第一次阶段性测试
第一次阶段性检测B卷(考试版)【测试范围:第一、二单元】(部编版)A4版

2022-2023学年下学期阶段性检测B卷七年级·语文(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一单元、第二单元。
5.考试结束后,将本试卷和答题卡一并交回。
一、积累与运用(共34分)1.阅读下列文字,给加点字注音,根据拼音写汉字。
(4分)鲁迅先生是中国无产阶级文学的diàn______基人。
他是镶qiàn______在中国文学星空中的一颗璀璨的明星,他用生命的全部光芒,划亮了充塞天地之间的黑暗和寂静。
在他的作品中有很多人物形象,如:阿Q、祥林嫂、孔乙己、闰土等,在中国妇孺.______皆知。
阅读着他的作品,我们仿佛又看到了漆黑寒夜中,他那横贯亘.______古和穿透世人灵魂的深邃目光。
2.下列词语没有错别字的一项是(2分)()A.嗥鸣调羹疙瘩警报迭起B.誓言高梁辔头群蚁排衙C.镐头深宵攀谈历尽心血D.谣言田垄班斓莫名其妙3.下列句子中加点成语使用有误的一项是()A.这件事错综复杂,虽多方核查,仍给人以扑朔迷离....之感,使人难明真相。
B.黄昏时,古城五彩的灯光把渠水辉映得五彩斑斓....。
C.新冠肺炎疫情暴发,钟南山院士再次挺身而出奔赴一线,是妇孺皆知....的“抗疫英雄”。
D.党员干部凡事要首当其冲....,工作中迎难而上,公益活动也要带头参加。
4.下列句子没有语病的一项是(2分)()A.多所学校举行世界环境日教育活动,其目的是让学生了解环保知识和环境意识。
B.能否在公共场所保持人与人之间的安全距离,是巩固防疫成果的重要前提。
C.通过观看谷爱凌的短片,我们明白了自律是取得成功的关键。
第一次阶段性月考测试(试题)-2024-2025学年五年级上册语文统编版

五年级上册语文第一次阶段性测试一、看拼音,写词语。
yǐn bìyǔn nuòdǎn qièqīn lüèpíng héng ()()()()()二、辩字组词。
嫌()框()浸()隔()协()歉()眶()侵()融()胁()三、选择题。
1.下列加点字读音全部正确的一组是()A.抵御.(xiè)上卿.(qīng)浩瀚.(hàn)强.逼(qiǎng)B.间.隔(jiàn)懒惰.(duò)谴.责(qiǎn)击缶.(fǒu)C.削.弱(xiāo)岔.道(chà)绰.绰(zhuó)游隼.(sǔn)D.树冠.(guàn)战袍.(páo)推辞.(cí)蔺.相如(lìng)2.要提高阅读的速度,下面同学的阅读方法不正确的一项是()A.集中注意力,连词成句地读,不要回读。
B.眼睛要看得快,读任何书都要尽量做到一目十行。
C.边读边想,带着问题或抓住关键词读,及时捕捉有用信息。
D.遇到不懂的词语,不影响阅读的可以不管它,继续往下读。
四、用“然”字组成不同的词填在下列句子中的括号里。
(1)这么难的一道奥数题,小亮()没用三分钟就做出来啦。
(2)()桂花树的样子笨笨的,但是我()喜欢它。
(3)电灯()灭了,屋子里变得黑漆漆的。
(4)都说“桂林山水甲天下”,身临其境一看()名不虚传。
五、把词语补充完整。
()负()名()天()地()头()节守()相()香()十()日()而()六、按照要求改写句子。
1.那些美好的印象,我一辈子也不会忘记。
(改为反问句)2.赵州桥横跨在37米宽的河面上。
(缩句)3.桂花纷纷落下来。
(改为比喻句)七、根据语境默写诗句。
俗话说:“一寸光阴一寸金,寸金难买寸光阴。
”古今中外有远大志向的人,没有一个不惜时如金的。
陶渊明的《杂诗》中直言:“,一日难再晨。
第一次阶段性月考测试(试题)-2024-2025学年三年级上册语文统编版

三年级上册语文第一次阶段性测试一、看拼音,写词语。
xiān yàn fúzhuāng cán júzōng hóng ()()()() fēng shōu pái lièguīzéyán liào ()()()()二、比一比,再组词。
扮()杨()油()挑()盼()扬()邮()桃()三、选择题。
1.下列字形有误的一项是()A.尽头勾住寒山五谷丰登B.手印排烈残月层林浸染C.加紧安静国旗披头散发D.阵雨双臂所有一字不漏2.下列对《山行》理解有误的一项是()A.这首诗描绘的是春之色,展现出一幅动人的山林春色图。
B.这首诗写了寒山、石径、白云、人家、红叶,构成一幅和谐统一的画面。
C.这首诗中“生”字用得好,“生”字使人联想到白云升腾、缭绕和飘浮种种动态,也说明了山很高。
D.这首诗不但即兴咏景,而且咏物言志,歌颂大自然的秋色美,六、句子加工厂。
1.大家在大青树下做游戏,把许多小鸟招引来了。
(改为“被”字句)2.他们想在放学以前出来游戏。
他们的老师要罚他们站墙角的。
(用恰当的关联词语连成一句话)3.用加点词语仿写句子。
雨一.来,他们便.放假了。
(1)风一吹,他们便。
(2)。
八、课内语段阅读。
秋天的雨,有一盒五彩缤纷的颜料。
你看,它把黄色给了银杏树,黄黄的叶子像一把把小扇子,扇哪扇哪,扇走了夏天的炎热。
它把红色给了枫树,红红的枫叶像一枚枚邮票,飘哇飘哇,邮来了秋天的凉爽。
金黄色是给田野的,看,田野像金色的海洋。
橙红色是给果树的,橘子、柿子你挤我碰,争着要人们去摘呢!菊花仙子得到的颜色就更多了,紫红的、淡黄的、雪白的美丽的菊花在秋雨里频频点头。
秋天的雨,藏着非常好闻的气味。
梨香香的,菠萝甜甜的,还有苹果、橘子,好多好多香甜的气味,都躲在小雨滴里呢!小朋友的脚,常被那香味勾住。
秋天的雨,吹起了金色的小喇叭,它告诉大家,冬天快要来了。
2022-2023学年人教版九年级数学上册第一次阶段性(21-1-23-3)综合测试题(附答案)

2022-2023学年人教版九年级数学上册第一次阶段性(21.1-23.3)综合测试题(附答案)一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列函数表达式中,是二次函数的是()A.y=B.y=x+2 C.y=x2+1 D.y=(x+3)2﹣x23.若α和β是关于x的方程x2+bx﹣1=0的两根,且αβ﹣2α﹣2β=﹣11,则b的值是()A.﹣3B.3C.﹣5D.54.“玉兔”在月球表面行走的动力主要来自于太阳光能,要使接收太阳光能最多,就要使光线垂直照射在太阳光板上.某一时刻太阳光的照射角度如图所示,要使得此时接收的光能最多,那么太阳光板绕支点A逆时针旋转的最小角度为()A.44°B.46°C.36°D.54°5.已知点P(m2,n),点Q(4m+5,n),下列关于点P与点Q的位置关系说法正确的是()A.点P在点Q的右边B.点P在点Q的左边C.点P与点Q重合D.点P与点Q的位置关系无法确定6.在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.7.抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为()①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.A.②③④B.①②④C.①③D.①②③④8.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了x个人,下列结论错误的是()A.1轮后有(x+1)个人患了流感B.第2轮又增加(x+1)•x个人患流感C.依题意可得方程(x+1)2=121D.不考虑其他因素经过三轮一共会有1210人感染9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C 出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.10.如图,将抛物线y=x2﹣2x﹣3在x轴下方部分沿x轴翻折,其余部分保持不变,得到图形C1,当直线y=x+b(b<1)与图形C1恰有两个公共点时,则b的取值范围是()A.﹣3<b<1B.﹣3≤b<1C.﹣1≤b<1D.﹣1<b<1二、填空题:(本大题共6个小题,每题3分,共18分)11.已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=.12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.13.直线y=x+2关于原点中心对称的直线的方程为.14.如果一元二次方程x2+3x﹣2=0的两个根为x1,x2,则x13+3x12﹣x1x2+2x2=.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,抛物线y=x2﹣ax与函数y=x的图象在第一象限交点的横坐标为4,点A(t,y1)在抛物线上,点B(t+1,y2)在正比例函数的图象上,当0≤t≤3时,y2﹣y1的最大值为.三、解答题(本大题共9个小题,共72分)17.解方程:2x2﹣2=3x.18.如图,在等腰直角△ACF中,AC=AF,△ABE是由△ACF绕点A按顺时针方向旋转得到的,连接EF、BC.