零点.又因为2242222()ln (1)10a f a a a a a a=----=>≥(因为ln 1x x ≤-),且0()0f x <.所以函数()f x 在02(,)x a上有一个零点.所以当01a <<时,函数()f x 在12(,)e a内有两个零点.综上,实数a 的取值范围为(0,1).16分下面证明:ln 1x x ≤-.设()1ln t x x x =--,所以11()1x t x x x-'=-=,(0x >). 令()0t x '=,得1x =.当(0,1)x ∈时,()0t x '<;当(1,)x ∈+∞时,()>0t x '. 所以函数()t x 在(0,1)上单调递减,在(1,)+∞上单调递增. 所以当1x =时,()t x 有最小值(1)0t =. 所以()1ln 0t x x x =--≥,得ln 1x x ≤-成立. 解法二:由(2)知,当0a ≤时,函数()f x 在(0,+)∞上最多有一个零点. 因为函数()f x 有两个零点,所以>0a .9分由2()ln 0f x ax x x =--=,得关于x 的方程2ln x xa x +=,(0x >)有两个不等的实数解. 又因为ln 1x x ≤-,所以222ln 211(1)1x x x a x x x+-=≤=--+,(0x >). 因为0x >时,21(1)11x--+≤,所以1a ≤.又当1a =时,1x =,即关于x 的方程2ln x xa x +=有且只有一个实数解.所以<<1a 0.13分(以下解法同解法1)20.【解】(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+, 2分 整理可得:2143d a d =.因为0d ≠,所以143a d =.4分(2)设数列{}n k 为等比数列,则2213k k k =. 又因为1k a ,2k a ,3k a 成等比数列,所以2111312[(1)][(1)][(1)]a k d a k d a k d +-+-=+-. 整理,得21213132132(2)(2)a k k k d k k k k k k --=---+. 因为2213k k k =,所以1213213(2)(2)a k k k d k k k --=--. 因为2132k k k ≠+,所以1a d =,即11a d=. 6分当11a d=时,1(1)n a a n d nd =+-=,所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=.所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列. 8分(3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,11(1)n a a n d na =+-=. 因为对于任意n ∈*N ,不等式2n n k n a a k +>恒成立. 所以不等式1111112n n na k a q k q --+>,即111112n n k q a n k q -->+,111111110222n n nn k q q na k q k q --+<<=+恒成立.10分下面证明:对于任意的正实数(01)εε<<,总存在正整数1n ,使得11n n εq <. 要证11n n εq <,即证11ln ln ln n n q ε<+. 因为11ln e 2x x x ≤<,则1122111ln 2ln n n n =<,解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>,可得121n >,所以21n >.不妨取20]1n =+,则当10n n >时,原式得证.所以11102a <≤,所以12a ≥,即得1a 的取值范围是[2,)+∞.16分21.A .[选修41-:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C AO 为的中点,弦2DE C CE CD =过点且满足,求OCE △的面积. 【解】设CD x =,则2CE x =. 因为1CA =,3CB =,由相交弦定理,得CA CB CD CE =, 所以21322x x x ⨯==,所以2x =. 2分取DE 中点H ,则OH DE ⊥. 因为2222354()28OH OE EH x =-=-=,所以OH =.6分又因为2CE x ==,所以OCE △的面积1122S OH CE ==⨯ 10分B .[选修42-:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A对应的变换作用下变为(3,3)P ',求矩阵A .【解】设ab Acd ⎡⎤=⎢⎥⎣⎦, 因为向量11⎡⎤⎢⎥-⎣⎦是矩阵–1A 的属于特征值的一个特征向量,所以111(1)111a b cd -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩,.4分因为点(1,1)P 在矩阵A 对应的变换作用下变为(3,3)P ',所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以+3+3a b c d =⎧⎨=⎩,.8分解得1a =,2b =,2c =,1d =,所以1221A ⎡⎤=⎢⎥⎣⎦. 10分C .