数学奥赛辅导-高斯函数
高斯函数参数

高斯函数参数
高斯函数,又称正态分布函数,是数学中一种非常重要的连续概
率密度函数。
高斯函数是由德国数学家高斯(Carl Friedrich Gauss)于18世纪初提出的。
高斯函数的形式如下:
f(x) = 1/(σ*sqrt(2π)) * exp(-(x-μ)^2/(2σ^2))
其中,μ是均值,σ是标准差,exp是自然指数函数。
高斯函数有许多重要的应用,例如在自然科学、社会科学、医学
领域等,都有广泛的应用。
而高斯分布曲线通常被用来表示一组数据
集合的分布情况,可以帮助人们了解到这些数据的整体分布情况,并
且可以通过计算计算出数据的平均值和标准差等参数。
例如,在自然科学领域中,高斯函数常常被用来描述随机误差的
分布。
在物理实验中,所有测量量都有不可避免的误差,这些误差通
常都是服从于高斯分布。
在社会科学中,高斯函数被用来描述种群的
分布及各种人口统计学特征,如智力、身高、体重等。
在医学领域中,高斯函数可以用来计算体重指数、血糖水平等参数。
总的来说,高斯函数是许多领域中不可或缺的重要工具,其参数
也是相关领域中研究和应用的基础。
数学竞赛中的高斯函数

数学竞赛中的高斯函数一、 知识概要1, 定义:设x R ∈,用[]x 表示不超过x 的最大整数。
则[]y x =称为高斯函数,也叫取整函数。
显然,[]y x =的定义域是R ,值域是Z 。
任一实数都能写成整数部分与非负纯小数之和,即[]()01x x a a =+≤<,因此,[]x x ≤[]1x <+,这里,[]x 为x 的整数部分,而{}[]x x x =-为x 的小数部分。
2,性质1,函数[]y x =是一个分段表达的不减的无界函数,即当12x x ≤时,有[][]12x x ≤; 2,[][]n x n x +=+,其中n Z ∈; 3,[][]11x x x x -<≤<+;4,若[][]x y n ==,则,,x n a y n b =+=+其中0,1a b ≤<; 5,对于一切实数,x y 有[][][]x y x y +≤+; 6,若0,0x y ≥≥,则[][][]xy x y ≥;7,[][][]1x x x ⎧--⎪-=⎨-⎪⎩8,若n N +∈,则[]x x n n ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦;当1n =时,[][]x x ⎡⎤=⎣⎦; 9,若整数,a b 适合a bq r =+(0,,b q r >是整数,0r b ≤<),则a q b ⎡⎤=⎢⎥⎣⎦;10,x 是正实数,n 是正整数,则在不超过x 的正整数中,n 的倍数共有x n ⎡⎤⎢⎥⎣⎦个;11,设p 为任一素数,在!n 中含p 的最高乘方次数记为()!p n ,则有:()()12!m m m n n n p n p n p p p p +⎡⎤⎡⎤⎡⎤=+++≤<⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。
(x 不是整数时) (x 是整数时)证明:由于p 是素数,所有!n 中所含p 的方次数等于!n 的各个因数1,2,,n 所含p 的方次数之总和。
由性质10可知,在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数, ,当1m m p n p +≤<时,120m m n n p p ++⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦,所以命题成立。
初中数学竞赛中的高斯函数问题

【分析 】注意到和式中的每个加数都可
以表 示 为
3
k ( k +1) ( k +2)
(
k 为正整
数 ) . 需对 3 k ( k + 1) ( k + 2)进行估计.
解 因 k3 < k ( k + 1) ( k + 2) < ( k + 1) 3 ,
所以 , k < 3 k ( k + 1) ( k + 2) < k + 1.
4
6
因此 , 30S = 2.
2 求多个高斯函数值的和
例 4 代数式
3 1 ×2 ×3 + 3 2 ×3 ×4 + … +
3 2 000 ×2 001 ×2 002 = ( ) .