(1)求证:EF=BC;(2)当旋转角为40°时,求∠BCF的度数.19.已知关于x的方程x2﹣(k+1)x+k2+1=0(1)k取什么值时,方程有两个实数根;(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.20.如图,在△ABC中,AC=BC,∠ACB=90°,D是线段AC延长线上一点,连接BD,过点A作AE⊥BD于E.(1)求证:∠CAE=∠CBD.(2)将射线AE绕点A顺时针旋转45°后,所得的射线与线段BD的延长线交于点F,连接CE.①依题意补全图形;②用等式表示线段EF,CE,BE之间的数量关系,并证明.21.如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.22.成都市将在2022年举办第31届世界大学生夏季运动会,成都大运会吉祥物是一只名叫“蓉宝”的大熊猫.(1)据市场调研发现,某工厂今年四月份共生产200个“蓉宝”,该工厂为增大生产量,平均每月生产量增加20%,则该工厂在今年第二季度(4、5、6月)共生产个“蓉宝”;(2)已知某商店以30元的单价购入一批吉祥物“蓉宝”准备进行销售,据市场分析,若每个“蓉宝”售价为60元,则每天可售出40个.商店经过调研发现,如果每个“蓉宝”降价1元,那么平均每天可多售出8个,若商店想平均每天盈利2000元,销售单价应定为多少元?23.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.24.在平面直角坐标系xOy中,抛物线G:y=ax2+ax+c(a、c为常数且a<c)过点A(1,0),顶点为B.(1)用含a的式子表示c;(2)判断点B所在象限,并说明理由;(3)若直线l:y=2x﹣b经过点A,且与抛物线G交于另一点C,当△ABC的面积为时,求y=ax2+ax+c在﹣1<x<1时的取值范围.25.如图,在平面直角坐标系中,抛物线C1:y=﹣x2+2x+3分别交x轴,y轴于点A,B和点C,抛物线C2与抛物线C1关于直线y=对称,两条抛物线的交点为E,F(点E在点F的左侧).(1)求抛物线C2的表达式;(2)将抛物线C2沿x轴正方向平移,使点E与点C重合,求平移的距离;(3)在(2)的条件下:规定抛物线C1和抛物线C2在直线EF下方的图象所组成的图象为C3,点F(x1,y1)和Q(x2,y2)在函数C3上(点P在点Q的右侧),在(2)的条件下,若y1=y2,且x1﹣x2=1,求点P坐标.参考答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.2.解:∵y=中y与x成反比例函数关系,∴选项A不符合题意;∵y=x+2中y与x成一次函数关系,∴选项B不符合题意;∵y=x2+1中y与x成二次函数关系,∴选项C符合题意;∵y=(x+3)2﹣x2=6x+9,是一次函数定义,∴选项D不符合题意;故选:C.3.解:∵α和β是关于x的方程x2+bx﹣1=0的两根,∴α+β=﹣b,αβ=﹣1,∴αβ﹣2α﹣2β=αβ﹣2(α+β)=﹣1+2b=﹣11.∴b=﹣5.故选:C.4.解:一束光线与太阳光板的夹角为134°,要使光线垂直照射在太阳光板上,则太阳光板绕支点A逆时针旋转的最小角度为134°﹣90°=44°,故选:A.5.解:∵m2﹣(4m+5)=(m﹣2)2﹣9,∴无法确定点P与点Q的位置关系,故选:D.6.解:当a>0时,一次函数过一二三象限,抛物线开口向上,对称轴x=<0,故B、C不符合题意,当a<0时,一次函数过二三四象限,抛物线开口向下,对称轴x=>0,故A不符合题意.故选:D.7.解:∵y=(x﹣2)2﹣9,∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),∴x=2时,y取最小值﹣9,①正确.∵x>2时,y随x增大而增大,∴y2>y1,②正确.将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.令(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,∴5﹣(﹣1)=6,④正确.故选:B.8.解:患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第一轮后共有(x+1)人患流感,故A正确,不符合题意;第二轮作为传染源的是(x+1)人,则增加传染x(x+1)人,故B正确,不符合题意;根据题意列方程得到(x+1)2=121,故C正确,不符合题意;解(x+1)2=121得x1=10,x2=﹣12.经检验,x=10符合题意.答:平均一个人传染了10个人.经过三轮传染后患上流感的人数为:121+10×121=1331(人),故D错误,符合题意.故选:D.9.解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.10.解:如图,当y=0时,x2﹣2x﹣3=0,即:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),当直线y=x+b经过点B时,与新图象有一个公共点,把B(3,0)代入y=x+b得:3+b=0,∴b=﹣3,当直线y=x+b经过点A时,与新图象有三个公共点,把A(﹣1,0)代入y=x+b中得:﹣1+b=0,∴b=1,∴当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围是﹣3<b<1.故选:A.二、填空题:(本大题共6个小题,每题3分,共18分)11.解:根据题意,得=0,将a=﹣1,b=a,c=﹣a+1代入,得=0,所以解得:a=2.故答案为:2.12.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠ACB=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠ACB=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°.故答案为:82°.13.解:线y=x+2关于原点中心对称的直线的方程为y=x﹣2.故答案为:y=x﹣2.14.解:∵一元二次方程x2+3x﹣2=0的两个根为x1,x2,∴x12+3x1﹣2=0即x12+3x1=2,x1+x2=﹣3,x1x2=﹣2,∴x13+3x12﹣x1x2+2x2=x1(x12+3x1)+2x2﹣x1x2=2(x1+x2)﹣x1x2=2×(﹣3)+2=﹣4.故答案为:﹣4.15.解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.16.解:当x=4时,,∴它们的交点为(4,2),把(4,2)代入,得8﹣4a=2,∴,∴,∴,,∴y2﹣y1====,∵0⩽t⩽3,∴t=2时,y2﹣y1有最大值,最大值为,故答案为:.三、解答题(本大题共9个小题,共72分)17.解:方程整理得:2x2﹣3x﹣2=0,分解因式得:(2x+1)(x﹣2)=0,所以2x+1=0或x﹣2=0,解得:x1=﹣,x2=2.18.(1)证明:∵△ABE是由△ACF绕点A按顺时针方向旋转得到的,∴△ABE≌△ACF,∴AE=AF,AB=AC;∠BAE=∠CAF,∴∠BAC=∠EAF,∵△ACF是等腰直角三角形,∴AE=AF=AB=AC,∴△ACB≌△AFE(SAS),∴EF=BC;(2)解:∵旋转角为40°,∴∠CAB=40°,∵AB=AC,∴∠ACB=70°,∵△ACF是等腰直角三角形,∴∠ACF=45°,∴∠BCF=∠ACB﹣∠ACF=25°.19.解:(1)Δ=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵△≥0,即2k﹣3≥0,∴k≥,∴当k≥时,方程有两个实数根;(2)由|x1|=x2,①当x1≥0时,得x1=x2,∴方程有两个相等实数根,∴Δ=0,即2k﹣3=0,k=.又当k=时,有x1=x2=>0∴k=符合条件;②当x1<0时,得x2=﹣x1,∴x1+x2=0由根与系数关系得k+1=0,∴k=﹣1,由(1)知,与k≥矛盾,∴k=﹣1(舍去),综上可得,k=.20.解:(1)∵∠ACB=90°,∴∠BCD=90°,∴∠CBD+∠BDC=90°,∵AE⊥BD,∴∠AED=90°,∴∠CAE+∠BDC=90°,∴∠CAE=∠CBD;(2)①由题意补全图形如图所示:②过点C作CG⊥CE交AE于G,∴∠BCG+∠BCE=90°,∵∠ACB=90°,∴∠ACG+∠BCG=90°,∴∠ACG=∠BCE,由(1)知,∠CAE=∠CBD,在△ACG和△BCE中,,∴△ACG≌△BCE(ASA),∴AG=BE,CG=CE,在Rt△ECG中,CG=CE,∴EG=CE,∴AE=AG+EG=BE+CE,由旋转知,∠EAF=45°,∵∠AEF=90°,∴∠F=90°﹣∠EAF=45°=∠EAF,∴EF=AE,∴EF=BE+CE.21.