[选修44-:坐标系与参数方程](本小题满分10分) 在极坐标系中,求直线.π()4θρ=∈R .被曲线4sin ρθ=所截得的弦长. 【解】解法一:在4sin ρθ=中,令π4θ=,得π4sin 4ρ=AB =. 10分解法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线π()4θρ=∈R 的直角坐标方程为y x =①, 3分 曲线4sin ρθ=的直角坐标方程为2240x y y +-=②.6分由①②得00x y =⎧⎨=⎩,,或22x y =⎧⎨=⎩,,8分所以(0,0),(2,2)A B ,所以直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长AB =. 10分D .[选修45-:不等式选讲](本小题满分10分)求函数3sin y x =+【解】3sin y x x =++2分由柯西不等式得222222(3sin (34)(sin cos )25y x x x =+≤++=,8分所以max 5y =,此时3sinx =. 22.【解】以{}1,,AB AD AA 为正交基底,建立如图所示空间直角坐标系A xyz -. (1)因为=(1,2,2)AP ,=(2,0,1)AQ ,所以cos =||||AP AQ AP AQ AP AQ <>==,.所以AP 与AQ . 4分(2)由题意可知,1(0,0,2)AA =,(2,0,2)AQ λ=. 设平面APQ 的法向量为(,,)x n y z =,则0,0,AP AQ⎧=⎪⎨=⎪⎩n n 即220,220x y z x z λ++=⎧⎨+=⎩.令2z =-,则2x λ=,2y λ=-. 所以(2,2,2)n λλ=--.6分又因为直线1AA 与平面APQ 所成角为45︒,所以111||=||||||2,AA AA AA cos n <>==n n , 23.【解】(1)抛物线22(0)x py p =>的准线方程为2py =-, 因为(,1)M m ,由抛物线定义,知12p MF =+, 所以122p+=,即2p =, 所以抛物线的方程为24x y =.3分(2)因为214y x =,所以12y x '=. 设点2(,),04t E t t ≠,则抛物线在点E 处的切线方程为21()42t y t x t -=-.令0y =,则2tx =,即点(,0)2t P .因为(,0)2t P ,(0,1)F ,所以直线PF的方程为2()2ty x t =--,即20x ty t +-=.则点2(,)4t E t 到直线PF 的距离为3|2|t t t d +-= 5分联立方程2,420,x y x ty t ⎧=⎪⎨⎪+-=⎩消元,得2222(216)0t y t y t -++=. 因为2242(216)464(4)0t t t ∆=+-=+>,所以1y =2y =所以221212222164(4)1122tt AB y y y y t t ++=+++=++=+=. 7分所以EAB △的面积为3222214(4)1(4)22||t t S t t ++=⨯=⨯.不妨设322(4)()x g x x +=(0)x >,则12222(4)()(24)x g x x x+'=-.因为x ∈时,()0g x '<,所以()g x 在上单调递减;)x ∈+∞上,()0g x '>,所以()g x 在)+∞上单调递增.所以当x 32min 4)()g x ==所以EAB △的面积的最小值为10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第3题)(第6题)2017年高考模拟试卷(9)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 .1. 全集{}1,2,3,4,5U =,集合{}1,3,4A =,则U C A = ▲ .2. 设复数i z a b =+(a b ∈,R ,i 是虚数单位),若()2i i z -=则a b +的值为 ▲ .3. 在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为 ▲ .4. 概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为 ▲ .5. 顶点在原点且以双曲线1322=-y x 的右准线为准线的抛物线 方程是 ▲ .6. 为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中, 其频率分布直方图如图所示.已知在[50 100),中 的频数为24,则n 的值为 ▲. 7. 甲,乙两种食物的维生素含量如下表:100,120单位,则混合物重量的最小值为 ▲ kg .8. 60°,则该棱锥的体积为 ▲ .9.在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 ▲ . 10.若函数 0,2,()0ln ,≤x x x f x x ax x ⎧+=⎨>-⎩在其定义域上恰有两个零点,则正实数a 的值为▲ .11.设直线l 是曲线343ln y x x =+的切线,则直线l 的斜率的最小值为 ▲ .12.扇形AOB 中,弦1AB =,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则OP BP ⋅的最小值是 ▲ .13.