(A ) 2 000 000
(B ) 2 001 000
(C) 2 002 000
(D ) 2 003 001
( 2000,“五羊杯 ”数学竞赛 (初三 ) )
2 而 x - 1 < x ≤x,则 x - 1 < x2 - 3≤x.
2
解得 - 1≤x < 1 - 2或 1 + 2 < x≤3. 因此 , x 只可能取值 - 1, 2, 3. 当 x = - 1时 , x2 - 3 = - 1,解得 x = - 1;
2 当 x = 2时 , x2 - 3 = 2,解得 x = 7;
3
6 362
5
当且仅当
n是整数时 6
,
上式等号成立.
因此 ,
n是整数 6
.
又因正整数 n 小于 2 006, 所以 , 满足条
1高斯函数

第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x],即y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n 1]+[x+n 2]+…+[x+nn 1-]=[nx]; 证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa +11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 .3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 .2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+[4y]+ 月份 1 2 3 4 5 6 7 8 9 10 11 12[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字(见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 .2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= .3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+ 第一讲:高斯函数 3[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:对应的m 值 11 12 1 2 3 4 5 6 7 8 9 101.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . ③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = .②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 .2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .4 第一讲:高斯函数②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23] ③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.[练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数).6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 第一讲:高斯函数 5⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= . 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ]. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.8.不等问题:[例8]:(1981年美国数学奥林匹克试题)对正整数n 和一切实数x.求证:[nx]≥1][x +2]2[x +…+nnx ][. [解析]:为方便,记a n =1][x +2]2[x +…+nnx ][.用数学归纳法证明:①当n=1时,a 1=[x],[nx]=[x]⇒原不等式成立;②假设当k<n 时,原不等式均成立,即a 1≤[x],a 2≤[2x],…,a n-1≤[(n-1)x];注意到:a k -a k-1=kkx ][⇒ka k -ka k-1=[kx]⇒na n =a 1+(2a 2-a 1) 6 第一讲:高斯函数+(3a 3-2a 2)+…+[na n -(n-1)a n-1]=a 1+(2a 2-2a 1)+(3a 3-3a 2)+…+(na n -na n-1)+(a 1+a 2+…+a n-1)=[x]+[2x]+[3x]+…+[nx]+(a 1+a 2+…+a n-1)≤n[nx]⇒a n ≤[nx].[练习8]:1.(第10届地中海地区数学奥林匹克试题)设x 为大于1的实数.证明:(][}{x x x +-}{][x x x +)+(}{][x x x +-][}{x x x +)>29.2.(2005年国家集训队训试试题)求所有正整数m 、n,使得不等式[(m+n)α]+[(m+n)β]≥[m α]+[m β]+[n(α+β)]对任意实数α、β都成立.3.(2005年国家集训队选拔考试试题)设n 是任意给定的正整数,x 是正实数.证明:∑++-=nk x kx x k x 1])1)[1(][(≤n.