初三第一次阶段性测试

合集下载

九年级语文第一次阶段性测试参考答案

九年级语文第一次阶段性测试参考答案

九年级语文第一次阶段性测试评分标准及答案一、语文知识积累及运用(22分)1.(3分)妖娆睿智底蕴2.(8分)①——④略⑤示例:长风破浪会有时,直挂云帆济沧海(意思对即可)。

⑥随风潜入夜,润物细无声。

3.(3分)(1)同样(2)用朱砂(3)通倡,首发4.(4分)(1)①③②(2)林冲误入白虎堂、刺配沧州、风雪山神庙、雪夜上梁山5. (4分)活动一:“集”的意思是“鸟停息在树上”活动二:B。

活动三:示例:反方的观点是电子产品不是汉字危机的罪魁祸首,因为电子产品本身没有错误,关键在于使用者过于依赖键盘输入汉字,而忽视对汉字的识记和书写。

二、现代文阅读(25分)(一) (12分)6.(2分)交代了男孩的身份和他的自卑心理,为下文情节展开作铺垫;与结尾形成照应,使得文章结构严谨。

7.(4分)第①处“笑了”:女主演拉佛西被男孩的热情和纯真感染,感到高兴,决定满足男孩的愿望,为他签名。

第②处“笑了”:男孩为实现了自己的“计谋”而感到高兴。

8.(4分)通过卖衣服,培养儿子的自信心,使他能走出自卑并明白每个人都是高贵的,从而对生活充满希望(1分)。

第一次用亲情打动儿子去“试一试”,勇敢地走出第一步(走出自我)(1分);第二次鼓励儿子思考探索,想办法提高衣服的价值,进一步增强儿子的自信心(挑战自我)(1分);第三次进一步激发儿子的潜能,提高儿子对自我能力和自我价值的认识(超越自我)(1分)。

9.(2分)生命不因种族、肤色、贫富而有贵贱之分,每个人(每个生命)都是高贵的,不要妄自菲薄(自卑)(1分);只要不丧失希望,努力学习,刻苦锻炼,积极探索,不断奋斗,就能实现自我价值,甚至超越自我,终而获得成功,实现理想(1分)。

(二)(13分)10.(4分)①“天涯若比邻”不是用来形容虚拟世界变成现实世界,而是来形容网络能不受空间限制快捷的拉近人们之间的距离。

②不是因网络的发明而影响了工作、学习和生活,而是因一些人极度依赖网络而影响了工作、学习和生活。

初三第一次阶段测试.docx

初三第一次阶段测试.docx

初三年级第一次阶段性测试数学试卷一、选择题:(本大题一共10题,每小题3分,共30分)1.()下列方程中,是关于兀的一元二次方程的是A. ax2-^bx-^c=0B. x2=x(*v+l)C.丄+ 兀=3D. 4x2 =92.( )用配方法解一元二次方程x2 - 6x - 10=0时,下列变形正确的为A. (X+3)2=1B. (x-3) 2=1C. (X+3)L19 D・(x-3)2=193.( )解方程2(5X-1)2-3(5X-1)=0最适当的方法是A.直接开平方法B.配方法C.公式法D.因式分解法4.( )卞列一元二次方程中,没有实数根的是A. 4x2 - 5x+2=0B. x2 - 6x+9=0C. 5x2 - 4x - 1=0D. 3x2 - 4x+l=05.( )在平面直角绝标系中,以O为圆心的圆过点A(0,・4),则点B (-2, 3)与的位置关系是 A.在圆内 B.在圆外 C.在圆上 D.无法确定6.( )关于x的一•元二次方程kx2-2x-1=0有两不等实数根,则k取值范围是A. Q—lB. Q—1 且睜0C. k<\D. XI 且舜07.( )菱形ABCD一条对角线长为6,边AB长为方程/ - 7yM0=0的一个根,则菱形ABCD周长为 A. 8 B. 20 C. 8 或20 D. 108.( )点P到OO上各点的最大距离为5,最小距离为1,贝UOO的半径为A. 2 B. 4 C. 2或3 D. 4或69.( )如图四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN上,且不与M, N重合,当P点在弧MN上移动时,矩形PAOB的形状、人小随之变化,则PA2+PB2的值A.变人B.变小C.不变 D.不10.( )如图圆心在y轴负半轴上,半径为5的OB与y轴的一正半轴交于点A(0, 1),过点P (0,・7)的直线/与OB相交于C, D两点.则弦CD长的所有可能的-整数值有A. 1个B. 2个C. 3个D. 4个二、填空题:(本人题一共8题,每小题2分,共16分)11.关于x的方程x2 +ax-}-a-2 = 0的一个根为1,则a = __________12.将一元二次方程5x(x—3)= 1化成一般形式为 ____________ •13.如图(DO中,弦4B长等于半径,则劣弧AB所对圆心角度数是14.已知岸+)2+1)(兀2+)2_3)=5,则兀2+)2= _____________15.肓和三用形一条直角边和斜边的长分别是一元二次方程则平均每刀利润增长的百分率是______x2 - 16x+60=0的两个实数根,该三角形的面积为_____ .16.某商店10月份的利润为600元,12月份的利润达到864元,17.如图梯形ABCD中,AB//DC, ABLBC, AB=2cm, CD=4cm.第17题以BC ±一点O 为圆心的圆经过A 、D 两点,则圆心O 到弦AD 的距离 是 ・贝ij a 1 +血+如+...+^2015= ________ •三、解答题:(本大题共10题,共84分) 19. 解方程(每小题4分,共16分)4x 2—1 =0 x 2 - 4x + 1 = O (fli!方法)5(尢+ 2)= 4兀(x + 2)(2x4- l )(x-3) = -6 20. (8分)已知关于x 的一元二次方程x 2 - 4x+m=0. (1)若方程有实数根,求实数加的収值范围;(2)若方程两实数根为占,也,且满足5兀1+2芒=2,求实数加的值.21. (6分)在等腰AABC 中,三边分别为a 、b 、c,其中a=5,若关于兀的方程/+(b+2) x+6 - b=0有两个相等的实数根,求AABC 的周长.22. (8分)如图AB 是OO 弦,点C 在线段AB 上,0C=AC=4, CB=8.(1) 求半径;(2)若弦AB 两端点在圆周上滑动,则弦中点形成的图形为 _______________________23. (6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12加的住房墙,另外三边用25加长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1加宽的门, 所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?18.—列数0],。

2022-2023学年人教版九年级数学上册第一次阶段性(21-1-23-3)综合测试题(附答案)

2022-2023学年人教版九年级数学上册第一次阶段性(21-1-23-3)综合测试题(附答案)