解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),∴,解得b=﹣2,c=﹣3,∴抛物线的解析式:y=x2﹣2x﹣3;(2)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D点坐标为(1,﹣4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C点坐标为(0,﹣3),又∵B点坐标为(2,﹣3),∴BC∥x轴,∴S△BCD=×2×1=1,设抛物线上的点P坐标为(m,m2﹣2m﹣3),∴S△PBC=×2×|m2﹣2m﹣3﹣(﹣3)|=|m2﹣2m|,当|m2﹣2m|=4×1时,解得m=1±,当m=1+时,m2﹣2m﹣3=1,当m=1﹣时,m2﹣2m﹣3=1,综上,P点坐标为(1+,1)或(1﹣,1).22.解:(1)200+200×(1+20%)+200×(1+20%)2,=200+200×1.2+200×1.44=200+240+288=728(个).故答案为:728.(2)设每个“蓉宝”降价x元,则每个的销售利润为(60﹣x﹣30)=(30﹣x)元,每天可售出(40+8x)个,依题意得:(30﹣x)(40+8x)=2000,整理得:x2﹣25x+100=0,解得:x1=5,x2=20,当x=5时,60﹣x=60﹣5=55;当x=20时,60﹣x=60﹣20=40.答:销售单价应定为40元或55元.23.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.24.解:(1)y=ax2+ax+c过点A(1,0),∴a+a+c=0,∴c=﹣2a;(2)y=ax2+ax﹣2a=a(x+)2﹣a的顶点B为(﹣,﹣a),∵c=﹣2a,a<c,∴a<﹣2a,∴a<0,∴点B在第二象限;(3)y=2x﹣b经过点A(1,0),∴b=2,由得:,即C(,),过点B作BD∥y轴,交l:y=2x﹣2于点D,则D(﹣,﹣3),∴S△ABC=BD•|x A﹣x C|=(﹣a+3)(1﹣+2)=(﹣a+3)(3﹣),∴(﹣a+3)(3﹣)=,解得a=﹣,∴y=﹣x2﹣x+顶点B(﹣,),∴﹣1<x<1时,0<y≤.25.解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线C1的顶点坐标为:(1,4),∵点(1,4)关于直线y=对称点为(1,﹣1),抛物线C2与抛物线C1关于y=对称,∴抛物线C2的顶点为(1,﹣1),且抛物线C2与抛物线C1的形状、大小相同,开口方向相反,∴抛物线C2的表达式为y=(x﹣1)2﹣1=x2﹣2x;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴C(0,3),设抛物线C2向右平移m个单位后E与C(0,3)重合,即y=(x﹣m)2﹣2(x﹣m)过(0,3),∴3=m2+2m,解得m=1或m=﹣3(舍去),∴平移的距离是1;(3)由(2)知,抛物线C2向右平移1个单位,可得y=(x﹣1)2﹣2(x﹣1)=x2﹣4x+3,∵x1﹣x2=1,∴x2=x1﹣1,∴Q(x1﹣1,y2),当Q在C左侧图象上时,如图:∵Q在抛物线C1上,P在抛物线C2上,∴y2=﹣(x1﹣1)2+2(x1﹣1)+3,y1=x12﹣4x1+3,∵y1=y2,∴﹣(x1﹣1)2+2(x1﹣1)+3=x12﹣4x1+3,解得x1=2+(舍去)或x1=2﹣,∴P1(2﹣,);当Q在C、B之间的图象上时,分两种情况:①P在抛物线C1上,如图:∵y1=﹣x12+2x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴﹣x12+2x1+3=(x1﹣1)2﹣4(x1﹣1)+3,即得x1=2+或x1=2﹣(舍去),∴P2(2+,﹣);②P在C、B之间的图象上,如图:∵y1=x12﹣4x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴x12﹣4x1+3=(x1﹣1)2﹣4(x1﹣1)+3,解得x1=,∴P3((,﹣).综上所述,点P坐标为:(2﹣,)或(2+,﹣)或(,﹣).。
江苏省宝应县画川高级中学2024-2025学年高二上学期第一次阶段性调研测试地理试卷(含答案)

2024-2025学年第一学期画川高中高二年级第一次阶段性调研测试地理试卷一、单选题(共24题,每题2分,共48分。
)下图所示照片是摄影师在夜晚采用连续曝光技术拍摄的,照片中的弧线为恒星视运动轨迹。
读图完成下面小题。
1.据图判断,摄影师拍摄的地点位于()A.低纬度地区B.中纬度地区C.北极附近D.南极附近2.图中a恒星视运动转过的角度约为80°,据此判断摄影师连续拍摄的时间为()A.1个多小时B.3个多小时C.5个多小时D.7个多小时下图中阴影部分表示黑夜。
读图,完成下面小题。
3.图中所示季节相同的是()A.甲、乙B.甲、丁C.乙、丁D.丙、丁4.四幅图中,北京地方时最接近正午时刻的为()A.甲B.乙C.丙D.丁国际空间站距地面约420km,每90分钟环绕地球一周。
空间站反射阳光,在一定条件下,人们肉眼可以看到明亮的光点划过天空。
下图为“国际空间站某时段轨迹和某时刻位置示意图”,图中阴影表示黑夜。
据此完成下面小题。
5.空间站到达北京上空约需()A.15分钟B.30分钟C.45分钟D.60分钟6.空间站到达北京上空时,北京时间大致是()A.9:40B.10:10C.10:40D.11:107.空间站从图示位置飞行1小时,在这期间能看到空间站的地点是()A.圣地亚哥B.卡马国C.马维尔拉D.上海我国某中学生发现,在书桌的固定观测点上,每年仅有一天通过窗户既可观察到日出也可看到日落。
下图为该日日出、日落的位置示意图。
据此完成下面小题。
8.若乙为该日日出位置,则该窗朝向()A.正南B.东北C.正北D.西南9.若该日日出为北京时间6时56分,日落地方时为18时59分,则该学生所在地最可能是()A.济南(117°E)B.海口(110°E)C.和田(80°E)D.拉萨(90°E)位于新西兰南岛的亚伯塔斯曼国家公园内,有一处非常奇特的自然景观,其形态像一个惟妙惟肖的从中间剖开的苹果,被称为“分裂苹果岩”。
九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:__________姓名:___________得分:__________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(23-24九年级上·江苏盐城·阶段练习)下列方程是一元二次方程的是()A.2x+y=1B.x2=0C.x x+3=x2 D.x2+3x=1【答案】B【分析】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.根据一元二次方程的定义逐个判断即可.【详解】解:A、2x+y=1是二元一次方程,故A选项不符合题意;B、x2=0是一元二次方程,故B选项符合题意;C、x x+3=x2整理得3x=0,是一元一次方程,故C选项不符合题意;D、x2+3x=1是分式方程,不是整式方程,故D选项不符合题意;故选:B.2.(24-25九年级上·江苏宿迁·阶段练习)将一元二次方程x x+1=2化为一般形式,正确的是() A.x2+x-2=0 B.x2-x+2=0 C.x2+x=2 D.x2+2x-2=0【答案】A【分析】本题主要考查了一元二次方程的一般式.根据一元二次方程的一般式ax2+bx+c=0a≠0,即可求解.【详解】解:∵x x+1=2,∴x2+x-2=0,故选:A.3.(2024·江苏无锡·一模)下列结论:①三点确定一个圆;②相等的圆心角所对的弧相等;③经过半径的端点并且垂直于这条半径的直线是圆的切线;④圆内接四边形对角互补;⑤三角形的外心到三角形三个顶点的距离都相等;⑥直角三角形的内心在斜边的中点上.正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】本题考查圆的性质,涉及确定圆的条件、圆心角与弧的关系、切线判定、圆内接四边形、三角形的内心与外心定义等知识,根据相关概念,逐项判断即可得到答案,熟记与圆有关的概念与性质是解决问题的关键.【详解】解:①当三点在一条直线上时,无法确定一个圆;故①结论错误;②圆的大小不同,相等的圆心角所对的弧不相等;故②结论错误;③经过半径的端点(不是圆心)并且垂直于这条半径的直线是圆的切线;故③结论错误;④圆内接四边形对角互补;故④结论正确;⑤三角形的外心是三角形外接圆的圆心,到三角形三个顶点的距离都相等;故⑤结论正确;⑥直角三角形的外心在斜边的中点上;故⑥结论错误;综上所述,正确的结论是④⑤,共2个,故选:B .4.(24-25九年级上·江苏南京·阶段练习)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC上的点.