第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x]与y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n1]+[x+n2]+…+[x+nn 1-]=[nx];证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+ n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa+11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .解:因f(x)+f(-x)=(x a +11-21)+(x a -+11-21)=x a +11+xxa a +1-1=0⇒f(-x)=-f(x);设f(x)=k+α,其中,k ∈Z,0≤α<1,①若α=0,则f(x)=k ⇒-f(x)=-k ⇒[f(x)]=k,[f(-x)]=-k ⇒[f(x)]+[f(-x)]=0;②若α≠0,则f(x)=k+α⇒-f(x)=-k-α= -(k+1)+(1-α)⇒[f(x)]=k,[f(-x)]=-(k+1)⇒[f(x)]+[f(-x)]=-1⇒[f(x)]+[f(-x)]的值域是{-1,0}. 2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 . 解:令g(x)=kx+k,由图知g(2)≤1,g(3)>1⇒41<k ≤31. 3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 . 解:令f(k)=[51-k ]-[52-k ],则f(k+5)=[515-+k ]-[525-+k ]=[1+51-k ]-[1+52-k ]=[51-k ]-[52-k ]=f(k),故f(k)是周期为5的函数;计算可知:f(2)=0,f(3)=0,f(4)=0,f(5)=0,f(6)=1;由x k =x k-1+1-5f(k)⇒x k -x k-1=1-5f(k)⇒x 2008=x 1+(x 2- x 1)+(x 3-x 2)+…+(x 2008-x 2007)=x 1+2007-5[f(2)+f(3)+…+f(2008)]=x 1+2007-5[4001(f(2)+f(3)+…+f(6))+f(2)+f(3)]=3;同理可得y 2008=402.所以,2008棵树的种植点为(3,402).2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+ [4y ]+[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字 (见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 . 解:因c=20,y=8,d=18,m=4⇒d+[2.6m-0.2]+y+[4y ]+[4c]-2c=18+[10.2]+8+[2]+[5]-40=3≡3(mod7)⇒2008年6月18日是星期三.2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值. 解:因为0<1<2π,2π<2、3<π,π<4<23π,23π<5、6<2π⇒sin1、sin2、sin3∈(0,1),sin4、sin5∈(-1,0)⇒[sin1]=第一讲:高斯函数 3[sin2]=[sin3]=0,[sin4]=[sin5]=-1⇒[sin1]+[sin2]+[sin3]+[sin4]+[sin5]=-2.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= . 解:因为0<1<2π,2π<2<π,43π<3<π,π<4<23π,23π<5<2π,47π<6<2π⇒sin1∈(0,1),cos2∈(−1,0),tan3∈(−1, 0),sin4∈(−1,0),cos5∈(0,1),tan6∈(−1,0)⇒[sin1]+[cos 2]+[tan 3]+[sin 4]+[cos5]+[tan 6] =0+(-1)+(-1)+(-1) +0+(-1)=-4.3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数. 解:当20052k <1,即k<44时,[20052k ]=0;当1≤20052k <2,即45≤k<63时,[20052k ]=1;当2≤20052k <3,即64≤k<77时,[20052k ]=2; 当3≤20052k <4,即78≤k<89时,[20052k ]=3;当4≤20052k <5,即90≤k<100时,[20052k ]=4;当5≤20052k <6,即100≤k<109时,月份 1 2 3 4 5 6 7 8 9 10 11 12 对应的m 值111212345678910[20052k ]=5;当6≤20052k <7,即110≤k<118时,[20052k ]=6;当7≤20052k <8,即119≤k<126时,[20052k ]=7;…,集合{n|n=[20052k ], 1≤k ≤2004,k ∈N}的元素个数=1503.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . 解:由k<)1(+k k <k+21⇒2)1(+n n <a n <2)1(+n n +21n ⇒n+1<n a n 2<n+2⇒[n a n 2]=n+1. ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . 解:设f(x)=nx 3+2x-n,易知,当n 为正整数时,f(x)为增函数;f(1)=2>0,且当n ≥2时,f(1+n n )=n(1+n n )3+21+n n -n=3)1(+n n (- n 2+n+1)<0⇒x n ∈(1+n n ,1)⇒n<(n+1)x n <n+1⇒a n =[(n+1)x n ]=n ⇒10051(a 2+a 3+…+a 2011)=2013. ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 解:由b n =[5n a ]=[523-n ]⇒b 5k+r =[52)5(3-+r k ]=[3k+523-r ]=3k+[523-r ](r=0,1,2,3,4)⇒b 5k =3k-1,b 5k+1=b 5k+2=3k,b 5k+3=3k+1,b 5k+4=3k+2⇒b 5k-4+b 5k-3+b 5k-2+b 5k-1+b 5k =15k-10⇒b 1+b 2+…+b 2007=(b 1+b 2+…+b 5)+…+(b 401×5-4+b 401×5-3+b 401×5-2+b 401×5-1+b 401×5)+(b 401×5+1+b 401×5+2)=152)4011(401+-10×401+(3×401+3×401)=(15×201-4)401=1207411.3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 4 第一讲:高斯函数2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:1.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .解:当2t ≤k<2t+1时,[log 2k]=t,t=0,1,2,…,且在区间[2t ,2t+1)中的正整数有2t 个.设f(x)=[log 2x],注意到29=512,所以, [log 21]+[log 22]+[log 23]+…+[log 2500]=∑=5001)(k k f =f(1)+∑-=1222)(k k f +∑-=12232)(k k f +∑-=12243)(k k f +∑-=12254)(k k f +∑-=12265)(k k f +∑-=12276)(k k f +∑-=12287)(k k f +∑=50028)(k k f =0+1×21+2×22+3×23+4×24+5×25+6×26+7×27+8(28-11)=3498.②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . 解:因为1≤k ≤9⇒[lgk]=0;10≤k ≤99⇒[lgk]=1;100≤k ≤999⇒[lgk]=2;1000≤k ≤2010⇒[lgk]=3;所以,[lg1]+ [lg2]+[lg3]+…+[lg2010]=60×1+900×2+1011×3=4923.③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.解:由[log 36]=[log 37]=[log 38]=1⇒[log 36]+[log 37]+[log 38]=3;[log 39]=[log 310]=…=[log 326]=2⇒[log 39]+[log 310]+ …+[log 326]=36;[log 327]=[log 328]=…=[log 380]=3⇒[log 327]+[log 328]+…+[log 380]=162;[log 381]=[log 382]=…= [log 3242]=4⇒[log 381]+[log 382]+…+[log 3242]=648;3+36+162+648=849;[log 3243]=[log 3244]=…=[log 3728]=5⇒ [log 3243]+[log 3244]+…+[log 3728]=2430⇒n=474.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .解:当log 2n 为整数时,{log 2n}=[log 2n](n=20,21,…,210);当log 2n 为整数时,{log 2n}=[log 2n]+1;所以,{log 21}+{log 22}+…+{log 21991}=[log 21]+[log 22]+…+[log 21991]+1991-11;由a=2,1024=210<1991<211⇒m=10,由1991-210=967⇒b=967⇒ [log 21]+[log 22]+…+[log 21991]+1991-11=[2×9-2]29+2+10×968+1991-11=19854.2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .解:当k 为整数时,[k ]+[-k ]=0(k=12,22,…,19892),当k 不是整数时,设k =n+α(0<α<1),则[k ]=n,[-k ]=[-n-α]=[-(n+1)+(1-α)]=-(n+1)⇒[k ]+[-k ]=-1⇒[1]+[2]+[3]+…+[19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]=-1989×1990+1989=-19892.