在平面直角坐标系xOy 中,已知(cos sin )A αα,,(cos sin )B ββ,是直线y =上的两点,则tan()αβ+的值为 ▲ .14.已知函数3()2f x x a a x=--+-有且仅有三个零点,且它们成等差数列,则实数a 的取值集合为 ▲ .二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)已知tan α=2,cos β=- 7210,且α,β∈(0,π), (1)求cos2α的值; (2)求2α-β的值. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,△ACD 是正三角形,BD 垂直平分AC ,垂足为M ,ABC ∠=120° ,=1PA AB =,2PD =,N 为PD 的中点.(1)求证:AD ⊥平面PAB ; (2)求证:CN ∥平面PAB .17. (本小题满分14分)在平面直角坐标系xOy 中,已知A B ,分别是椭圆22221(0)yx a b a b+=>>的上、下顶点,点()102M ,为线段AO的中点,AB =.(1)求椭圆的方程;(2)设(2)N t ,(0t ≠),直线NA ,NB 分别交椭圆于点P Q ,,直线NA ,NB ,PQ 的斜率分别为1k ,2k ,3k . ① 求证:P M Q ,,三点共线; ② 求证:132312k k k k k k +-为定值. 18.(本小题满分16分)如图,一个角形海湾AOB ,∠AOB =2θ(常数θ为锐角).拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择: 方案一:如图1,围成扇形养殖区OPQ ,其中⌒PQ =l ;D(第16题)PAPBPCM N(第17题)1O2O ABPQDC方案二:如图2,围成三角形养殖区OCD ,其中CD =l ;(1)求方案一中养殖区的面积S 1 ;(2)求证:方案二中养殖区的最大面积S 2=l 24tan θ;(3)为使养殖区的面积最大,应选择何种方案?并说明理由.19.(本小题满分16分)已知数列{}n a 的首项为2,前n 项的和为n S ,且111241n n n a a S +-=-(*n ∈N ).(1)求2a 的值; (2)设1nn n na b a a +=-,求数列{}n b 的通项公式;(3)若m p r a a a ,,(*m p r ∈,,N ,m p r <<,)成等比数列,试比较2p 与mr 的大小,并证明.20.(本小题满分16分)已知函数2()ln )xf x e a x b x=++(,其中,a b R ∈. 2.71828e =是自然对数的底数. (1)若曲线()y f x =在1x =处的切线方程为(1)y e x =-.求实数,a b 的值; (2)① 若2a =-时,函数()y f x =既有极大值,又有极小值,求实数b 的取值范围; ② 若2a =,2b ≥-.若()f x kx ≥对一切正实数x 恒成立,求实数k 的最大值(用b 表示).第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的.....答题区域内作答........ A ,(选修4-1;几何证明选讲)如图,1O ,2O 交于两点P Q ,,直线AB 过点P ,与1O ,2O 分别交于点A B ,,直线CD 过点Q ,与1O ,2O 分别交于点C D ,. 求证:AC ∥BD .llAOBAOB图1Q PAOBC D 图2(第18题)2θ2θ2θB .(选修4-2:矩阵与变换)若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(1)求二阶矩阵M ;(2)若曲线22:221C x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程.C.(选修4-4:坐标系与参数方程)已知点(1)P αα-(其中[)0,2)απ∈,点P 的轨迹记为曲线1C ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点Q 在曲线21:)4C ρπθ=+上. (1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)当0,02ρθπ≥≤<时,求曲线1C 与曲线2C 的公共点的极坐标. D .(选修4-5:不等式选讲)已知实数0x >,0y >,0z >,证明:1239()()2462yx z x y z ++++≥.【选做题】第22题、23题,每题10分,共计20分.22.已知正六棱锥S ABCDEF -的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率(P X 的值;(2)求X 的分布列,并求其数学期望()E X .23.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=(1+1n 2+n)a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).2017年高考模拟试卷(9)参考答案南通市数学学科基地命题一、填空题1. {}2,5.2. 15.3.-4. 4. 0.5. 5. 26y x =-.6. 60.7. 30. 