连接AC ,若∠BAC =20°,则∠D 的度数为( ).A.100°B.110°C.120°D.130°【答案】B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出∠ADB 及∠BDC 的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴∠ADB =90°,∵∠BAC =20°,∴∠BDC =∠BAC =20°,∴∠ADC =∠ADB +∠BDC =90°+20°=110°,故选:B .5.(2024·江苏无锡·一模)设x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,且x 1+1 x 2+1 =8,则m 的值为()A.1B.-3C.3或-1D.1或-3【答案】A【分析】本题考查了一元二次方程根与系数的关系,解一元二次方程,一元二次方程根的判别式,解题的关键是掌握一元二次方程ax 2+bx +c =0a ≠0 根与系数关系:x 1+x 2=-b a ,x 1⋅x 2=ca.先根据一元二次方程根与系数的关系得出x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,再得出x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,得出关于m 的一元二次方程,求解,再根据判别式检验即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,∴x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,∵x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,∴m 2+2+2m +1 +1=8,整理得:m 2+2m -3=0,m -1 m +3 =0,解得:m =1或m =-3,当m =1时,原方程为x 2-4x +3=0,Δ=b 2-4ac =16-4×1×3=4>0,则原方程有实数根,符合题意;当m =-3时,原方程为x 2+4x +11=0,Δ=b 2-4ac =16-4×1×11=-28<0,则原方程无实数根,不符合题意;综上:m =1.故选:A .6.(2023·湖北武汉·模拟预测)如图,AB 为⊙O 直径,C 为圆上一点,I 为△ABC 内心,AI 交⊙O 于D ,OI ⊥AD 于I ,若CD =4,则AC 为()A.1255B.1655C.25D.5【答案】A【分析】如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,则∠BAD =∠CAD ,∠ABI =∠CBI ,BD=CD,BD =CD =4,由∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,可得ID =BD =4,由垂径定理得OI ⊥AD ,则AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,进而可得BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2,计算求解即可.【详解】解:如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,∴BD=CD,BD =CD =4,∵∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,∴ID =BD =4,∵OI ⊥AD ,∴AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,∴BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2=1255,故选:A .【点睛】本题考查了内心,勾股定理,垂径定理,同弧或等弧所对的圆周角相等,等腰三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(23-24九年级上·江苏泰州·阶段练习)若x 2=x ,则x =.【答案】1或0【分析】移项后分解因式得出x (x -1)=0,推出x =0,x -1=0,求出即可.本题考查了解一元二次方程,掌握方法是解题的关键.【详解】解:x 2=x ,∴x 2-x =0,∴x (x -1)=0,∴x =0,x -1=0,解得:x 1=0,x 2=1,故答案为:1或0.8.(23-24九年级上·江苏盐城·阶段练习)已知一元二次方程x 2-5x +2=0的两个根为x 1、x 2,x 1+x 2则的值为.【答案】5【分析】本题考查了韦达定理,熟练掌握该知识点是解题的关键.根据韦达定理进行计算即可.【详解】解:∵x 2-5x +2=0∴a =1,b =-5∴x 1+x 2=-b a =--51=5故答案为:5.9.(24-25九年级上·江苏南京·阶段练习)若关于x 的方程kx 2-x +1=0有两个不等的实数根,则k 的值为.【答案】k <14且k ≠0【分析】本题考查一元二次方程判别式,熟练掌握方程有两个不相等的实数根,则Δ>0是解题的关键.根据方程有两个不相等的实数根,Δ>0,结合一元二次方程的定义求解即可.【详解】解:由根与系数的关系可知,当一元二次方程有两个不等的实数根,则Δ>0,且k ≠0,即Δ=b 2-4ac =-1 2-4×1×k =1-4k >0,解得,k <14,∴k <14且k ≠0.故答案为:k <14且k ≠010.(22-23九年级上·江苏扬州·单元测试)在半径是20cm的圆中,的圆心角所对的弧长为cm.(结果保留π)【答案】10π【分析】本题考查了弧长的计算,根据弧长公式l=nπr180n是圆心角度数,r是半径,由此即可求解.【详解】解:的圆心角所对的弧长为l=90π×20180=10π,故答案为:10π.11.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是.【答案】90°的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“90°的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“90°的圆周角所对的弦是直径”即可得出答案,故答案为:90°的圆周角所对的弦是直径.12.(2024·江苏扬州·模拟预测)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=34°,则∠A的度数为.【答案】28°/28度【分析】本题考查了切线的性质,圆周角定理,熟知切线的性质与圆周角定理是解题的关键.连接OC,根据切线的性质得∠OCD=90°,求出∠DOC的度数,再根据圆周角定理计算∠A的度数.【详解】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∴∠OCD=90°,∵∠D=34°,∴∠DOC=90°-34°=56°,∴∠A=12∠DOC=28°,故答案为:28°.13.(20-21九年级上·四川绵阳·阶段练习)若关于x的方程ax2+bx+c=0的解为x1=-1,x2=3,则方程a (x -1)2+b (x -1)+c =0的解为.【答案】x 1=0,x 2=4【分析】将第二个方程中的(x -1)看成一个整体,则由第一个方程的解可知,x -1=-1或3,从而求解【详解】解:∵关于x 的方程ax 2+bx +c =0的解为x 1=-1,x 2=3,∴方程a (x -1)2+b (x -1)+c =0的解为x -1=-1或3,解得:x 1=0,x 2=4.【点睛】本题考查一元二次方程的解的概念,正确理解概念,利用换元法解方程是解题关键.14.(2024·江苏泰州·三模)如图,正五边形ABCDE 的边长为6,以顶点A 为圆心,长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是.【答案】1.8【分析】本题主要考查了求圆锥底面圆半径,正多边形内角,熟知圆锥底面圆的周长即为其展开图中扇形的弧长是解题的关键.先利用正多边形内角和定理求出∠A 的度数,再根据圆锥底面圆的周长即为其展开图中扇形的弧长进行求解即可.【详解】解:∵ABCDE 是正五边形,∴∠A =180°×5-35=108°,设底面圆的半径为r ,则2πr =108π×6180,解得r =1.8,故答案为:1.8.15.(22-23九年级上·江苏泰州·阶段练习)如图,⊙M 半径为2,圆心M 坐标(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.【答案】6【分析】本题主要考查点与圆的位置关系,熟练掌握直角三角形斜边上的中线等于斜边的一半得到答案即可.