②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.解:因为nlg2和nlg5是无理数,那么可以表示nlg2=m+a 其中m=[nlg2],a={nlg2}≠0,而nlg5=n-nlg2=n-m-a=(n-m-1)+(1- a)⇒[nlg5]=n-m-1⇒[nlg2]+[nlg5]=n-1=2012⇒n=2013.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = . 解:由1222012++k k <1⇒2012+2k <2k+1⇒2k>2012⇒k>11⇒当k>11时,[1222012++k k ]=0;当k=0时,[1222012++k k ]=1006;当k=1时,[1222012++k k]=503;当k=2时,[1222012++k k ]=250;当k=3时,[1222012++k k ]=126;当k=4时,[1222012++k k ]=63;当k=5时,[1222012++k k ]=31;当k=6时,[1222012++k k ]=16;当k=7时,[1222012++k k ]=8;当k=8时,[1222012++k k ]=4;当k=9时,[1222012++k k ]=2;当k=10、第一讲:高斯函数 511时,[1222012++k k ]=1⇒∑+=+20121]222012[k k k =1006+503+250+126+63+31+16+8+4+2+1+1=2012.②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.解:设下x=a n ×2n+a n-1×2n-1+…+a 2×22+a 1×21+a 0×20,其中a i ∈{0,1}(i=0,1,2,…,n),则x-2[2x ]=a 0;[2x ]-2[22x]=a 1; [22x ]-2[32x ]=a 2,…,[nx 2]-2[12+n x ]=a n ⇒a 0+a 1+a 2+…+a n =(x-2[2x ])+([2x ]-2[22x ])+([22x ]-2[32x ])+…+([n x2]- 2[12+n x])=x-([2x ]+[22x ]+[32x ]+…+[12+n x ])=x-m=x 的“亏损数”⇒亏损数”为9的最小正整数x=1+2+22+…+28=511. 4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .解:由81<2x <8⇒-3<x<3⇒[x]=-3,-2,-1,0,1,2;①若[x]≤-2,则x 2=2[x]+3<0,没有实数解;②若[x]=-1,则x 2=1⇒x=-1; ③若[x]=0,则x 2=3,没有符合条件的解;④若[x]=1,则x 2=5,没有符合条件的解;⑤若[x]=2,则x 2=7⇒有一个符合条件的解x=7⇒ A ∩B={-1,7}.②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .解:因|x|<2⇒[x]的值可取-2,-1,0,1;当[x]=-2,则x 2=0无解;当[x]=-1,则x 2=1⇒x=-1;当[x]=0,则x 2=2无解;当[x]=1,则x 2=3⇒x=3⇒A ∩B={-1,3}.③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . 解:由0≤2cos 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,cosx=0,tanx 无意义;当[tanx]=1时,cosx=±22, 注意:[tanx]=1⇒x=k π+4π(k ∈Z);当[tanx]=2时,cosx=1⇒sinx=0⇒tanx=0,矛盾. ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 . 解:由0≤2sin 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,sinx=0,tanx=0⇒x=k π;当[tanx]=1时,sinx=±22,注意:[tanx]=1⇒x=2k π+4π(k ∈Z);当[tanx]=2时,sinx=1⇒cosx=0⇒tanx=0无意义.2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .6 第一讲:高斯函数解:由4[x]2-36[x]+45<0⇒23<[x]<215⇒2≤[x]≤7⇒2≤x<8. ②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23]解:因[|x 2-1|]=10⇔10≤|x 2-1|<11⇔-11<x 2-1≤-10,或10≤x 2-1<11⇔x ∈(-23,-11]∪[11,23),选(C).③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 解:显然x>0;①若x ≥3,则[x]≥3⇒x [x]≥27>29;②若0<x<2,则0≤[x]<2⇒x [x]<22=4<29;③若2≤x<3,则[x]=2⇒x 2=29 ⇒x223. 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .解:由x ≥[x]=872+x ⇒1≤x ≤7⇒[x]=1,2,3,4,5,6,7⇒x=1,33,41,7.②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .解:1,2005,2006,2007.③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .解:设2x+1=k,则x=21-k ,3x-465=6389-k =k+6383-k ,于是原方程等价于[k+6383-k ]-k=0⇒[6383-k ]=0⇒0≤6383-k<1⇒338≤k<344⇒k=13,14⇒解是x=6,213. ④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 解:设2x-21=k ∈Z,则x=412+k ,3x+1=k+1+432+k ,于是原方程等价于[432+k ]=-1,即-2<432+k ≤-1⇒-211<k ≤-27⇒k=-5,-4⇒x=-49,-47⇒所有实根之和为-4. 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q ])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.第一讲:高斯函数 7 [练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).解:由x-1<[x]≤x;①当x ≥3时,x 3-3[x]≥x 3-3x=x(x 2-3)≥3(32-3)=18;②当x ≤-3时,x 3-3[x]<x 3-3(x-1)=x(x 2-3)+3≤ -3[(-3)2-3]+3=-15;③当-3<x<3时,[x]=-3,-1,-1,0,1,2;若[x]=-3,则x 3=3[x]+4=-5,不合要求;若[x]=-2,则x 3=3[x]+4= -2⇒x=-32,合要求;若[x]=-1,则x 3=3[x]+4=-1,不合要求;若[x]=0,则x 3=3[x]+4=4,不合要求;若[x]=1,则x 3=3[x]+4= 7⇒x=37,合要求;若[x]=2,则x 3=3[x]+4=10⇒x=310,合要求⇒(-32)3+(37)3+(310)3=15.2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .解:由[x 3]+[x 2]+[x]∈Z ⇒{x}−1∈Z ⇒{x}=0⇒x ∈Z ⇒x 3+x 2+x=-1⇒(x+1)(x 2+1)=0⇒x=-1.②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. 解:设[x]=n,x-[x]=α(0≤α<1),则x 2−2x=(n+α)2-2(n+α)=n 2-2n+α2+2(n-1)α,所以原方程等价于[n 2-2n+α2+2(n-1)α]=n 2-2n ⇔[α2+2(n-1)α]=0⇔0≤α2+2(n-1)α<1;当α=0时,不等式成立,此时,x=n;当α≠0时,由0≤α2+2(n-1)α<1⇔0<α<1)1(2+-n -(n-1)⇔0<x-n<1)1(2+-n -(n-1)⇔x ∈(n,1)1(2+-n +1)(n=1,2,…). ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 解:由[x]+[!x 3]+[!x 5]+[!x 7]=1993⇒[x]<1993⇒x<1994⇒[!x 7]=0⇒[x]+[!x 3]+[!x5]=1993⇒x>5!;设x=5!n+r(0≤r<5!=120)⇒(120n+r)+(20n+[6r ])+n=1993⇒141n+r+[6r ]=1993=14×141+19⇒n=14,r+[6r]=19⇒r=17⇒x=1697. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.解:因为当3k≤n<3k+1时,[log 3n]=k(k=0,1,2,…),且区间[3k,3k+1)内的正整数个数=3k+1-3k=2×3k,所以,S k =[log 31]+[log 32]+ [log 33]+[log 34]+…+[log 3(3k+1-1)]=2(0×30+1×31+2×32+…+k ×3k)=(23k-43)3k +43;令(23k-43)3k+43≤2007⇒(2k- 1)3k≤2675⇒k ≤5;S 5=1391,2007-1391=6×101⇒n=36+100=829. ②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数). 解:{5,6}.6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 ⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= .解:若a 为负整数,则a 2>0,2b(a+b)<0,不可能,故a ≥0;于是a 2=2b(a +b)<2(a+1)⇒a 2-2a-2<0⇒0≤a<1+3⇒a=0,1,8 第一讲:高斯函数2;a=0时,b=0;a=1时,2b 2+2b-1=0⇒b=213-;a=2时,b 2+2b-2=0⇒b=3-1. 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .解:由[x]2+[y]2=50⇒[x]=±1,[y]=±7;[x]=±5,[y]=±5;[x]=±7,[y]=±1.每组解有4种情况,每种情况下的面积为1⇒图形的面积是12.②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.