2022-2023学年人教版九年级数学上册第一次阶段性(21.1-23.3)综合测试题(附答案)一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列函数表达式中,是二次函数的是()A.y=B.y=x+2 C.y=x2+1 D.y=(x+3)2﹣x23.若α和β是关于x的方程x2+bx﹣1=0的两根,且αβ﹣2α﹣2β=﹣11,则b的值是()A.﹣3B.3C.﹣5D.54.“玉兔”在月球表面行走的动力主要来自于太阳光能,要使接收太阳光能最多,就要使光线垂直照射在太阳光板上.某一时刻太阳光的照射角度如图所示,要使得此时接收的光能最多,那么太阳光板绕支点A逆时针旋转的最小角度为()A.44°B.46°C.36°D.54°5.已知点P(m2,n),点Q(4m+5,n),下列关于点P与点Q的位置关系说法正确的是()A.点P在点Q的右边B.点P在点Q的左边C.点P与点Q重合D.点P与点Q的位置关系无法确定6.在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.7.抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为()①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.A.②③④B.①②④C.①③D.①②③④8.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了x个人,下列结论错误的是()A.1轮后有(x+1)个人患了流感B.第2轮又增加(x+1)•x个人患流感C.依题意可得方程(x+1)2=121D.不考虑其他因素经过三轮一共会有1210人感染9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C 出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.10.如图,将抛物线y=x2﹣2x﹣3在x轴下方部分沿x轴翻折,其余部分保持不变,得到图形C1,当直线y=x+b(b<1)与图形C1恰有两个公共点时,则b的取值范围是()A.﹣3<b<1B.﹣3≤b<1C.﹣1≤b<1D.﹣1<b<1二、填空题:(本大题共6个小题,每题3分,共18分)11.已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=.12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.13.直线y=x+2关于原点中心对称的直线的方程为.14.如果一元二次方程x2+3x﹣2=0的两个根为x1,x2,则x13+3x12﹣x1x2+2x2=.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,抛物线y=x2﹣ax与函数y=x的图象在第一象限交点的横坐标为4,点A(t,y1)在抛物线上,点B(t+1,y2)在正比例函数的图象上,当0≤t≤3时,y2﹣y1的最大值为.三、解答题(本大题共9个小题,共72分)17.解方程:2x2﹣2=3x.18.如图,在等腰直角△ACF中,AC=AF,△ABE是由△ACF绕点A按顺时针方向旋转得到的,连接EF、BC.(1)求证:EF=BC;(2)当旋转角为40°时,求∠BCF的度数.19.已知关于x的方程x2﹣(k+1)x+k2+1=0(1)k取什么值时,方程有两个实数根;(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.20.如图,在△ABC中,AC=BC,∠ACB=90°,D是线段AC延长线上一点,连接BD,过点A作AE⊥BD于E.(1)求证:∠CAE=∠CBD.(2)将射线AE绕点A顺时针旋转45°后,所得的射线与线段BD的延长线交于点F,连接CE.①依题意补全图形;②用等式表示线段EF,CE,BE之间的数量关系,并证明.21.如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.22.成都市将在2022年举办第31届世界大学生夏季运动会,成都大运会吉祥物是一只名叫“蓉宝”的大熊猫.(1)据市场调研发现,某工厂今年四月份共生产200个“蓉宝”,该工厂为增大生产量,平均每月生产量增加20%,则该工厂在今年第二季度(4、5、6月)共生产个“蓉宝”;(2)已知某商店以30元的单价购入一批吉祥物“蓉宝”准备进行销售,据市场分析,若每个“蓉宝”售价为60元,则每天可售出40个.商店经过调研发现,如果每个“蓉宝”降价1元,那么平均每天可多售出8个,若商店想平均每天盈利2000元,销售单价应定为多少元?23.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.24.在平面直角坐标系xOy中,抛物线G:y=ax2+ax+c(a、c为常数且a<c)过点A(1,0),顶点为B.(1)用含a的式子表示c;(2)判断点B所在象限,并说明理由;(3)若直线l:y=2x﹣b经过点A,且与抛物线G交于另一点C,当△ABC的面积为时,求y=ax2+ax+c在﹣1<x<1时的取值范围.25.如图,在平面直角坐标系中,抛物线C1:y=﹣x2+2x+3分别交x轴,y轴于点A,B和点C,抛物线C2与抛物线C1关于直线y=对称,两条抛物线的交点为E,F(点E在点F的左侧).(1)求抛物线C2的表达式;(2)将抛物线C2沿x轴正方向平移,使点E与点C重合,求平移的距离;(3)在(2)的条件下:规定抛物线C1和抛物线C2在直线EF下方的图象所组成的图象为C3,点F(x1,y1)和Q(x2,y2)在函数C3上(点P在点Q的右侧),在(2)的条件下,若y1=y2,且x1﹣x2=1,求点P坐标.参考答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.2.解:∵y=中y与x成反比例函数关系,∴选项A不符合题意;∵y=x+2中y与x成一次函数关系,∴选项B不符合题意;∵y=x2+1中y与x成二次函数关系,∴选项C符合题意;∵y=(x+3)2﹣x2=6x+9,是一次函数定义,∴选项D不符合题意;故选:C.3.解:∵α和β是关于x的方程x2+bx﹣1=0的两根,∴α+β=﹣b,αβ=﹣1,∴αβ﹣2α﹣2β=αβ﹣2(α+β)=﹣1+2b=﹣11.∴b=﹣5.故选:C.4.解:一束光线与太阳光板的夹角为134°,要使光线垂直照射在太阳光板上,则太阳光板绕支点A逆时针旋转的最小角度为134°﹣90°=44°,故选:A.5.解:∵m2﹣(4m+5)=(m﹣2)2﹣9,∴无法确定点P与点Q的位置关系,故选:D.6.解:当a>0时,一次函数过一二三象限,抛物线开口向上,对称轴x=<0,故B、C不符合题意,当a<0时,一次函数过二三四象限,抛物线开口向下,对称轴x=>0,故A不符合题意.故选:D.7.解:∵y=(x﹣2)2﹣9,∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),∴x=2时,y取最小值﹣9,①正确.∵x>2时,y随x增大而增大,∴y2>y1,②正确.将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.令(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,∴5﹣(﹣1)=6,④正确.故选:B.8.解:患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第一轮后共有(x+1)人患流感,故A正确,不符合题意;第二轮作为传染源的是(x+1)人,则增加传染x(x+1)人,故B正确,不符合题意;根据题意列方程得到(x+1)2=121,故C正确,不符合题意;解(x+1)2=121得x1=10,x2=﹣12.经检验,x=10符合题意.答:平均一个人传染了10个人.经过三轮传染后患上流感的人数为:121+10×121=1331(人),故D错误,符合题意.故选:D.9.解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.10.解:如图,当y=0时,x2﹣2x﹣3=0,即:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),当直线y=x+b经过点B时,与新图象有一个公共点,把B(3,0)代入y=x+b得:3+b=0,∴b=﹣3,当直线y=x+b经过点A时,与新图象有三个公共点,把A(﹣1,0)代入y=x+b中得:﹣1+b=0,∴b=1,∴当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围是﹣3<b<1.故选:A.二、填空题:(本大题共6个小题,每题3分,共18分)11.解:根据题意,得=0,将a=﹣1,b=a,c=﹣a+1代入,得=0,所以解得:a=2.故答案为:2.12.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠ACB=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠ACB=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°.故答案为:82°.13.解:线y=x+2关于原点中心对称的直线的方程为y=x﹣2.故答案为:y=x﹣2.14.解:∵一元二次方程x2+3x﹣2=0的两个根为x1,x2,∴x12+3x1﹣2=0即x12+3x1=2,x1+x2=﹣3,x1x2=﹣2,∴x13+3x12﹣x1x2+2x2=x1(x12+3x1)+2x2﹣x1x2=2(x1+x2)﹣x1x2=2×(﹣3)+2=﹣4.故答案为:﹣4.15.解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.16.解:当x=4时,,∴它们的交点为(4,2),把(4,2)代入,得8﹣4a=2,∴,∴,∴,,∴y2﹣y1====,∵0⩽t⩽3,∴t=2时,y2﹣y1有最大值,最大值为,故答案为:.三、解答题(本大题共9个小题,共72分)17.解:方程整理得:2x2﹣3x﹣2=0,分解因式得:(2x+1)(x﹣2)=0,所以2x+1=0或x﹣2=0,解得:x1=﹣,x2=2.18.(1)证明:∵△ABE是由△ACF绕点A按顺时针方向旋转得到的,∴△ABE≌△ACF,∴AE=AF,AB=AC;∠BAE=∠CAF,∴∠BAC=∠EAF,∵△ACF是等腰直角三角形,∴AE=AF=AB=AC,∴△ACB≌△AFE(SAS),∴EF=BC;(2)解:∵旋转角为40°,∴∠CAB=40°,∵AB=AC,∴∠ACB=70°,∵△ACF是等腰直角三角形,∴∠ACF=45°,∴∠BCF=∠ACB﹣∠ACF=25°.19.解:(1)Δ=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵△≥0,即2k﹣3≥0,∴k≥,∴当k≥时,方程有两个实数根;(2)由|x1|=x2,①当x1≥0时,得x1=x2,∴方程有两个相等实数根,∴Δ=0,即2k﹣3=0,k=.又当k=时,有x1=x2=>0∴k=符合条件;②当x1<0时,得x2=﹣x1,∴x1+x2=0由根与系数关系得k+1=0,∴k=﹣1,由(1)知,与k≥矛盾,∴k=﹣1(舍去),综上可得,k=.20.解:(1)∵∠ACB=90°,∴∠BCD=90°,∴∠CBD+∠BDC=90°,∵AE⊥BD,∴∠AED=90°,∴∠CAE+∠BDC=90°,∴∠CAE=∠CBD;(2)①由题意补全图形如图所示:②过点C作CG⊥CE交AE于G,∴∠BCG+∠BCE=90°,∵∠ACB=90°,∴∠ACG+∠BCG=90°,∴∠ACG=∠BCE,由(1)知,∠CAE=∠CBD,在△ACG和△BCE中,,∴△ACG≌△BCE(ASA),∴AG=BE,CG=CE,在Rt△ECG中,CG=CE,∴EG=CE,∴AE=AG+EG=BE+CE,由旋转知,∠EAF=45°,∵∠AEF=90°,∴∠F=90°﹣∠EAF=45°=∠EAF,∴EF=AE,∴EF=BE+CE.21.解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),∴,解得b=﹣2,c=﹣3,∴抛物线的解析式:y=x2﹣2x﹣3;(2)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D点坐标为(1,﹣4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C点坐标为(0,﹣3),又∵B点坐标为(2,﹣3),∴BC∥x轴,∴S△BCD=×2×1=1,设抛物线上的点P坐标为(m,m2﹣2m﹣3),∴S△PBC=×2×|m2﹣2m﹣3﹣(﹣3)|=|m2﹣2m|,当|m2﹣2m|=4×1时,解得m=1±,当m=1+时,m2﹣2m﹣3=1,当m=1﹣时,m2﹣2m﹣3=1,综上,P点坐标为(1+,1)或(1﹣,1).22.解:(1)200+200×(1+20%)+200×(1+20%)2,=200+200×1.2+200×1.44=200+240+288=728(个).故答案为:728.(2)设每个“蓉宝”降价x元,则每个的销售利润为(60﹣x﹣30)=(30﹣x)元,每天可售出(40+8x)个,依题意得:(30﹣x)(40+8x)=2000,整理得:x2﹣25x+100=0,解得:x1=5,x2=20,当x=5时,60﹣x=60﹣5=55;当x=20时,60﹣x=60﹣20=40.答:销售单价应定为40元或55元.23.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.24.解:(1)y=ax2+ax+c过点A(1,0),∴a+a+c=0,∴c=﹣2a;(2)y=ax2+ax﹣2a=a(x+)2﹣a的顶点B为(﹣,﹣a),∵c=﹣2a,a<c,∴a<﹣2a,∴a<0,∴点B在第二象限;(3)y=2x﹣b经过点A(1,0),∴b=2,由得:,即C(,),过点B作BD∥y轴,交l:y=2x﹣2于点D,则D(﹣,﹣3),∴S△ABC=BD•|x A﹣x C|=(﹣a+3)(1﹣+2)=(﹣a+3)(3﹣),∴(﹣a+3)(3﹣)=,解得a=﹣,∴y=﹣x2﹣x+顶点B(﹣,),∴﹣1<x<1时,0<y≤.25.解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线C1的顶点坐标为:(1,4),∵点(1,4)关于直线y=对称点为(1,﹣1),抛物线C2与抛物线C1关于y=对称,∴抛物线C2的顶点为(1,﹣1),且抛物线C2与抛物线C1的形状、大小相同,开口方向相反,∴抛物线C2的表达式为y=(x﹣1)2﹣1=x2﹣2x;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴C(0,3),设抛物线C2向右平移m个单位后E与C(0,3)重合,即y=(x﹣m)2﹣2(x﹣m)过(0,3),∴3=m2+2m,解得m=1或m=﹣3(舍去),∴平移的距离是1;(3)由(2)知,抛物线C2向右平移1个单位,可得y=(x﹣1)2﹣2(x﹣1)=x2﹣4x+3,∵x1﹣x2=1,∴x2=x1﹣1,∴Q(x1﹣1,y2),当Q在C左侧图象上时,如图:∵Q在抛物线C1上,P在抛物线C2上,∴y2=﹣(x1﹣1)2+2(x1﹣1)+3,y1=x12﹣4x1+3,∵y1=y2,∴﹣(x1﹣1)2+2(x1﹣1)+3=x12﹣4x1+3,解得x1=2+(舍去)或x1=2﹣,∴P1(2﹣,);当Q在C、B之间的图象上时,分两种情况:①P在抛物线C1上,如图:∵y1=﹣x12+2x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴﹣x12+2x1+3=(x1﹣1)2﹣4(x1﹣1)+3,即得x1=2+或x1=2﹣(舍去),∴P2(2+,﹣);②P在C、B之间的图象上,如图:∵y1=x12﹣4x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴x12﹣4x1+3=(x1﹣1)2﹣4(x1﹣1)+3,解得x1=,∴P3((,﹣).综上所述,点P坐标为:(2﹣,)或(2+,﹣)或(,﹣).。