由Rt△APB中AB=2OP得到要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P 即可得到答案.【详解】解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P ,此时OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,∵MP =2,∴OP =3,∴AB=2OP =6,故答案为:6.16.(22-23九年级上·江苏盐城·期中)以正方形ABCD的边为直径作半圆O,过点C作直线切半圆于点F,交边于点E,若△CDE的周长为12,则正方形ABCD的边长为.【答案】4【分析】本题考查了正方形的性质、切线长定理等知识点,利用正方形的性质和圆的切线的判定得出均为圆O的切线是解题关键.根据切线长定理可得AE=EF,BC=CF,然后根据△CDE的周长可求出正方形的边长.【详解】解:在正方形ABCD中,∠BAD=∠ABC=90°,AD=CD=BC=AB,∵CE与半圆O相切于点F,以正方形ABCD的边为直径作半圆O,∴AD,BC与半圆O相切,∴AE=EF,BC=CF,∵△CDE的周长为12,∴EF+FC+CD+ED=12,∴AE+ED+CD+BC=AD+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4.故答案为:4.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(23-24九年级上·江苏常州·期末)解下列方程:(1)x2-4x=12;(2)3x(2x-5)=4x-10.【答案】(1)x1=6,x2=-2;(2)x1=23,x2=52.【分析】本题主要考查解一元二次方程,掌握配方法,因式分解法解一元二次方程是解题的关键.(1)运用配方法解一元二次方程即可求解;(2)运用因式分解法求一元二次方程即可求解.【详解】(1)解:x2-4x=12x2-4x+4=16x-22=16x-2=±4∴x1=6,x2=-2;(2)解:3x(2x-5)=4x-103x2x-5-22x-5=02x-53x-2=0∴2x-5=0或3x-2=0,∴x1=52,x2=23.18.(23-24九年级上·江苏盐城·阶段练习)如图,平面直角坐标系中有一个△ABC.(1)利用网格,只用无刻度的直尺作出△ABC的外接圆的圆心点O;(2)△ABC的外接圆的圆心坐标是;(3)该圆圆心到弦AC的距离为;(4)△ABC最小覆盖圆的半径为.【答案】(1)见解析(2)5,2(3)10(4)10【分析】本题考查了三角形外心的性质,等腰三角形三线合一,勾股定理,熟练掌握以上知识点并利用数形结合思想是解题的关键.(1)根据三角形外心的性质,分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心;(2)根据(1)所求,可由坐标系直接得到答案;(3)取AC的中点P,连接OP,根据等腰三角形三线合一可知OP⊥AC,利用勾股定理求出OP即为所求;(4)利用勾股定理求出CP即可.【详解】(1)解:分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心,如图即为所求:(2)解:由(1)可知,O点坐标为5,2故答案为:5,2.(3)解:取AC的中点P,连接OP,如图,OA=OC则OP⊥AC∵OP=12+32=10∴该圆圆心到弦AC的距离为10故答案为:10.(4)解:由图可知,最小覆盖圆的半径为CP长如图所示,可知CP为所求,利用网格CP=12+32=10故答案为:10.19.(22-23九年级上·江苏泰州·阶段练习)如图,已知AB、MD是⊙O的直径,弦CD⊥AB于E.(1)若CD=16cm,OD=10cm,求BE的长:(2)若∠M=∠D,求∠D的度数.【答案】(1)4cm(2)30°【分析】本题主要考查垂径定理,勾股定理以及圆周角定理,熟练掌握性质定理是解题的关键.(1)由垂径定理求出DE的长,再根据勾股定理求出答案即可;(2)根据圆周角定理求得∠D=1∠BOD,再根据两锐角互余的性质得到答案.2【详解】(1)解:∵弦CD⊥AB,CD=16cm,CD=8cm,∴CE=DE=12在Rt△OED中,OE=OD2-DE2=102-82=6cm,∴BE=OB-OE=10-6=4cm;∠BOD,(2)解:∵∠M=∠D,∠M=12∠BOD,∴∠D=12∵∠D+∠BOD=90°,∠D=30°.20.(24-25九年级上·江苏宿迁·阶段练习)关于x的方程x2-m+4x+3m+3=0.(1)求证:不论m取何值,方程总有两个实数根;(2)若该方程有两个实数根x1,x2,且x1+1=3,求m的值.x2+1【答案】(1)证明见详解(2)m=-54【分析】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x1+x2=m+4,x1x2=3m+3,将x1+1=3展开,代入x2+1求解即可.【详解】(1)证明:a=1,b=-m+4,c=3m+3,∴Δ=m+42≥0,=m-22-4×1×3m+3∴不论m取何值,方程总有两个实数根;(2)解:x1+1=3,x2+1x1x2+x1+x2+1=3,对于方程x2-m+4x+3m+3=0,可得x1+x2=m+4,x1x2=3m+3,∴m+4+3m+3+1=3,解得:m=-5 4.21.(24-25九年级上·全国·单元测试)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的边AB的长为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈(2)羊圈的面积不能达到650m2,理由见解析【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.(1)设羊圈的边AB的长为xm,则边BC的长为72-2xm根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解.【详解】(1)解:设羊圈的边AB的长为xm,则边BC的长为72-2xm,根据题意,得x72-2x=640,化简,得x2-36x+320=0,解方程,得x1=16,x2=20,当x1=16时,72-2x=40,当x2=20时,72-2x=32.答:当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈.(2)不能,理由如下:根据题意,得x72-2x=650,化简,得x2-36x+325=0,∵b2-4ac=-362-4×325=-4<0,∴该方程没有实数根.∴羊圈的面积不能达到650m222.(22-23八年级下·浙江宁波·期末)冬季来临,某超市以每件35元的价格购进某款棉帽,并以每件58的价格出售.经统计,10月份的销售量为256只,12月份的销售量为400只.(1)求该款棉帽10月份到12月份销售量的月平均增长率;(2)经市场预测,下个月份的销售量将与12月份持平,现超市为了减少库存,采用降价促销方式,调查发现,该棉帽每降价1元,月销售量就会增加20只.当该棉帽售价为多少元时,月销售利润达8400元?【答案】(1)25%(2)【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该款棉帽10月份到12月份销售量的月平均增长率为x,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该款棉帽售价为y元,则每件的销售利润为y-25元,利用月销售利润=每件的销售利润×月销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设该款棉帽10月份到12月份销售量的月平均增长率为x,根据题意得:2561+x 2=400,解得:x 1=0.25=25%,x 2=-2.25(不符合题意,舍去)答:该款棉帽10月份到12月份销售量的月平均增长率为25%.(2)设该棉帽售价为y 元,则每件的销售利润为y -35 元,月销售量为400+2058-y =1560-20y 件根据题意得:y -35 1560-20y =8400解得:y 1=50,y 2=63(不符合题意,舍去).答:该款棉帽售价为元时,月销售利润达8400元.23.(22-23九年级上·江苏连云港·阶段练习)如图,AB 为⊙O 的直径,BC 是圆的切线,切点为B ,OC 平行于弦AD,(1)求证:DC 是⊙O 的切线;(2)直线AB 与CD 交于点F ,且DF =4,AF =2,求⊙O 的半径.【答案】(1)见解析(2)3【分析】(1)连接OD ,根据切线的性质得到OB ⊥BC ,证明△DOC ≌△BOC ,根据切线的性质得到∠ODC =∠OBC =90°,根据切线的判定定理证明结论;(2)设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出⊙O 的半径.