解:设[x]=a,[y]=b,即所有这样的点(x,y)组成的图形就是a ≤x<a+1,b ≤y<b+1界定的区域,它的面积为1,又2011是质数,所以满足[x][y]=2011的点(x,y)组成的图形是4个面积为1的区域,即[x]=1,[y]=2011;[x]=2011,[y]=1;[x]=−1,[y] =−2011;[x]=−2011,[y]=−1.这些图形的总面积是4.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .解:由[x][y]=2013=1×2013=3×671=11×183=33×61,共有16种情况,每种情形下的面积为1,所以,所有点(x,y)组成的图形面积为16.3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7解:设a n =(3+8)2n +(3-8)2n =(17+122)n +(17-122)n ,则a 1=34,a 2=342-2=1154,a n+2=34a n+1-a n ⇒a 1≡2(m0d8),a 2≡2(m0d8),a 3≡34×2-2≡2(m0d8)⇒a n ≡2(m0d8);又因0<(3-8)2n <1⇒[(3+8)2n ]=a n -1⇒[(3+8)2n]≡1(m0d8).选(A).②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .解:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<(0.008)300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?解:设[x ]=n,由[x ]≤x <[x ]+1⇒n ≤x <n+1⇒n 2≤x <(n+1)2⇒n 2≤[x ]<(n+1)2⇒n ≤][x <n+1⇒n ≤[][x ]<n+1⇒[][x ]=n ⇒[][x ]=[x ]成立.②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ].第一讲:高斯函数 9解:因(n +1+n )2=2n+1+2)1(+n n <2n+1+[n+(n+1)]=4n+2⇒n +1+n <24+n ⇒[n +1+n ]≤[24+n ];若存在某个正整数n,使得[n +1+n ]≠[24+n ],则[n +1+n ]<[24+n ];设[24+n ]=k,则n +1+n <k ≤24+n⇒2n+1+2)1(+n n <k 2≤4n+2⇒2)1(+n n <k 2-(2n+1)≤2n+1⇒4n(n+1)<[k 2-(2n+1)]2≤4n(n+1)+1(因4n(n+1)与4n(n+1)+1是连续整数)⇒[k 2-(2n+1)]2=4n(n+1)+1⇒k 2=4n+2,但任意整数的平方被4除不余2,矛盾. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. 解:设[r]=n,r=n+α(0≤α<1),则[r+100i ]=[n+α+100i ]=n(当0<α+100i <1时),或n+1(当1≤α+100i<2时),设其中有 73-k 个n,k 个n+1,则(73-k)n+k(n+1)=546⇒n=7+7335k -⇒k=35,n=7⇒α+10056<1,α+10057≥1⇒10043≤α<10044⇒7+10043≤r<7+10044⇒743≤100r<744⇒[100r]=743. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 解:设f(x)=[x]+[2x]+[4x]+[8x]+[16x]+[32x],则f(x)单调不减;由f(x)≤[(1+2+4+8+16+32)x]=[63x]≤63x ⇒x ≥6312345>195;f(196)=63×196=12348⇒x<196⇒x ∈(195,196);令t=x-195,则t ∈(0,1),且f(x)=[195+t]+[2(195+t)]+ [4(195+t)]+[8(195+t)]+[16(195+t)]+[32(195+t)]=63×195+[t]+[2t]+[4t]+[8t]+[16t]+[32t]<12285+0+1+3+7+15+31 =12342⇒方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解.3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.解:由a n+1-a n =b([c n ++1]-[c n +]),由题知,a n+1-a n =0,或2⇒b([c n ++1]-[c n +])=0,或2;由c n ++1-c n +=cn c n ++++11≤1⇒c n +<c n ++1≤c n ++1⇒[c n +]<[c n ++1]≤[c n +]+1⇒[c n ++1]-[c n +]=0,或1;显然b ≠0,当b([c n ++1]-[c n +])=2时,b=2,[c n ++1]-[c n +]=1;由a 1=2[c +1]+d=1⇒c ≥-1,d=1-2[c +1];注意到2k a =2k-1⇒2[c k +2]+d=2k-1⇒2[c k +2]+1-2[c +1]=2k-1⇒[c k +2]-[c +1]=k-1对任意的k ∈N +恒。
数学奥赛--高斯函数