江苏省连云港外国语学校2023-2024学年九年级上学期第一次阶段测试英语试题

江苏省连云港外国语学校2023-2024学年九年级上学期第一次阶段测试英语试题

连云港外国语学校2023—2024学年度第一学期九年级阶段性测试英语试题(考试时间:120分钟 试卷总分:150分)(请考生在答题卡上作答) 第 I 卷(选择题95分)一、听力部分(共30分)第一部分听对话回答问题 (共10小题;每小题1分,满分10分)本部分共有10道小题,每小题你将听到一段对话,每段对话听两遍。

在听每段对话前,你将有5 秒钟的时间阅读题目:听完后,每小题你将有5秒钟的时间选出你认为最合适的备选答案。

听到“嘀” 的信号时,进入下一小题。

1. What is Jack's animal sign?A. B. C. 2.How does Jane usually travel back to her hometown? A..C3.Which country does the woman want to visit?.4. What is Simon doing now?... 5. What time did Sandy wash her face this morning?A.At 6:00.B.At 6:05.C.At 6:15. 6. How much should the woman pay if she buys two glasses?A.8 yuan.B.10 yuan.C.4 yuan. 7.What's the name of the charity?A.Happiness for Everyone.B.Sunshine for Everyone.C.Help for Everyone. 8.How does the man like these sweaters?A. Very well.B.He likes to buy them.C.He doesn't think they are good.B C B A B9.Why does the girl vote(选举)for Max?A.Because he is clever.B.Because he is funny.C. Because he is handsome.10.Where are they talking?A.In a market.B.At a bus stopC. At the traffic lights.第二部分听对话和短文回答问题(共10小题;每小题2分,满分20分)你将听到一段对话和两篇短文,各听两遍。

初三第一次阶段性测试

初三第一次阶段性测试

初三第一次阶段性测试(时刻:120 分钟;总分:150 分)一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.卡.相.应.位.置.上)1.若关于 x 的方程 x 2 3x a 0 有一个根为﹣1,则另一个根为()A.-2 B.2 C.4 D.-32.一元二次方程 x 2 8x 1 0 配方后可变形为()A. ( x 4) 2 17B. ( x 4) 2 15C. ( x 4) 2 17D. ( x4) 2 153.如图,四边形 ABCD 内接于⊙O,已知∠ADC=140°,则∠AOC 的大小是()A.100°B.80°C.60°D. 40°第 3 题图第 5 题图第 8 题图4.在半径为 2 cm 的⊙O 中,弦长为3所对的圆心角()A.60°B.90°C.120°D.150°5.如图,点 A、B、C、D 在⊙O 上,∠AOC=140°,点 B 是 AC 的中点,则∠D 的度数是()A.70°B.55°C.35.5°D.35°6.在△ABC 中,点 I 是内心,∠BIC=114°,则∠A 的度数为()A.78°B.66°C.57°D.48°7.股票每天的涨、跌幅均不超过 10%,即当涨了原价的 10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫 做跌停。

已知一支股票某天跌停,之后两天时刻又涨回到原价,若这两天此股票 股价的平均增长率为 x ,则 x 满足的方程是( ) A. (1 x) 2 1110 B. (1 x) 2 109C. 1 2 x 1110D. 1 2 x 1098.如图,线段 AB =4,C 为线段 AB 上的一个动点,以 AC 、BC 为边作等边△ACD 和等边△BCE ,在点 C的运动过程中△CDE 外接圆面积的最小值为() A .4π B .92π C .43πD .16π 二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直截了当填写在答.题.卡.相.应.位.置.上)9.一元二次方程 x2=2x 的解是 .10. 若分式262x x x +--的值为 0,则 x 的值为 .11.如图,⊙O 为△ABC 的外接圆,∠A=7 2°,则∠BCO 的度数为 .第 11 题图 第12 题图第 13 题图 第 14 题图12.如图,已知点 A (0,1),B (0,-1),以点 A 为圆心,AB 为半径作圆,⊙A 在 x 轴上截得的弦长 .13.如图,已知矩形 ABCD 中,AB=3,AD=4. 以点 A 为圆心画⊙A,要使点 B、C 、D 中只有两点在⊙A外,那么⊙A 半径 r 的取值范畴是.14.赵洲桥是我国建筑史上的一大创举,它距今约 1400 年,历经许多次洪水冲击和 8 次地震却安稳无恙。

河南省南阳市方城县2023-2024学年九年级上学期第一次质量评估数学试题(含答案)

河南省南阳市方城县2023-2024学年九年级上学期第一次质量评估数学试题(含答案)