【详解】(1)证明:连接OD ,∵BC 是⊙O 的切线,∴OB ⊥BC ,∵OC ∥AD ,∴∠BOC =∠OAD ,∠DOC =∠ODA ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠DOC =∠BOC ,在△DOC 和△BOC 中,OD =OB∠DOC =∠BOC OC =OC,∴△DOC ≌△BOC (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∵OD 是⊙O 的半径,∴DC 是⊙O的切线;(2)解:设⊙O 的半径为r ,则OF =OA +AF =r +4,在Rt △ODF 中,OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点睛】本题考查的是切线的判定和性质,全等三角形的判定和性质,平行线的性质,勾股定理的,熟记经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.24.(24-25九年级上·江苏宿迁·阶段练习)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2-4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是;(填序号即可)①x 2-2x -3=0;②x 2-3x =0;③x 2+8x +12=0.(2)如果关于x 的方程x 2-8x +c =0是“三倍根方程”,求c 的值;(3)如果点p ,q 在反比例函数y =3x的图象上,那么关于的x 方程px 2-4x +q =0是“三倍根方程”吗?请说明理由.(4)如果关于x 的一元二次方程ax 2+bx +c =0a ≠0 是“3倍根方程”,那么a 、b 、c 应满足的关系是.(直接写出答案)【答案】(1)③(2)c =12;(3)方程px 2-4x +q =0是“三倍根方程”;见解析(4)3b 2-16ac =0【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.也考查了一元二次方程的解和解一元二次方程.(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)根据“三倍根方程”的定义设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)方程px 2-4x +q =0化为方程px 2-4x +3p =0,解方程求得方程的根,根据“三倍根方程”的定义即可求出答案;(4)根据“三倍根方程”的概念得到原方程可以改写为a x -t x -3t =0,解方程即可得到结论.【详解】(1)解:由x 2-2x -3=0可得:x 1=-1,x 2=3,不满足“三倍根方程”的定义;由x 2-3x =0可得:x 1=0,x 2=3,不满足“三倍根方程”的定义;由x 2+8x +12=0可得:x 1=-2,x 2=-6,满足“三倍根方程”的定义;故答案为:③;(2)解:设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,由一元二次方程根与系数的关系可知:x 1+3x 1=8,3x 12=c ,∴x 1=2,c =12;(3)解:∵点p ,q 在反比例函数y =3x的图象上,∴q =3p ,∴方程px 2-4x +q =0化为方程px 2-4x +3p=0,整理得px -3 px -1 =0,解得x 1=3p ,x 2=1p,∴方程px 2-4x +q =0是“三倍根方程”;(4)解:根据“三倍根方程”的概念设一元二次方程ax 2+bx +c =0(a ≠0)的两个根为t 和3t .∴原方程可以改写为a x -t x -3t =0,∴ax 2+bx +c =ax 2-4atx +3at 2,∴b =-4at c =3at 2 .解得3b 2-16ac =0.∴a ,b ,c 之间的关系是3b 2-16ac =0.故答案为:3b 2-16ac =0.25.(23-24九年级上·江苏无锡·期中)如图1,平行四边形ABCD 中,AB =8,BC =4,∠ABC =60°.点P为射线BC 上一点,以BP 为直径作⊙O 交AB 、DC 于E 、F 两点.设⊙O 的半径为x .(1)如图2,当⊙O 与DP 相切时,x =.(2)如图3,当点P 与点C 重合时,①求线段CE 长度;②求阴影部分的面积;(3)当⊙O 与平行四边形ABCD 边所在直线相切时,求x 的值;【答案】(1)4(2)①23;②2π3-3(3)x =-12+83或43【分析】(1)由平行四边形的性质可得:AB ∥CD ,AB =CD =8,得出∠DCP =∠ABC =60°,再由切线的性质可得DP ⊥BP ,得出∠CDP =30°,利用30°所对的直角边等于斜边的一半,可得CP =12CD =4,推出⊙O 的直径BP =8,即可得出答案;(2)①运用勾股定理即可求得答案;②如图2,连接OE ,利用圆周角定理可得出∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,利用勾股定理可求得EH =3,再运用扇形面积公式和三角形面积公式即可求得答案;(3)分两种情况:①当⊙O 与直线CD 相切时,由切线性质可得∠OFC =90°,进而可得OB =OF =x ,OC =4-x ,CF =12(4-x ),再由勾股定理建立方程求解即可;②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,证明四边形ACOT 是矩形,即可得出答案【详解】(1)解:如图1,∵四边形ABCD 是平行四边形,AB =8,BC =4,∠ABC =60°.∴AB ∥CD ,AB =CD =8,∴∠DCP =∠ABC =60°,∵⊙O 与DP 相切,∴DP ⊥BP ,∴∠CPD =90°,∴∠CDP =90°-∠DCP =30°,∴CP =12CD =4,∴⊙O 的半径x =4,(2)解:①∵点P 与点C 重合,∴BC 为⊙O 的直径,∴∠BEC =90°,∴∠BCE =90°-∠CBE =30°,∴BE =12BC =2,在Rt △BCE 中,CE =BC 2-BE 2=42-22=23,②如图2,连接OE ,∵BE =BE,∴∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,∴OH =12OE =1,∴EH =OE 2-OH 2=22-12=3,∴S 阴影=S 扇形OBE -S △OBE=60π×22360-12×2×3=2π3-3;(3)解:①当⊙O 与直线CD 相切时,如图3,∴OF ⊥CD ,∴∠OFC =90°,∵∠OCF =∠ABC =60°,∴∠COF =30°,∴CF =12OC ,∵OB =OF =x ,∴OC =4-x ,CF =124-x ,∵CF 2+OF 2=OC 2,∴124-x2+x 2=4-x 2,解得:x =-12+83或x =-12-83(舍去),②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,取AB 的中点G ,连接CG ,∴BG =AG =12AB =4=BC ,∵∠ABC =60°,∴△BCG 是等边三角形,∴CG =BC =4=AG ,∴∠BAC =∠ACG =30°,∴∠ACB =90°∴AC =82-42=43,∴∠ACO =90°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠TOC =∠DTO =∠ATO =90°=∠ACO ,∴四边形ACOT 是矩形,∴x =OT =AC =43;综上所述,x =-12+83或43;【点睛】本题是圆的综合题,考查了圆的性质,圆周角定理,勾股定理,平行四边形的性质,矩形的判定和性质,切线的性质等,运用数形结合思想和分类讨论思想是解题关键.26.(23-24九年级上·江苏南京·阶段练习)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B =°,∠AP 2B =°;(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m °(m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数为;(用m 的代数式表示)【问题解决】(3)如图3,已知线段AB ,点C 在AB 所在直线的上方,且∠ACB =135°,用尺规作图的方法作出满足条件的点C 所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);【实际应用】(4)如图4,在边长为12的等边三角形ABC 中,点E 、D 分别是边AC 、BC 上的动点,连接AD 、BE ,交于点P ,若始终保持AE =CD ,当点E 从点A 运动到点C 时,PC 的最小值是.