线性规划或待定系数法,设甲、乙混货物分别为x ,y 克,由题意3x+4y 1005x+2y 120≥⎧⎨≥⎩,设x+y=34)(52)x y x y λμ+++(,解得,31==λμ,,即可.8.. 9.. 设CA=x,则PQ=2CPcos<CAP=([3,))x ∈+∞,据此可得2PQ ≤<. 10. 1e. 易知函数()f x 在(],0-∞上有一个零点,所以由题意得方程ln 0ax x -=在()0+∞,上恰有一解,即ln x a x =在()0+∞,上恰有一解. 令ln ()x g x x =,21ln ()0x g x x -'==,得e x =,当()0,e x ∈时,()g x 单调递增,当()e ,+x ∈∞时,()g x 单调递减,所以()1e ea g ==. 11.9.223331212922k x x x x x=+=++≥,也可以求导. 12. 116-.设弦AB 中点为M ,则()OP BP OM MP BP MP BP ⋅=+⋅=⋅ , 若MP BP ,同向,则0OP BP ⋅> ;若MP BP ,反向,则0OP BP ⋅< , 故OP BP ⋅的最小值在MP BP ,反向时取得,此时1||||MP BP += ,2||||1||||()216MP BP OP BP MP BP +⋅=-⋅-=- ≥, 当且仅当1||||4MP BP == 时取等号,即OP BP ⋅ 的最小值是116-.13.(方法一)由题意,得sin sin ααββ⎧⎪⎨=⎪⎩所以αβ,是方程sin x x即方程()πsin 3x -=5ππ()26k k αβ+=+∈Z,所以tan()αβ+=(方法二)同上,αβ,sin 0x x -+的两根.设()sin f x x x =-+()cos f x x x '=-.令()0f x '=,得0tan x =,所以02x αβ+=,所以(方法三)直线210x y +-=交单位圆于A B ,两点, 过O 作OH AB ⊥,垂足为H ,易知OH =因为OC 60COH ∠=︒,即1502αβ+=︒,所以tan()tan300αβ+=︒=14.95⎧-⎨⎩⎭.32()322x x a x f x x a x a ⎧--⎪=⎨⎪--+-<⎩,≥,,,当x a ≥时,320x x --=,得11x =-,23x =,结合图形知,① 当1a <-时,313x -,,成等差数列,则35x =-,代入3220x a x --+-=得,95a =-; ② 当13a -≤≤时,方程3220x a x--+-=,即22(1)30x a x +-+=的根为34x x ,, 则343x x =,且3432x x +=,解得4x =,又342(1)x x a +=-,所以a .③ 当3a >时,显然不符合. 所以a的取值集合95⎧-⎨⎩⎭. 二、解答题:本大题共6小题,共90分.15. (1)因为tan α=2,所以sin αcos α=2,即sin α=2cos α.又sin 2α+cos 2α=1,所以5cos 2α=1,即cos 2α=15. 所以 cos2α=2cos 2α-1=-35.(2)由α∈(0,π),且tan α=2>1,得α∈(π4,π2),所以2α∈(π2,π). 由题知cos2α=-35,所以sin2α=45.又因为β∈(0,π),cos β=-7210∈(-1,0),所以β∈(π2,π), 所以sin β=210,且2α-β∈(-π2,π2).因为sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22, 所以2α-β=-π4.16.(1)因为BD 垂直平分AC ,所以BA BC =,在△ABC 中,因为120ABC ∠=︒, 所以30BAC ∠=︒.因为△ACD 是正三角形,所以60DAC ∠=︒, 所以90BAD ∠=︒,即AD AB ⊥.因为=1AB ,120ABC ∠=︒,所以AD AC == 又因为1PA =,2PD =,由222PA AD PD +=, 知90PAD ∠=︒,即AD AP ⊥.因为AB AP ⊂,平面PAB ,AB AP A = , 所以AD ⊥平面PAB .(2)(方法一)取AD 的中点H ,连结CH ,NH. 因为N 为PD 的中点,所以HN ∥PA , 因为PA ⊂平面PAB ,HN ⊄平面PAB , 所以HN ∥平面PAB .由△ACD 是正三角形,H 为AD 的中点,所以CH AD ⊥.由(1)知,BA AD ⊥,所以CH ∥BA , 因为BA ⊂平面PAB ,CH ⊄平面PAB , 所以CH ∥平面PAB .因为CH HN ⊂,平面CNH ,CH HN H = , 所以平面CNH ∥平面PAB . 因为CN ⊂平面CNH , 所以CN ∥平面PAB .(方法二)取PA 的中点S ,过C 作CT ∥AD 交AB 的延长线于T ,连结ST ,SN .因为N 为PD 的中点,所以SN ∥AD ,且12SN AD =,因为CT ∥AD ,所以CT ∥SN . 由(1)知,AB AD ⊥,所以CT AT ⊥, 在直角△ CBT 中,1BC =,60CBT ∠=︒, 得CT =由(1)知,AD =12CT AD =,所以CT SN =.所以四边形SNCT 是平行四边形,HPABCDMNPA BCDMNTS所以CN ∥TS .因为TS ⊂平面PAB ,CN ⊄平面PAB , 所以CN ∥平面PAB .17.(1)由题意知,124()2b b =-=,解得a =1b =,所以椭圆的方程为2212x y +=.