2023-2024学年度第一学期阶段性测试卷(1/4)九年级数学(HS )注意事项:1.本试卷共6页,三大题,满分120分,测试时间100分钟。

2.请用蓝、黑色钢笔或圆珠笔写在试卷或答题卡上。

3.答卷前请将密封线内的项目填写清楚。

一、选择题(每小题3分,共30分)1在实数范围内有意义,则的取值范围是( )A .B .C .D .2.下列式子一定是二次根式的是( )ABCD3合并的是( )A .BCD4.已知关于的方程是一元二次方程,则( )A .B .C .D .5.用配方法解方程时,配方结果正确的是( )A .B .C .D .6.下列运算正确的是( )ABCD7)A .2aB .4aC .8aD .16a8.若关于的一元二次方程有实数根,则的取值范围为( )A .B .C .D .9.估算的值应在( )A .7和8之间B .8和9之间C .8和10之间D .10和11之间10.对于实数a ,b ,先定义一种新运算“*”如下:.若,则实数等于()x 25x ≤-52x >52x ≥52x =123x ||(2)340m m x x ---=2m ≠±2m =-2m =2m =±2650x x --=2(3)4x -=2(6)41x -=2(3)14x +=2(3)14x -=2==6==a =x 22220x kx k k -+-+=k 2k ≥2k ≥-2k ≤2k ≤-22, ,a b a a b a b ab b a b ⎧+≥=⎨+<⎩当时当时å236m =åmA .8.5B .4C .4或-4.5D .4或-4.5或8.5二、填空题(每小题3分,共15分)11.若关于的方程的一个解为,则的值为______.12的值可以是______.(写一个即可)13.已知是方程的一个根,则代数式的值是______.14.把中根号外面的因式移到根号内的结果是______.15.对于实数a ,b ,定义运算“◎”如下:.若,则______.三、解答题(共8题,共75分)16.(12分)计算题:(1);(2;(3;(4).17.(12分))用适当的方法解方程:(1);(2);(3);(4).18.(8分)三角形的周长为,面积为和,求:(1)第三边的长;(2)第三边上的高.19.(8分)已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求的取值范围.20.(8分)阅读与思考:阅读下面内容并完成任务.小明同学在解一元二次方程时,两边同时除以,得到,于是得到原方程根为;小华同学的解法是:将移到等号左边,得到,提公因式,得即或,进而得到原方程的两个根,.x 220x mx +-=2x =m x m 210x x --=2552023m m -+22()()a b a b a b =+--◎(2)(3)24m m +-=◎m =-21)2)-++-2(1)9x -=2240x x +-=2(4)(4)0x x x -+-=22310x x -+=2+x 2(1)360x m x m -++-=m 2(3)3x x -=-3x -31x -=4x =3x -2(3)(3)0x x ---=(3)(31)0x x ---=30x -=40x -=13x =24x =任务一:请对小明、小华同学的解法是否正确作出判断;任务二:若有不正确,请说明其理由;任务三:直接写出方程的根.21.(8分)某绘画艺人第一天的收入为875元,第三天的收入为1260元(每天收入的增长率相同).(1)求绘画艺人每天平均收入的增长率是多少?(2)绘画艺人想制作一幅长30分米,宽20分米的一幅画,其中有一横一竖宽度相同的彩条(彩条无费用),其余空白处进行作画,如图所示,作画区域的费用为每平方分米3元,经预算作画区域的总费用恰好是第四天的收入,求彩条的宽度是多少分米.22.(9,这样的根式叫做复合二次根式,有一些复合二次根式可以借助构造完全平方式进行化简,,.请用上述方法探索并解决下列问题:(1;(2;(3)若,且a 、m 、n 为正整数,求的值.23.(10分)如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根。

九年级上学期第一次阶段性测试试题 试题

九年级上学期第一次阶段性测试试题  试题

卜人入州八九几市潮王学校处州2021第一学期九年级第一次阶段性测试语文试题卷〔总分值是120分,考试时间是是120分钟〕一、语文知识积累〔22分〕1、阅读下面一段文字,根据拼音写出相应的汉字。

〔3分〕我喜欢语文,走进语文世界,感悟语文的丰富多彩,从语文书中我感受到傅雷的shì(▲)犊情深,感受到杨修的shì(▲)才放旷,领略培根的精辟见解kāijuànyǒuyì(▲),语文带给我别样世界。

2、解释以下句中加点的词。

〔6分〕〔1〕为天下唱.,宜多应者〔▲〕〔2〕置人所罾.鱼腹中〔▲〕〔3〕行收兵,比.至陈〔▲〕〔4〕长跪而谢.之曰〔▲〕〔5〕天下缟素..,今日是也〔▲〕〔6〕岂直.五百里哉〔▲〕3、古诗文名句默写。

〔8分〕4、名著阅读〔5分〕〔1〕那挑酒的汉子看着A冷笑道:“你这客官好不晓事!早是我不卖与你吃,却说出这般没气力的话来!〞〔2〕他虽嫉恶如仇,却从无武松鸳鸯楼连杀十五人的血腥,也没有李逵两把板斧排头砍倒一片百姓的凶残;他对人间苦难有深切的体悟,如在桃花村痛打小霸王周通后,劝周通放弃亲事,为的是让刘太公可以老有所养,不要“教老人家失所〞;梁山上见着林冲便动问“阿嫂信息〞……二、现代文阅读〔26分〕〔一〕温暖的苇花芦苇的花,最不像花,像是用轻软的丝絮絮出来的。