【答案】(1)50,130;(2)180°-m 2°;(3)见解析;(4)43【分析】(1)根据圆周角定理即可求出∠AP 1B =50°,根据圆内接四边形即可求出∠AP 2B =130°;(2)分P 在优弧AB 上和P 在劣弧AB 上两种情况分类讨论即可求解;(3)作线段AB 的垂直平分线,以AB 为直径作圆,交垂直平分线于点O ,以点O 为圆心,以OA 为半径作圆,则AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)先证明△ACD ≌△BAE ,得到∠BAP +∠ABP =60°,∠APB =120°,根据(3)问点P 的运动轨迹是AB,∠AOB =120°,连接CO ,证明△OAC ≌△OBC ,进而得到∠ACO =∠BCO =30°,∠AOC =∠BOC =60°∠OAC =∠OBC =90°,根据勾股定理求出OP =OB =43OC =83,根据PC ≤OC -OP ,可得PC ≥43,即可求出PC 的最小值为43.【详解】解:(1)∠AP 1B =12∠AOB =12×100°=50°,∠AP 2B =180°-∠APB =180°-50°=130°.故答案为:50,130;(2)当P 在优弧AB 上时,∠APB =12∠AOB =m 2 °;当P 在劣弧AB 上时,∠APB =180°-m 2 °;故答案为:m 2 °或180°-m 2 °(3)如图AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形.证明:∵AB 为⊙P 的直径,∴∠AOB =90°,在⊙O 中,∵点C 在AB 上,由(2)得∠ACB =180°-∠AOB 2=135°,∴AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)解:如图,∵△ABC 为等边三角形,∴AB =BC =AC ,∠BAC =∠ACB =60°,∵AE =CD ,∴△ACD ≌△BAE ,∴∠CAD =∠ABE ,∵∠BAP +∠ABP =∠BAP +∠CAD =∠BAC =60°,∴∠APB =120°,∴点P 的运动轨迹是AB ,∴∠AOB =120°.连接CO ,∵OA =OB ,CA =CB ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°,∠AOC =∠BOC =60°,∴∠OAC =∠OBC =90°,在Rt △OBC 中,设OB =x x >0 ,则OC =2x ,根据勾股定理得2x 2-x 2=122,解得x =43,∴OC =2x =83,OP =OB =43,∵PC ≤OC -OP ,∴PC ≥43,∴PC的最小值为43.故答案为:43.【点睛】本题考查了圆周角定理及其推论,圆内接四边形的性质,全等三角形的判定与性质,勾股定理,三角形三边关系等知识,综合性强,难度较大,解题时要熟知相关知识,注意在解决每一步时都要应用上一步结论进行解题.。
第一次阶段性测试(B卷-能力提升)(解析版)2023年九年级全一册单元双测AB卷

2022-2023学年上学期第一次阶段性测试卷B卷(人教版)九年级全一册物理·全解全析一、单项选择题:本题共10小题,每小题3分,共30分。
1.关于分子动理论及有关现象,下列说法正确的是( )A.水和酒精混合后总体积变小,说明物质的分子之间存在间隙B.铁块很难被压缩,说明分子之间存在相互作用的引力C.湿衣服在热天比冷天干得快,说明热水分子间的斥力较大D.用力能将尘土从衣服上抖落,说明分子在永不停息地做无规则运动【答案】A【解析】A.水和酒精混合后体积变小,是因为分子之间有间隙,故A正确;B.分子同时存在相互作用的引力和斥力,铁块很难被压缩,说明分子之间存在相互作用的斥力,故B错误;C.湿衣服在热天比冷天干得快,说明温度越高,分子运动速度越快,故C错误;D.用力能将尘土从衣服上抖落,说明的是尘土具有惯性,不能说明分子在永不停息地做无规则运动,故D 错误。
故选A。
2.下列关于温度、内能和热量的说法中,正确的是( )A.0℃以下的物体没有内能B.同一物体,温度升高内能增大C.温度高的物体含有的热量多D.热量总是从内能大的物体向内能小的物体传递【答案】B【解析】A.一切物体都具有内能,0℃的物体同样具有内能,故A错误;B.同一物体温度升高,分子无规则运动加剧,分子动能变大,所以内能增大,故B正确;C.热量是一过程量,不能说“含有”或“有”,只能说“吸收”和“放出”,故C错误;D.热量总是从高温物体向低温物体传递的,内能大的物体温度不一定高,故D错误。
故选B。
3.如图1所示,用相同的电加热器给初温及质量均相同的甲、乙两种不同的液体加热,两种液体每秒吸收的热量相同,两种液体的温度加热时间的图像如图2所示。
则( )A .加热1min ,两种液体吸热关系为Q 甲>Q 乙B .乙液体在第2min 时的比热容大于第1min 时的比热容C .甲液体的吸放热能力比乙强D .通过图像分析可得,甲、乙两液体的比热容大小之比c 甲:c 乙=1:2【答案】D【解析】A .依题意电加热器规格相同,则加热相同时间,吸收的热量相同,所以加热1min ,两种液体吸热关系为Q 甲=Q 乙,故A 不符合题意;B .乙液体在第2min 时和第1min 时的种类不变,状态不变,则比热容不变,故B 不符合题意;C .由图2可知,加热相同时间,吸收相同热量时,甲液体温度变化更大,由Q cm t =D 吸可知,甲液体的比热容更小,则甲液体的吸放热能力比乙差,故C 不符合题意;D .由图可知,加热1min ,甲液体变化的温度为301020t D =-=甲℃℃℃乙液体变化的温度为201010t D =-=乙℃℃℃加热1min ,甲乙两种液体吸收的热量相同,由Q cm t =D 吸可知,质量相同的甲、乙两种不同的液体,比热容之比为故D 符合题意。
第一次阶段性月考测试(试题)-2024-2025学年三年级上册语文统编版

三年级上册语文第一次阶段性测试一、读拼音,写汉字。
chén huāng tiào wǔróng qiú早原bìshài piāo yáng luòlèi手干二、比一比,再组词。
旅()桃()铺()怜()挣()族()挑()捕()冷()争()态度。
四、在括号里填写合适的量词。
一()叮咛一()邮票一()小学一()叶子一()钥匙一()地毯一()雨靴一()小路五、根据句子意思完成四字词语。
(1)自然界没有风风雨雨,大地就不会有春华()()。
(2)公园里春()明(),游人如织。
(3)他忐()()安地走进老师的办公室。
(4)教室里()雀()声,同学们正在认真考试。
八、课内阅读。
早晨,从山坡上,从平坝里,从一条条开着绒球花和太阳的小路上,走来了许多学生,有汉族的,有傣族的,有景颇族的,又阿昌族和德昂族的。
大家穿戴不同,来到学校,都成了好朋友。
那鲜艳的民族服装,把学校打扮的绚丽多彩。
同学们向在校园里欢唱的小鸟打招呼,向敬爱的老师问好,向高高飘扬的国旗敬礼。
1.“那鲜艳的民族服装,把学校打扮的更加绚丽多彩”。
一句中“绚丽多彩”形容的是,它的近义词是。
2.同学们上学的小路很美。
从哪里可以看出?()A.小路上开满绒球花和太阳花。
B.同学们的民族服装鲜艳。
C.校园里鸟语花香。
3.这所学校里的孩子有什么不同的地方?()(多选)A.语言不同B.穿戴不同C.性别不同4.从哪句话可以看出学校的教育很成功?在文中找出来。
九、课外阅读。
短暂的秋天“一日三秋”这个成语,本意并不是指秋天短,我这里写的却是短暂的秋天。
大兴安岭的最北端一祖国北极的秋天有多长呢?春、夏、秋三季才两个多月,秋天有多长就可想而知了。
然而这短暂的秋天却给我带来了无限的乐趣。
刮了一天的西北风告诉我们:都柿已经由酸变甜了。
星期天,我们便成群结队地进山采都柿。
都柿很美,黑红的茎秆七八寸高,上面缀满了黑蓝的“珍珠”,水灵灵的,放到嘴里又酸又甜,只要一提到它,不知不觉地就流出了口水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又易知lg7是错的,∵2(a+c)=2lg5=lg25≠lg7,事实上lg7=lg14−lg2=2b+c
18. (14分)解:(1) , 可能的取值为 , , , , ,
,且当 或 时, .因此,随机变量 的最大值为 .
有放回抽两张卡片的所有情况有 种, .
又2x+2>2·+2=+2,∴f(x)<2x+2
则当0≤x≤1时,f(0)≤f(x)≤f(1),
在③中,令x1=x2=0,得f(0)≤2,由②得f(0)≥2,∴f(0)=2当x=1时,f(1)=3,
∴当x=0时,f(x)取得最小值2,当x=1时,f(x)取得最大值3…………………10分
(3)对x∈(0,1],总存在n∈N,<x≤,由(2)及该同学的结论,得f(x)≤f()≤+2,
函数g(x)=f(x)−kx−k−1有4个零点,则实数 得取值范围是▲_______.