(2)① 由(2)N t ,,(01)A ,,(01)B -,,则 直线NA 的方程为11y x t =+,直线NB 的方程为31y x =-.由221122y x t x y ⎧=+⎪⎨⎪+=⎩,得,222422.2t x t t y t ⎧=-⎪+⎨-⎪=+⎩,,故()2224222t t t t P --++,. 由223122y x t x y ⎧=-⎪⎨⎪+=⎩,得,222121818.18t x t t y t ⎧=⎪+⎨-⎪=+⎩,,故()22212181818t t t t Q-++,. 所以直线PM 的斜率222221262482PMt t t k t t t ---+==-+, 直线QM 的斜率22218161812818QMt t t k t t t ---+==+,所以PM QM k k =,故P M Q ,,三点共线.② 由①知,11k t =,213k t =,2368t k t-=.所以21323122463182t k k k k k k t t t-+-=⨯-=-, 所以132312k k k k k k +-为定值12-.18.(1)设OP =r ,则l =r ·2θ,即r =l2θ,所以S 1=12lr =l 24θ,θ∈(0,π2).(2)设OC =a ,OD =b .由余弦定理,得l 2=a 2+b 2-2ab cos2θ,所以l 2≥2ab -2ab cos2θ.所以 ab ≤l 22(1-cos2θ),当且仅当a =b 时“=”成立.所以S △OCD =12ab sin2θ≤l 2sin2θ4(1-cos2θ)=l 24tan θ,即S 2=l 24tan θ.(3)1S 2-1S 1=4l 2(tan θ-θ),θ∈(0,π2),. 令f (θ)=tan θ-θ,则f '(θ)=(sin θcos θ)'-1=sin 2θcos 2θ.当θ∈[0,π2)时,f '(θ)>0,所以f (θ)在区间[0,π2)上单调增.所以,当θ∈(0,π2)时,总有f (θ)>f (0)=0,即1S 2-1S 1>0,即S 1>S 2.答:为使养殖区面积最大,应选择方案一. 19. (1)易得2143a =.(2)由111241n n n a a S +-=-,得11241n nn n n a a a a S ++-=-,所以11241n n n n na a S a a ++-=-①.所以12121241n n n n n a a S a a +++++-=-②,由②-①,得12112112n n n n n n n n na a a aa a a a a +++++++=---.因为10n a +≠,所以22112n nn n n na a ++++=-. 所以121112n n n n n n a a a a a a +++++-=--,即12111n nn n n na a a a a a ++++-=--,即11n n b b +-=,所以数列{}n b 是公差为1的等差数列. 因为112134a b a a ==-,所以数列{}n b 的通项公式为1n b n =-.(3)由(2)知,114n n n a n a a +=--,所以11431141n n an a n n ++=+=--,所以14(1)141n n a a n n +=+--,所以数列41n a n ⎧⎫⎨⎬-⎩⎭是常数列.由124113a =⨯-,所以2(41)3n a n =-.(方法一)由m p r a a a ,,(m p r <<)成等比数列,则41m -,41p -,41r -成等比数列,所以2(41)(41)(41)p m r -=--, 所以2168164()0p p mr m r --++=,即2424()0p p mr m r --++=(*).(途径一)(*)式即为2424()4p p mr m r mr -=-+<-,所以2211(2))22p -<,即11222p -<,所以p <2p mr <.(途径二)(*)式即为24241p p rm r -+=-.由222222(42)(42)(41)()0414141p p r p p r r r p p r mr p r p r r r -+-+----=⋅-==>---,所以2p mr <.(方法二)由m p r a a a ,,(m p r <<)成等比数列, 则41m -,41p -,41r -成等比数列, 记4m α=,4p β=,4r γ=(1αβγ<<<), 则有1α-,1β-,1γ-成等比数列,所以2(1)(1)(1)βαγ-=--,即22()ββαγαγ-=-+.若2βαγ=,即2p mr =时,则2αγβ+=,所以αβγ==,矛盾; 若2βαγ>,则22()0βαγβαγ-+=->,所以1()12βαγ>+>,所以[][]21(2αγββαγαγαγαγαγαγ+---+>-+--+=->, 矛盾.所以2βαγ<,即2p mr <.20. (1) 由题意知曲线()y f x =过点(1,0),且'(1)e f =;又因为222'()ln e x a f x a x b x x+=-++⎛⎫ ⎪⎝⎭,则有(1)e(2)0,'(1)e()e,f b f a b =+==+=⎧⎨⎩解得3,2a b ==-.(2) ①当2a =-时,函数()y f x =的导函数22'()e 2ln 0x f x x b x =--+=⎛⎫ ⎪⎝⎭,若'()0f x =时,得222ln b x x=+,设22()2ln g x x x =+(0)x > . 