出城,逢到有河的地方,有沟的地方,就能看到它。

不是一棵一棵单独生长,要长,就是一片,一群。

挤挤挨挨,勾肩搭背,亲亲密密。

它是最讲团结精神的。

这一点,比人强。

人有时喜欢离群索居,喜欢HY特行。

所以,人容易孤独,而芦苇不。

风吹,满天地的苇花,齐齐地,朝着一个方向致意。

它让我想起“蒹葭苍苍,白露为霜〞那样的诗句来,那是极具苍茫寥廓,极具凄冷迷离的景象。

可是,我眼前的苇花不,一点也不,我看到的,是一团一团的温暖。

冬阳下,它像极慈眉善目的老妇人的脸,人世迢迢,历尽沧桑,终归平淡与平静。

我一步一步下到河沿,攀了两枝最茂盛的苇花。

九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:__________姓名:___________得分:__________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(23-24九年级上·江苏盐城·阶段练习)下列方程是一元二次方程的是()A.2x+y=1B.x2=0C.x x+3=x2 D.x2+3x=1【答案】B【分析】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.根据一元二次方程的定义逐个判断即可.【详解】解:A、2x+y=1是二元一次方程,故A选项不符合题意;B、x2=0是一元二次方程,故B选项符合题意;C、x x+3=x2整理得3x=0,是一元一次方程,故C选项不符合题意;D、x2+3x=1是分式方程,不是整式方程,故D选项不符合题意;故选:B.2.(24-25九年级上·江苏宿迁·阶段练习)将一元二次方程x x+1=2化为一般形式,正确的是() A.x2+x-2=0 B.x2-x+2=0 C.x2+x=2 D.x2+2x-2=0【答案】A【分析】本题主要考查了一元二次方程的一般式.根据一元二次方程的一般式ax2+bx+c=0a≠0,即可求解.【详解】解:∵x x+1=2,∴x2+x-2=0,故选:A.3.(2024·江苏无锡·一模)下列结论:①三点确定一个圆;②相等的圆心角所对的弧相等;③经过半径的端点并且垂直于这条半径的直线是圆的切线;④圆内接四边形对角互补;⑤三角形的外心到三角形三个顶点的距离都相等;⑥直角三角形的内心在斜边的中点上.正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】本题考查圆的性质,涉及确定圆的条件、圆心角与弧的关系、切线判定、圆内接四边形、三角形的内心与外心定义等知识,根据相关概念,逐项判断即可得到答案,熟记与圆有关的概念与性质是解决问题的关键.【详解】解:①当三点在一条直线上时,无法确定一个圆;故①结论错误;②圆的大小不同,相等的圆心角所对的弧不相等;故②结论错误;③经过半径的端点(不是圆心)并且垂直于这条半径的直线是圆的切线;故③结论错误;④圆内接四边形对角互补;故④结论正确;⑤三角形的外心是三角形外接圆的圆心,到三角形三个顶点的距离都相等;故⑤结论正确;⑥直角三角形的外心在斜边的中点上;故⑥结论错误;综上所述,正确的结论是④⑤,共2个,故选:B .4.(24-25九年级上·江苏南京·阶段练习)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC上的点.连接AC ,若∠BAC =20°,则∠D 的度数为( ).A.100°B.110°C.120°D.130°【答案】B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出∠ADB 及∠BDC 的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴∠ADB =90°,∵∠BAC =20°,∴∠BDC =∠BAC =20°,∴∠ADC =∠ADB +∠BDC =90°+20°=110°,故选:B .5.(2024·江苏无锡·一模)设x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,且x 1+1 x 2+1 =8,则m 的值为()A.1B.-3C.3或-1D.1或-3【答案】A【分析】本题考查了一元二次方程根与系数的关系,解一元二次方程,一元二次方程根的判别式,解题的关键是掌握一元二次方程ax 2+bx +c =0a ≠0 根与系数关系:x 1+x 2=-b a ,x 1⋅x 2=ca.先根据一元二次方程根与系数的关系得出x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,再得出x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,得出关于m 的一元二次方程,求解,再根据判别式检验即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,∴x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,∵x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,∴m 2+2+2m +1 +1=8,整理得:m 2+2m -3=0,m -1 m +3 =0,解得:m =1或m =-3,当m =1时,原方程为x 2-4x +3=0,Δ=b 2-4ac =16-4×1×3=4>0,则原方程有实数根,符合题意;当m =-3时,原方程为x 2+4x +11=0,Δ=b 2-4ac =16-4×1×11=-28<0,则原方程无实数根,不符合题意;综上:m =1.故选:A .6.(2023·湖北武汉·模拟预测)如图,AB 为⊙O 直径,C 为圆上一点,I 为△ABC 内心,AI 交⊙O 于D ,OI ⊥AD 于I ,若CD =4,则AC 为()A.1255B.1655C.25D.5【答案】A【分析】如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,则∠BAD =∠CAD ,∠ABI =∠CBI ,BD=CD,BD =CD =4,由∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,可得ID =BD =4,由垂径定理得OI ⊥AD ,则AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,进而可得BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2,计算求解即可.【详解】解:如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,∴BD=CD,BD =CD =4,∵∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,∴ID =BD =4,∵OI ⊥AD ,∴AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,∴BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2=1255,故选:A .【点睛】本题考查了内心,勾股定理,垂径定理,同弧或等弧所对的圆周角相等,等腰三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(23-24九年级上·江苏泰州·阶段练习)若x 2=x ,则x =.【答案】1或0【分析】移项后分解因式得出x (x -1)=0,推出x =0,x -1=0,求出即可.本题考查了解一元二次方程,掌握方法是解题的关键.【详解】解:x 2=x ,∴x 2-x =0,∴x (x -1)=0,∴x =0,x -1=0,解得:x 1=0,x 2=1,故答案为:1或0.8.(23-24九年级上·江苏盐城·阶段练习)已知一元二次方程x 2-5x +2=0的两个根为x 1、x 2,x 1+x 2则的值为.【答案】5【分析】本题考查了韦达定理,熟练掌握该知识点是解题的关键.根据韦达定理进行计算即可.【详解】解:∵x 2-5x +2=0∴a =1,b =-5∴x 1+x 2=-b a =--51=5故答案为:5.9.(24-25九年级上·江苏南京·阶段练习)若关于x 的方程kx 2-x +1=0有两个不等的实数根,则k 的值为.【答案】k <14且k ≠0【分析】本题考查一元二次方程判别式,熟练掌握方程有两个不相等的实数根,则Δ>0是解题的关键.根据方程有两个不相等的实数根,Δ>0,结合一元二次方程的定义求解即可.【详解】解:由根与系数的关系可知,当一元二次方程有两个不等的实数根,则Δ>0,且k ≠0,即Δ=b 2-4ac =-1 2-4×1×k =1-4k >0,解得,k <14,∴k <14且k ≠0.故答案为:k <14且k ≠010.(22-23九年级上·江苏扬州·单元测试)在半径是20cm的圆中,的圆心角所对的弧长为cm.(结果保留π)【答案】10π【分析】本题考查了弧长的计算,根据弧长公式l=nπr180n是圆心角度数,r是半径,由此即可求解.【详解】解:的圆心角所对的弧长为l=90π×20180=10π,故答案为:10π.11.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是.【答案】90°的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“90°的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“90°的圆周角所对的弦是直径”即可得出答案,故答案为:90°的圆周角所对的弦是直径.12.(2024·江苏扬州·模拟预测)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=34°,则∠A的度数为.【答案】28°/28度【分析】本题考查了切线的性质,圆周角定理,熟知切线的性质与圆周角定理是解题的关键.连接OC,根据切线的性质得∠OCD=90°,求出∠DOC的度数,再根据圆周角定理计算∠A的度数.【详解】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∴∠OCD=90°,∵∠D=34°,∴∠DOC=90°-34°=56°,∴∠A=12∠DOC=28°,故答案为:28°.13.(20-21九年级上·四川绵阳·阶段练习)若关于x的方程ax2+bx+c=0的解为x1=-1,x2=3,则方程a (x -1)2+b (x -1)+c =0的解为.【答案】x 1=0,x 2=4【分析】将第二个方程中的(x -1)看成一个整体,则由第一个方程的解可知,x -1=-1或3,从而求解【详解】解:∵关于x 的方程ax 2+bx +c =0的解为x 1=-1,x 2=3,∴方程a (x -1)2+b (x -1)+c =0的解为x -1=-1或3,解得:x 1=0,x 2=4.【点睛】本题考查一元二次方程的解的概念,正确理解概念,利用换元法解方程是解题关键.14.(2024·江苏泰州·三模)如图,正五边形ABCDE 的边长为6,以顶点A 为圆心,长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是.【答案】1.8【分析】本题主要考查了求圆锥底面圆半径,正多边形内角,熟知圆锥底面圆的周长即为其展开图中扇形的弧长是解题的关键.先利用正多边形内角和定理求出∠A 的度数,再根据圆锥底面圆的周长即为其展开图中扇形的弧长进行求解即可.【详解】解:∵ABCDE 是正五边形,∴∠A =180°×5-35=108°,设底面圆的半径为r ,则2πr =108π×6180,解得r =1.8,故答案为:1.8.15.(22-23九年级上·江苏泰州·阶段练习)如图,⊙M 半径为2,圆心M 坐标(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.【答案】6【分析】本题主要考查点与圆的位置关系,熟练掌握直角三角形斜边上的中线等于斜边的一半得到答案即可.由Rt△APB中AB=2OP得到要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P 即可得到答案.【详解】解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P ,此时OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,∵MP =2,∴OP =3,∴AB=2OP =6,故答案为:6.16.(22-23九年级上·江苏盐城·期中)以正方形ABCD的边为直径作半圆O,过点C作直线切半圆于点F,交边于点E,若△CDE的周长为12,则正方形ABCD的边长为.【答案】4【分析】本题考查了正方形的性质、切线长定理等知识点,利用正方形的性质和圆的切线的判定得出均为圆O的切线是解题关键.根据切线长定理可得AE=EF,BC=CF,然后根据△CDE的周长可求出正方形的边长.【详解】解:在正方形ABCD中,∠BAD=∠ABC=90°,AD=CD=BC=AB,∵CE与半圆O相切于点F,以正方形ABCD的边为直径作半圆O,∴AD,BC与半圆O相切,∴AE=EF,BC=CF,∵△CDE的周长为12,∴EF+FC+CD+ED=12,∴AE+ED+CD+BC=AD+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4.故答案为:4.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(23-24九年级上·江苏常州·期末)解下列方程:(1)x2-4x=12;(2)3x(2x-5)=4x-10.【答案】(1)x1=6,x2=-2;(2)x1=23,x2=52.【分析】本题主要考查解一元二次方程,掌握配方法,因式分解法解一元二次方程是解题的关键.(1)运用配方法解一元二次方程即可求解;(2)运用因式分解法求一元二次方程即可求解.【详解】(1)解:x2-4x=12x2-4x+4=16x-22=16x-2=±4∴x1=6,x2=-2;(2)解:3x(2x-5)=4x-103x2x-5-22x-5=02x-53x-2=0∴2x-5=0或3x-2=0,∴x1=52,x2=23.18.(23-24九年级上·江苏盐城·阶段练习)如图,平面直角坐标系中有一个△ABC.(1)利用网格,只用无刻度的直尺作出△ABC的外接圆的圆心点O;(2)△ABC的外接圆的圆心坐标是;(3)该圆圆心到弦AC的距离为;(4)△ABC最小覆盖圆的半径为.【答案】(1)见解析(2)5,2(3)10(4)10【分析】本题考查了三角形外心的性质,等腰三角形三线合一,勾股定理,熟练掌握以上知识点并利用数形结合思想是解题的关键.(1)根据三角形外心的性质,分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心;(2)根据(1)所求,可由坐标系直接得到答案;(3)取AC的中点P,连接OP,根据等腰三角形三线合一可知OP⊥AC,利用勾股定理求出OP即为所求;(4)利用勾股定理求出CP即可.【详解】(1)解:分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心,如图即为所求:(2)解:由(1)可知,O点坐标为5,2故答案为:5,2.(3)解:取AC的中点P,连接OP,如图,OA=OC则OP⊥AC∵OP=12+32=10∴该圆圆心到弦AC的距离为10故答案为:10.(4)解:由图可知,最小覆盖圆的半径为CP长如图所示,可知CP为所求,利用网格CP=12+32=10故答案为:10.19.(22-23九年级上·江苏泰州·阶段练习)如图,已知AB、MD是⊙O的直径,弦CD⊥AB于E.(1)若CD=16cm,OD=10cm,求BE的长:(2)若∠M=∠D,求∠D的度数.【答案】(1)4cm(2)30°【分析】本题主要考查垂径定理,勾股定理以及圆周角定理,熟练掌握性质定理是解题的关键.(1)由垂径定理求出DE的长,再根据勾股定理求出答案即可;(2)根据圆周角定理求得∠D=1∠BOD,再根据两锐角互余的性质得到答案.2【详解】(1)解:∵弦CD⊥AB,CD=16cm,CD=8cm,∴CE=DE=12在Rt△OED中,OE=OD2-DE2=102-82=6cm,∴BE=OB-OE=10-6=4cm;∠BOD,(2)解:∵∠M=∠D,∠M=12∠BOD,∴∠D=12∵∠D+∠BOD=90°,∠D=30°.20.(24-25九年级上·江苏宿迁·阶段练习)关于x的方程x2-m+4x+3m+3=0.