14.在实数集R中定义一种运算“*”,具有性质:①对任意 ;
②对任意 ;
③对任意 ,
则函数 的最小值为▲
二、解答题(共6题,满分90分)
15.(14分)已知集合 ,
.
(Ⅰ)若 ,求实数 的值;
(Ⅱ)若ACRB,求实数 的取值范围.
即g(x1+x2)≥g(x1)+g(x2)−2成立,故为理想函数。………………4分
(2)设x1,x2∈[0, 1],x1<x2,则x2−x1∈(0, 1]
∴f(x2)=f[(x2−x1)+x1]≥f(x2−x1)+f(x1)−2
∴f(x2)-f(x1)≥f(x2−x1)-2≥0,∴f(x1)≤f(x2)
19.(14分) (1)已知某圆的极坐标方程为:ρ2-4ρcos(θ-)+6=0.将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程。
(2)已知二阶矩阵M有特征值 及对应的一个特征向量 ,且矩阵M对应的变换将点(−1, 2)变换成(−2, 4)。求矩阵M的另一个特征值及对应的一特征向量e2的坐标之间的关系。
设M的另一个特征向量是e2 ,则Me2= ,解得 。……14分
20.(16分)(1)显然g(x) =2x+1 (0≤x≤1)满足①x∈[0, 1],f(x)≥2;②f(1)=3;
若x1≥0,x2≥0,x1+x2≤1,则g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-2x1-2x2-1=(2x1-1)(2x2-1)-2≥-2
⑵求定义域为[0, 1]的理想函数f(x)的最大值和最小值;
⑶某同学发现:当x=(n∈N)时,有f()≤+2,由此他提出猜想:对一切x∈(0,1],
都有f(x)<2x+2 ,请你根据该同学发现的结论(或其它方法)来判断此猜想是否正确,并说明理由。
答案
一、填空题(每题5分,共30分,请将答案填在答案卷题号相应处)
20.对于定义域为[0, 1]的函数f(x)如果满足以下三个条件:①对任意的x∈[0, 1],总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)−2成立。则称函数f(x)为理想函数。
⑴判断函数g(x) =2x+1 (0≤x≤1)是否为理想函数,并予以证明;
(Ⅱ) CRB={x|x<m−2或x>m+2}……………………………………………10分
∵ACRB,
∴ ,或 ,……………………………………………12分
∴ 或 .……………………………………………14分
16.(16分)(1)设投入t(t百万元)的广告费后增加的收益为f(t)(百万元),则有
f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0<t≤3),
3.设P和Q是两个集合,定义集合P−Q={x|x∈P,且xQ},如果P={x| log2x<1},Q={x| |x−2|<1},
那么P−Q等于_____▲______
4.已知命题:“任意x∈[1, 2],都有x2+2x+a≥0”为真命题,则a的取值范围是▲
5.条件p:“m<−2”和条件q:“方程x2−2x−m=0无实根”,则p是q的__▲_____条件.
所以g(x)=-x2+4.令g(x)=0,解得x=2,或x=-2(舍去).
又当0≤x<2时,g(x)>0,当2<x≤3时,g(x)<0.
故g(x)在[0,2]上是增函数,在[2,3]上是减函数.所以当x=2时,g(x)取最大值,
即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.……16分
答:随机变量 的最大值为 ,事件“ 取得最大值”的概率为 .……………………6分
(2) 的所有取值为 .
时,只有 这一种情况,
时,有 或 或 或 四种情况,
时,有 或 两种情况.
, , .
则随机变量 的分布列为:
因此,数学期望 ………………14分
19. (14分)(1)∵ρ2-4ρ(cosθ+sinθ)+6=0,∴x2+y2-4(x+y)+6=0;
∴lg3的对数值是正确的。………………………8分
(3) lg1.5是错误的,正确值应为3a−b+c−1……………………12分
lg7是错误的,正确值应为2b+c……………………16分
理由:由(2)知lg3一定对,则lg9, lg27都对。
若lg5错,则lg6, lg8均错(不符),所以lg5对的,可得lg2=1−a−c,即有lg6, lg8均对的。
江苏省南菁高级中学2009届高三第一次阶段性测试
数学
09.28
一、填空题(每题5分,14小题,共70分,请将答案填在答案卷题号相应处)
1.已知集合M={,8},N={ab,1},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b的值为____▲____
2.已知复数z1=3+4i, z2=t+i(t∈R),且z1·是实数,则实数t等于▲
(2)求证lg3的对数值是正确的;
(3)试将两个错误的对数值均指出来,并加以改正(不要求证明)
18.(14分)在一个盒子中,放有标号分别为 , , 的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为 , ,记 .
(1)求随机变量 的最大值,并求事件“ 取得最大值”的概率;
(2)求随机变量 的分布列和数学期望.
17.(16分)已知下表中的对数值有且只有两个是错误的。
x
1.5
3
5
6
7
8
9
14
27
lgx
3a−b+c
2a−b
a+c
1+a−b−c
2(a+c)
3(1−a−c)
2(2a−b)
1−a+2b
3(2a−b)
(1)假设上表中lg3=2a−b与lg5=a+c都是正确的,试判断lg6=1+a−b−c是否正确,给出判断过程;
即x2+y2-4x-4y+6=0………………………4分
圆的标准方程为:(x-2)2+(y-2)2=2,∴参数方程为 (α为参数)……6分
(2)设M= ,则 =8 = ,故
= ,故
联立以上两方程组解得a=6,b=2,c=4,d=4,故M= .…………………………10分
∴M的特征多项式为 ,∴另一个特征值为 ……12分
6.对某种电子元件使用寿命跟踪调查,抽取容量为1000的样本,
其频率分布直方图如图所示,根据此图可知这批样本中电子
元件的寿命在300~500小时的数量是____▲_____个.
7.函数 的图象关于直线 对称,
则b=___▲____
8.现有2008年奥运会福娃卡片5张,卡片正面分别是贝贝、
晶晶、欢欢、迎迎、妮妮,每张卡片大小、质地和背面图
所以当t=2百万元时,f(t)取得最大值4百万元.
即投入2百万元时的广告费时,该公司由此获得的收益最大.…………………6分
(2)设用技术改造的资金为x(百万元),则用于广告促销的资金为(3-x)(百万元),
则增加的收益为g(x)=(-x3+x2+3x)+[-(3-x)2+5(3-x)]-3=-x3+4x+3 (0≤x≤3),
11.对大于1的自然数 的三次幂可用奇数进行以下方式的“分裂”:233343…仿此,若m3的“分裂数”中有一个是59,则 的值为▲.
12.已知 都是定义在 上的函数,对任意的 ,存在常数 在A上的最大值为___▲___
13.已知f(x)是以2为周期的偶函数,当x∈[0, 1]时,f(x)=x,且在[−1,3]内,
案均相同,将卡片正面朝下反扣在桌子上,从中一次随机抽出两张,抽到贝贝的概率是___▲____
9.矩阵A=的一个特征值为λ,是A的属于特征值λ的一个特征向量,则A−1=__▲__
10.在平面直角坐标系xoy中,直线l的参数方程为(t∈R),圆C的参数方程为(θ∈[0,2π]),则直线l截圆C所得的弦长为______▲____
17. (16分)(1)由lg5=a+c,得lg2=1−a−c∴lg6=lg2+lg3=1+a−b−c满足表中数值,
也就是lg6在假设下是正确的。………………………4分
(2)假设lg3=2a-b是错误的,即lg3≠2a-b,∴lg9=2 lg3≠2(2a-b),lg27=3 lg3≠3(2a-b)
于是lg9,lg27也均是错误的,这与“有且只有两个是错误的”矛盾,故假设不成立,
1、5;2、;3、(0,1];4、a≥-3;5、充分不必要;6、650;7、2;8、 ;