由2332424'()x g x x x x-=-=0=,得x =1ln 2g =+.当0x <<时,'()0g x <,函数()y g x =在区间)上为减函数,()(1ln 2,)g x ∈++∞;仅当1ln 2b >+时,()b g x =有两个不同的解,设为1x ,2x 12()x x <.此时,函数()y f x =既有极大值,又有极小值.②由题意2e ln x a x b xkx ++⎛⎫≥ ⎪⎝⎭对一切正实数x 恒成立,取1x =得(2)e k b ≤+.下证2e ln e (2)x a x b xb x ++⎛⎫≥+ ⎪⎝⎭对一切正实数x 恒成立.首先,证明e e xx ≥. 设函数()e e xu x x =-,则'()e e xu x =-,当1x >时,'()0u x >; 当1x <时,'()0u x <;得e e (1)0xx u -=≥,即e e xx ≥,当且仅当都在1x =处取到等号.再证1ln 1x x+≥. 设1()ln 1v x x x=+-,则21'()x v x x -=,当1x >时,'()0v x >;当1x <时,'()0v x <;得()(1)0v x v =≥,即1ln 1x x+≥,当且仅当都在1x =处取到等号. 由上可得2e ln (2)e x a x b xb x ++⎛⎫≥+ ⎪⎝⎭,所以min()(2)e f x b x ⎛⎫=+⎪⎝⎭,即实数k 的最大值为(2)e b +.数学Ⅱ(附加题)21. A. 连结PQ ,因为四边形ACQP 是1O 的内接四边形, 所以A PQD ∠=∠, 又在2O 中,PBD PQD ∠=∠,所以A PBD ∠=∠,所以AC ∥BD . B .(1) 设1234A ⎛⎫=⎪⎝⎭,则12234A ==-, 1213122A --⎛⎫⎪∴= ⎪-⎝⎭, 21582131461122M -⎛⎫⎛⎫⎛⎫ ⎪∴== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. (2)11112x x x x x M M y y y y y -'''-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=∴== ⎪ ⎪ ⎪ ⎪ ⎪⎪'''-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即,2,x x y y x y ''=-⎧⎨''=-+⎩ 代入22221x xy y ++=可得()()()()2222221x y x y x y x y ''''''''-+--++-+=,即22451x x y y ''''-+=,故曲线C '的方程为22451x xy y -+=.C. (1)曲线1C :22(1)2x y ++=,极坐标方程为22cos 10ρθ+-= 曲线2C 的直角坐标方程为1y x =-; (2) 曲线1C 与曲线2C 的公共点的坐标为(0,1)-,极坐标为3(1,)2π. D. 因为0x >,0y >,0z >,所以1233x y z++,2463y x z++, 所以1239()()2462yx z x y z ++++≥.当且仅当::1:2:3x y z =时,等号成立.22.(1)从7个顶点中随机选取3个点构成三角形,共有37=35C种取法.其中X =ABF ,这类三角形共有6个.因此(376635P X C ===. (2)由题意,X2,其中X =ABF ,这类三角形共有6个;其中2X =的三角形有两类,如△PAD (3个),△PAB (6个),共有9个;其中X =PBD ,这类三角形共有6个;其中X =CDF ,这类三角形共有12个;其中X =BDF ,这类三角形共有2个.因此(635P X ==,()9235P X ==, (635P X =,(1235P X ==,(235P X ==. 所以随机变量X 的概率分布列为:所求数学期望()E X 69612223535353535+⨯+++. 23. (1)①当n =2时,a 2=2,不等式成立.②假设当n =k (k ≥2)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=(1+1k (k +1))a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①,②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=(1+1n 2+n )a n +12n ≤(1+1n 2+n +12n +1)a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln(1+1n 2+n +12n +1)+ln a n <ln a n +1n 2+n +12n +1,故 ln a n +1-ln a n <1n 2+n +12n +1(n ≥2),求和可得ln a n -ln a 2<12⨯3+1 3⨯4+…+1 (n -1)n+123+124+…+12n =(12-13)+(13-14)+…+(1n -1-1n )+123·1-12n 21-12=12-1n +122-12n <34.由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2), 而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。

相关文档
最新文档