(1)求证:不论m取何值,方程总有两个实数根;(2)若该方程有两个实数根x1,x2,且x1+1=3,求m的值.x2+1【答案】(1)证明见详解(2)m=-54【分析】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x1+x2=m+4,x1x2=3m+3,将x1+1=3展开,代入x2+1求解即可.【详解】(1)证明:a=1,b=-m+4,c=3m+3,∴Δ=m+42≥0,=m-22-4×1×3m+3∴不论m取何值,方程总有两个实数根;(2)解:x1+1=3,x2+1x1x2+x1+x2+1=3,对于方程x2-m+4x+3m+3=0,可得x1+x2=m+4,x1x2=3m+3,∴m+4+3m+3+1=3,解得:m=-5 4.21.(24-25九年级上·全国·单元测试)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的边AB的长为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈(2)羊圈的面积不能达到650m2,理由见解析【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.(1)设羊圈的边AB的长为xm,则边BC的长为72-2xm根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解.【详解】(1)解:设羊圈的边AB的长为xm,则边BC的长为72-2xm,根据题意,得x72-2x=640,化简,得x2-36x+320=0,解方程,得x1=16,x2=20,当x1=16时,72-2x=40,当x2=20时,72-2x=32.答:当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈.(2)不能,理由如下:根据题意,得x72-2x=650,化简,得x2-36x+325=0,∵b2-4ac=-362-4×325=-4<0,∴该方程没有实数根.∴羊圈的面积不能达到650m222.(22-23八年级下·浙江宁波·期末)冬季来临,某超市以每件35元的价格购进某款棉帽,并以每件58的价格出售.经统计,10月份的销售量为256只,12月份的销售量为400只.(1)求该款棉帽10月份到12月份销售量的月平均增长率;(2)经市场预测,下个月份的销售量将与12月份持平,现超市为了减少库存,采用降价促销方式,调查发现,该棉帽每降价1元,月销售量就会增加20只.当该棉帽售价为多少元时,月销售利润达8400元?【答案】(1)25%(2)【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该款棉帽10月份到12月份销售量的月平均增长率为x,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该款棉帽售价为y元,则每件的销售利润为y-25元,利用月销售利润=每件的销售利润×月销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设该款棉帽10月份到12月份销售量的月平均增长率为x,根据题意得:2561+x 2=400,解得:x 1=0.25=25%,x 2=-2.25(不符合题意,舍去)答:该款棉帽10月份到12月份销售量的月平均增长率为25%.(2)设该棉帽售价为y 元,则每件的销售利润为y -35 元,月销售量为400+2058-y =1560-20y 件根据题意得:y -35 1560-20y =8400解得:y 1=50,y 2=63(不符合题意,舍去).答:该款棉帽售价为元时,月销售利润达8400元.23.(22-23九年级上·江苏连云港·阶段练习)如图,AB 为⊙O 的直径,BC 是圆的切线,切点为B ,OC 平行于弦AD,(1)求证:DC 是⊙O 的切线;(2)直线AB 与CD 交于点F ,且DF =4,AF =2,求⊙O 的半径.【答案】(1)见解析(2)3【分析】(1)连接OD ,根据切线的性质得到OB ⊥BC ,证明△DOC ≌△BOC ,根据切线的性质得到∠ODC =∠OBC =90°,根据切线的判定定理证明结论;(2)设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出⊙O 的半径.【详解】(1)证明:连接OD ,∵BC 是⊙O 的切线,∴OB ⊥BC ,∵OC ∥AD ,∴∠BOC =∠OAD ,∠DOC =∠ODA ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠DOC =∠BOC ,在△DOC 和△BOC 中,OD =OB∠DOC =∠BOC OC =OC,∴△DOC ≌△BOC (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∵OD 是⊙O 的半径,∴DC 是⊙O的切线;(2)解:设⊙O 的半径为r ,则OF =OA +AF =r +4,在Rt △ODF 中,OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点睛】本题考查的是切线的判定和性质,全等三角形的判定和性质,平行线的性质,勾股定理的,熟记经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.24.(24-25九年级上·江苏宿迁·阶段练习)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2-4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是;(填序号即可)①x 2-2x -3=0;②x 2-3x =0;③x 2+8x +12=0.(2)如果关于x 的方程x 2-8x +c =0是“三倍根方程”,求c 的值;(3)如果点p ,q 在反比例函数y =3x的图象上,那么关于的x 方程px 2-4x +q =0是“三倍根方程”吗?请说明理由.(4)如果关于x 的一元二次方程ax 2+bx +c =0a ≠0 是“3倍根方程”,那么a 、b 、c 应满足的关系是.(直接写出答案)【答案】(1)③(2)c =12;(3)方程px 2-4x +q =0是“三倍根方程”;见解析(4)3b 2-16ac =0【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.也考查了一元二次方程的解和解一元二次方程.(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)根据“三倍根方程”的定义设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)方程px 2-4x +q =0化为方程px 2-4x +3p =0,解方程求得方程的根,根据“三倍根方程”的定义即可求出答案;(4)根据“三倍根方程”的概念得到原方程可以改写为a x -t x -3t =0,解方程即可得到结论.【详解】(1)解:由x 2-2x -3=0可得:x 1=-1,x 2=3,不满足“三倍根方程”的定义;由x 2-3x =0可得:x 1=0,x 2=3,不满足“三倍根方程”的定义;由x 2+8x +12=0可得:x 1=-2,x 2=-6,满足“三倍根方程”的定义;故答案为:③;(2)解:设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,由一元二次方程根与系数的关系可知:x 1+3x 1=8,3x 12=c ,∴x 1=2,c =12;(3)解:∵点p ,q 在反比例函数y =3x的图象上,∴q =3p ,∴方程px 2-4x +q =0化为方程px 2-4x +3p=0,整理得px -3 px -1 =0,解得x 1=3p ,x 2=1p,∴方程px 2-4x +q =0是“三倍根方程”;(4)解:根据“三倍根方程”的概念设一元二次方程ax 2+bx +c =0(a ≠0)的两个根为t 和3t .∴原方程可以改写为a x -t x -3t =0,∴ax 2+bx +c =ax 2-4atx +3at 2,∴b =-4at c =3at 2 .解得3b 2-16ac =0.∴a ,b ,c 之间的关系是3b 2-16ac =0.故答案为:3b 2-16ac =0.25.(23-24九年级上·江苏无锡·期中)如图1,平行四边形ABCD 中,AB =8,BC =4,∠ABC =60°.点P为射线BC 上一点,以BP 为直径作⊙O 交AB 、DC 于E 、F 两点.设⊙O 的半径为x .(1)如图2,当⊙O 与DP 相切时,x =.(2)如图3,当点P 与点C 重合时,①求线段CE 长度;②求阴影部分的面积;(3)当⊙O 与平行四边形ABCD 边所在直线相切时,求x 的值;【答案】(1)4(2)①23;②2π3-3(3)x =-12+83或43【分析】(1)由平行四边形的性质可得:AB ∥CD ,AB =CD =8,得出∠DCP =∠ABC =60°,再由切线的性质可得DP ⊥BP ,得出∠CDP =30°,利用30°所对的直角边等于斜边的一半,可得CP =12CD =4,推出⊙O 的直径BP =8,即可得出答案;(2)①运用勾股定理即可求得答案;②如图2,连接OE ,利用圆周角定理可得出∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,利用勾股定理可求得EH =3,再运用扇形面积公式和三角形面积公式即可求得答案;(3)分两种情况:①当⊙O 与直线CD 相切时,由切线性质可得∠OFC =90°,进而可得OB =OF =x ,OC =4-x ,CF =12(4-x ),再由勾股定理建立方程求解即可;②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,证明四边形ACOT 是矩形,即可得出答案【详解】(1)解:如图1,∵四边形ABCD 是平行四边形,AB =8,BC =4,∠ABC =60°.∴AB ∥CD ,AB =CD =8,∴∠DCP =∠ABC =60°,∵⊙O 与DP 相切,∴DP ⊥BP ,∴∠CPD =90°,∴∠CDP =90°-∠DCP =30°,∴CP =12CD =4,∴⊙O 的半径x =4,(2)解:①∵点P 与点C 重合,∴BC 为⊙O 的直径,∴∠BEC =90°,∴∠BCE =90°-∠CBE =30°,∴BE =12BC =2,在Rt △BCE 中,CE =BC 2-BE 2=42-22=23,②如图2,连接OE ,∵BE =BE,∴∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,∴OH =12OE =1,∴EH =OE 2-OH 2=22-12=3,∴S 阴影=S 扇形OBE -S △OBE=60π×22360-12×2×3=2π3-3;(3)解:①当⊙O 与直线CD 相切时,如图3,∴OF ⊥CD ,∴∠OFC =90°,∵∠OCF =∠ABC =60°,∴∠COF =30°,∴CF =12OC ,∵OB =OF =x ,∴OC =4-x ,CF =124-x ,∵CF 2+OF 2=OC 2,∴124-x2+x 2=4-x 2,解得:x =-12+83或x =-12-83(舍去),②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,取AB 的中点G ,连接CG ,∴BG =AG =12AB =4=BC ,∵∠ABC =60°,∴△BCG 是等边三角形,∴CG =BC =4=AG ,∴∠BAC =∠ACG =30°,∴∠ACB =90°∴AC =82-42=43,∴∠ACO =90°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠TOC =∠DTO =∠ATO =90°=∠ACO ,∴四边形ACOT 是矩形,∴x =OT =AC =43;综上所述,x =-12+83或43;【点睛】本题是圆的综合题,考查了圆的性质,圆周角定理,勾股定理,平行四边形的性质,矩形的判定和性质,切线的性质等,运用数形结合思想和分类讨论思想是解题关键.26.(23-24九年级上·江苏南京·阶段练习)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B =°,∠AP 2B =°;(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m °(m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数为;(用m 的代数式表示)【问题解决】(3)如图3,已知线段AB ,点C 在AB 所在直线的上方,且∠ACB =135°,用尺规作图的方法作出满足条件的点C 所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);【实际应用】(4)如图4,在边长为12的等边三角形ABC 中,点E 、D 分别是边AC 、BC 上的动点,连接AD 、BE ,交于点P ,若始终保持AE =CD ,当点E 从点A 运动到点C 时,PC 的最小值是.【答案】(1)50,130;(2)180°-m 2°;(3)见解析;(4)43【分析】(1)根据圆周角定理即可求出∠AP 1B =50°,根据圆内接四边形即可求出∠AP 2B =130°;(2)分P 在优弧AB 上和P 在劣弧AB 上两种情况分类讨论即可求解;(3)作线段AB 的垂直平分线,以AB 为直径作圆,交垂直平分线于点O ,以点O 为圆心,以OA 为半径作圆,则AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)先证明△ACD ≌△BAE ,得到∠BAP +∠ABP =60°,∠APB =120°,根据(3)问点P 的运动轨迹是AB,∠AOB =120°,连接CO ,证明△OAC ≌△OBC ,进而得到∠ACO =∠BCO =30°,∠AOC =∠BOC =60°∠OAC =∠OBC =90°,根据勾股定理求出OP =OB =43OC =83,根据PC ≤OC -OP ,可得PC ≥43,即可求出PC 的最小值为43.【详解】解:(1)∠AP 1B =12∠AOB =12×100°=50°,∠AP 2B =180°-∠APB =180°-50°=130°.故答案为:50,130;(2)当P 在优弧AB 上时,∠APB =12∠AOB =m 2 °;当P 在劣弧AB 上时,∠APB =180°-m 2 °;故答案为:m 2 °或180°-m 2 °(3)如图AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形.证明:∵AB 为⊙P 的直径,∴∠AOB =90°,在⊙O 中,∵点C 在AB 上,由(2)得∠ACB =180°-∠AOB 2=135°,∴AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)解:如图,∵△ABC 为等边三角形,∴AB =BC =AC ,∠BAC =∠ACB =60°,∵AE =CD ,∴△ACD ≌△BAE ,∴∠CAD =∠ABE ,∵∠BAP +∠ABP =∠BAP +∠CAD =∠BAC =60°,∴∠APB =120°,∴点P 的运动轨迹是AB ,∴∠AOB =120°.连接CO ,∵OA =OB ,CA =CB ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°,∠AOC =∠BOC =60°,∴∠OAC =∠OBC =90°,在Rt △OBC 中,设OB =x x >0 ,则OC =2x ,根据勾股定理得2x 2-x 2=122,解得x =43,∴OC =2x =83,OP =OB =43,∵PC ≤OC -OP ,∴PC ≥43,∴PC的最小值为43.故答案为:43.【点睛】本题考查了圆周角定理及其推论,圆内接四边形的性质,全等三角形的判定与性质,勾股定理,三角形三边关系等知识,综合性强,难度较大,解题时要熟知相关知识,注意在解决每一步时都要应用上一步结论进行解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三第一次阶段性测试2013年九年级历史第一次独立作业一、选择题(20分)1、西安黄帝陵,经常看到拜谒有白发苍苍的海外华人,千里迢迢回来寻根,他们上香的手是颤抖的,眼里含着泪花;有的是祖孙三代一起来祭祖,他们那么虔诚的长跪、叩首!你认为他们拜谒黄帝陵的主要原因是()A.因为黄帝是中华民族的人文始祖B.因为那里的风光特别的美丽C.因为传说中黄帝是中华原始农业和医药学的创始人D.因为黄帝治理水患,造福百姓2、参加夏令营的同学们来到了殷墟,在参观的时候,讲解员指着右图中的一段残片告诉同学们:“这些文字记录和反映了商王的活动和商朝的政治、经济情况,对研究商朝的历史有重要价值。

”这段残片上的文字应该是()A.刻画符号B.甲骨文C.金文D.小篆3、、下列不属于西周分封制内容的是()A.周天子把土地、人民,分给亲族、功臣B.诸侯必须服从周天子的命令,带兵随从周天子作战C.诸侯要向周天子纳贡D.诸侯要按田亩数向国王纳贡4、战国时期道家学派的代表人物是()A.老子 B.孔子 C.孟子 D.庄子5故宫里有一块牌匾上写着“中正仁和”,其中“仁”的思想来自于()A、道家B、儒家C、法家D、墨家6、“卧薪尝胆”是讲述春秋时期哪位霸主的故事?()A. 齐桓公B. 晋文公C. 吴王阖闾D. 越王勾践7、丝绸织绣着中国早期的繁盛与光华,随着东方美丽的传说,沿着“丝绸之路”向西方播送着中国璀璨而精致的文明。

“丝绸之路”经过的地区,从东往西排列,顺序正确的是()①长安②河西走廊③西亚④欧洲A.①②③④ B.④③②① C.①③②④ D.①②④③8、“飘若浮云,矫若惊龙”是形容一位书法家的字,他是()A. 欧阳洵B. 颜真卿C. 柳公权D. 王羲之9、小明将参加学校组织的“话说唐太宗政绩”的知识擂台赛,他准备的下列史实中不正确的是()A、任用魏征等贤臣B、重视人才的培养C、轻徭薄赋,减轻农民负担D、创立三省六部制10、元代高明在《琵琶记》中说:“十年寒窗无人问,一举成名天下知。

”这句话反映的社会现象在中国最早出现的时期是()A、秦汉时期B、隋唐时期C、宋元时期D、明清时期11、8世纪初,唐朝和吐蕃已“和同为一家”。

吐蕃是今天我国哪个少数民族的祖先?()A、回族B、藏族C、维吾尔族D、蒙古族12、中日友好交往源远流长。

右图是唐朝时期曾为中日两国的友好交往做出突出贡献的人物,他是()A、鉴真和尚B、高僧玄奘C、阿倍仲麻吕D、马可· 波罗13、印度是世界文明古国之一。

如果你想了解7世纪印度的历史,下列资料中最值得查阅的是( ) A 、《史记》 B 、《大唐西域记》 C 、《马可·波罗行记》 D 、《资治通鉴》 14.世界上现存最早的、标有确切日期的雕版印刷品是 ( ) A .《金刚经》 B .《古兰经》 C .《诗经》 D .《圣经》 15、学习隋唐史后,四位同学作了主题演讲,你认为能准确地概括这段历史的基本特征的是 A 、文明初露曙光 B 、分裂奔向统一 C 、繁荣与开放 D 、封建国家陷入危机 16、“苏湖熟,天下足”反映的实质性问题是( )。

A.苏湖地区粮食获得了大丰收 B.全国的经济重心从黄河流域转移到长江流域 C.苏湖地区是我国的经济重心 D.宋朝时粮食产量非常大 17、瓦舍在宋代城市的盛行,主要是因为( )。

A.士大夫的提倡 B.市民阶层不断壮大 C.价格低廉 D.达官贵人的需要、 18、关于秦朝、隋朝历史的表述,不正确的是( )。

A.都结束了长期的分裂状态,实现了国家的统一 B.都在加强专制主义中央集权的政治制度方面有开拓性的贡献 C.都开通或疏浚了著名的水利工程 D.都使经济重心往南移 19、下列图示表示三国鼎立的示意图,其中大致准确的是( ) 20、元朝为了实行对全国的有效统治,建立的对后世产生深远影响的制度是( )。

A.行省制度 B.八旗制度 C.郡县制度魏 蜀吴 蜀蜀 蜀 吴 吴 吴 魏 魏魏 A BD.三省六部制二、非选择题(30分)21、阅读下列材料,结合所学知识回答问题:(6分)材料一:江南地域辽阔而人烟稀少;稻米和鱼是主要食物,人们还可以从山中采集植物果实和贝类为食;放火烧荒,耕种水田;不需要商人贩卖货物,没有非常富裕的人。

──西汉《史记》材料二:江南……地广野丰,民勤本业,一岁或稔,则数郡忘饥。

……丝绵布帛之饶覆衣天下。

──南朝《宋书》材料三:魏晋南北朝以来,全国经济重心出现南移的趋势。

宋朝初年,北方人口仅有一百多万户,而南方却有二百三十多万户,是北方的两倍。

两宋时期,中原军民英勇抗击契丹、女真等少数民族南侵,使南方地区长期处于相对和平的环境,南方经济迅速发展起来。

“苏湖熟,天下足”的谚语,表明太湖流域已成为全国最重要的粮仓。

(1)分析比较以上三则材料,说明江南地区从西汉到南宋发生了怎样的变化?(1分)(2)为什么会发生这样的变化?(至少2点)(2分)(3)根据材料分析我国经济中心实现了怎样的转移(从哪里转移到哪里)?这种转移大约完成于何时?(2分)(4)从江南变化原因中,你从中得到哪些启示或感悟?(1分)22、中国是一个统一的多民族国家,在历史上有过分裂,维护祖国统一是中华儿女不变的追求。

结合所学知识,回答下列问题:(9分)材料一罢兵西归……封诸侯,班赐宗彝……于是封功臣谋士,而师尚父为首封,封尚父于营丘,曰齐。

材料二:李斯议曰:“周文、武所封子弟同姓甚众,然后属疏远,相攻如仇,诸侯更相诛伐,周天子弗能禁止。

”始皇曰:“分天下以为三十六郡,郡置守、卫、监,郡下设置县。

”——《史记·秦始皇本纪》材料三:主父偃曰:“今诸侯子弟或十数,无尺地之封,愿陛下令诸侯得推恩分子弟以地、侯之,被人人喜得所愿,上以施德,实为分国,必稍自销弱也。

”——《前汉书·帝纪》材料四:(1)材料一反映出西周实行什么政治制度?西周实行该制度的目的是什么?(2分)(2)从材料二来看,周天子这一举措带来了怎样的负面影响?由此,秦始皇采取了怎样的措施加强对地方的统治?(2分)(3)材料三中汉武帝采纳了主父偃怎样的建议?其目的是什么?(2分)(4)材料四反映的是什么政治制度?此制度开创于哪个朝代?(2分)(5)如果为上述材料确定一个主题,你的主题是什么?(1分)23、在历史发展的长河中,民族团结和国家统一成为主流,[来源:中教网]更成为国家繁荣富强的重要基础。

据此回答下列问题。

(8分)材料一:一个家,名字叫中国。

兄弟姐妹都很多,景色也不错。

材料二:武帝时,西域内属,有三十六国,汉为置使者校尉领护之,宣帝改曰都护,元帝又置戊已二校尉。

——《后汉书•西域传》材料三:三国两晋南北朝时期我国西部和北部少数民族受汉族先进文化的影响不断内迁,大量南下的少数民族与汉族人民在黄河流域杂居相处,彼此交往。

他们在生产方式和生活方式方面,相互渗透,取长补短。

材料四:碑文曰:维大唐开元二十一年,岁次壬申,舅甥其旧好,同为一家,往日贞观十年,初通和好,远降文成公主入蕃。

以后景龙二年,重为婚媾,金城公主因兹降蕃。

自此以来,完事休贴。

间者边吏不谨,互有侵轶,越在遐荒,因之隔阂。

今遵永旧,咸与维新,帝式藏用,不违厥旨。

唐蕃会盟碑(1)被尊奉为中华民族人文始祖的是哪两位?元朝时中华民族大家庭又增添了哪一新成员?(2分)(2)料二,结合所学知识,指出汉朝是如何使“西域内属”的?有何意义?(2分)(3)根据材料三并结合所学知识,指出在内迁的各族中哪一民族为革除落后习俗、吸收汉族先进文化而进行了哪一重大改革?(2分)(4)与唐朝“和同为一家”的是哪一少数民族政权有关?什么事件奠定了两者密切交往的基础?(2分)24、中华文明源远流长,绵延不绝,成就辉煌,对人类进步做出了伟大贡献。

阅读有关材料,回答问题。

(7分)材料一春秋战国时期,针对社会急剧的变化和发展,有识之士纷纷发表各自的看法和主张,逐渐形成儒家、法家、道家、墨家、兵家等许多学派,史称“诸子百家”。

材料二:“皇帝接受李斯的建议,发布焚书令,规定除政府外,民间只可收藏医药、占卜和种植等书,其余一律集中焚毁。

他又把暗中诽谤他的儒生400多人,全部活埋。

”材料三:“诸不在六艺之科、孔子之术者,皆绝其道,勿使并进。

”——董仲舒材料四:孔子学院在全球开设的速度,引发了世人包括中国人自己的惊奇。

在不到两年的时间里,全球新增100多所孔子学院,覆盖了50多个国家和地区。

“现在已经不是我们要推广,而是各国的大学争着要办,挡都挡不住。

”——中国国家汉语国际推广领导小组办公室(1)材料一中,各个学派问相互争论和批判,又相互影响,形成了什么样的学术繁荣局面?其中儒家代表人是谁?其主要思想是什么?(3分)(2)材料二中所述内容与哪一事件有关?(1分)(3)材料三中董仲舒对儒家学说的主张是什么?这一主张被汉武帝接受与采纳后产生怎样的深远影响?(2分)(4)根据材料四并结合所学知识,简要回答:弘扬中华民族优秀传统文化有怎样的现实意义?(1分)答案1-5 ABDDB 6-10 DADDB 11-15 BABAC 16-20 BBDDA21、(1)由荒凉、落后地区变为富庶地区。

(2)原因:①南方社会相对安定。

②北方农民南迁,增加了劳动力,带来较先进的生产工具和技术。

③南方拥有优越的自然条件④政府注意农业生产,重视兴修水利。

(3)从黄河流域转移到长江流域,两宋时期(南宋)(4)启示:①政局的稳定是经济发展的必要条件;②统治者对经济发展的重视程度是其经济发展的重要因素;③及时引进、运用最先进的科学技术于经济建设中是促进经济快速发展的重要保证。

22、(1)西周分封制,巩固对周边地区的统治。

(2)分封的诸侯相互攻伐,王权衰落。

地方实行郡县制。

(3)颁布推恩令。

削弱诸侯国的实力。

(4)三省六部制,隋朝(5)专制主义中央集权的加强。

23(1)炎帝黄帝,回族(2)措施:张骞出使西域;设置“使者校尉”的管理;西域都护的设置等意义:标志着新疆地区正式归属中央管辖的开始(3)鲜卑族,北魏孝文帝改革(4)吐蕃,文成公主入藏24、(1)百家争鸣;孟子;仁政,民贵君轻。

(2)焚书坑儒(3)罢黜百家,独尊儒术儒家学说成为封建正统思想(5)中国传统文化是中国人民伟大智慧和创造力的结晶,是中华民族屹立于世界文化之林的依据,今天仍然渗透在现实生活中,对中国人的思想、行为起着潜在的影响作用;弘扬中华民族文化,又能推动中国文化进一步走向世界,对全人类的文明发展作出更大贡献。

相关文档
最新文档