数学奥赛辅导 第五讲高斯函数知识、方法、技能这一讲介绍重要的数论函数][x y =,称为高斯函数,又称取整函数. 它是数学竞赛热点之一.定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -==由][x 、}{x 的定义不难得到如下性质:(1)][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[ (2)对任意实数x ,都有1}{0},{][<≤+=x x x x 且. (3)对任意实数x ,都有x x x x x x ≤<-+<≤][1,1][][.(4)][x y =是不减函数,即若21x x ≤则][][21x x ≤,其图像如图I -4-5-1;}{x y =是以1为周期的周期函数,如图I -4-5-2.图Ⅰ—4—5—1 图Ⅰ—4—5—2(5)}{}{];[][x n x x n n x =++=+.其中*∈∈N n R x ,. (6)∑∑==∈≥+≥++≥+ni iin i iR xx x y x y x x y x y x 11],[][};{}{}{{];[][][;特别地,].[][ba nb na ≥ (7)][][][y x xy ⋅≥,其中+∈R y x ,;一般有∑∏=+=∈≥ni iin i iR xx x 11],[][;特别地,*∈+∈≤N n R x x x n n ,],[][.(8)]][[][nx n x =,其中*∈+∈N n R x ,. 【证明】(1)—(7)略.(8)令Z m m nx ∈=,][,则1+≤≤m nxm ,因此,)1(+<≤m n x nm .由于nm , N m n ∈+)1(,则由(3)知,),1(][+<≤m n x nm 于是,.]][[,1][m nx m n x m =+<≤故证毕.取整函数或高斯函数在初等数论中的应用是基于下面两个结论.定理一:*∈+∈N n R x ,,且1至x 之间的整数中,有][nx 个是n 的倍数.【证明】因n n xx n n x n x n x nx ⋅+<≤⋅+<≤)1]([][,1][][即,此式说明:不大于x 而是n 的倍数的正整数只有这nx ][个:.][,,2,n nxn n ⋅定理二:在n !中,质数p 的最高方次数是.][][][)!(32 +++=pnp n p n n p【证明】由于p 是质数,因此!n 含p 的方次数)!(n p 一定是1,2,…,n n ,1-各数中所含p 的方次数的总和.由定理一知,1,2,…,n 中有][p n个p 的倍数,有][2pn 个p 2的倍数,…,所以.][][)!(2++=p np n n p 此定理说明:M p n n p ⋅=)!(!,其中M 不含p 的因数.例如,由于]72000[]72000[)!2000(72+= +…=285+40+5=330,则2000!=7330·M ,其中7 M .定理三:(厄米特恒等式)][]1[]2[]1[][,,nx nn x n x n x x N n R x =-+++++++∈∈ 则 【证法1】引入辅助函数].1[]2[]2[]1[][][)(n n x n n x n x n x x nx x f -+--+--+-+--= 因=+)1(nx f …)(x f =对一切R x ∈成立,所以)(x f 是一个以n 1为周期的周期函数,而当]1,0[nx ∈时,直接计算知0)(=x f ,故任意R x ∈,厄米特恒等式成立.【证法2】等式等价于}].{[][]1}[{]1}[{}][{][x n x n nn x n x x x n +=-++++++ 消去][x n 后得到与原等式一样的等式,只不过是对)1,0[∈x ,则一定存在一个k 使得n k x n k <≤-1,即k n x k <≤-)1(,故原式右端.1][-==k nx 另一方面,由nk x n k <≤-1知,n n k x n n k n i k x n i k n k n x n k n k n x n k 12,,1,,221,11-+<≤-+++<≤++<+≤++<+≤ ,在这批不等式的右端总有一个等于1,设k n t n t k -==+即,1. 这时,==+= ]1[][nx x 0][=-+n k n x ,而1]1[]1[=-+==+-+n n x n k n x ,因此原式的左端是1-k 个1之和,即左端.1-=k 故左=右.【评述】证法2的方法既适用于证明等式,也适用于证明不等式.,这个方法是:第一步“弃整”,把对任意实数的问题转化为)1,0[的问题;第二步对)1,0[分段讨论.高斯函数在格点(又叫整点)问题研究中有重要应用. 下面给出一个定理. 定理四:设函数],[)(b a x f y 在=上连续而且非负,那么和式∑≤<bt a b a t t f ],[)](([为内的整数)表示平面区域)(0,x f y b x a ≤<≤<内的格点个数.特别地,有(1)位于三角形:d x c b ax y ≤<>+=,0内的格点个数等于∑≤<+dx c x b ax 且]([为整数);(2)1),(=q p ,矩形域]2,0;2,0[pq 内的格点数等于.2121][][2/02/0∑∑<<<<-⋅-=+q x p y q p y pq x q p (3)0>r ,圆域222r y x ≤+内的格点个数等于∑≤<--++2/0222]2[4][8][41r x r x r r .(4)0>n ,区域:n xy y x ≤>>,0,0内的格点个数等于∑<<-nx n x n 02][][2. 这些结论通过画图即可得到.赛题精讲例1:求证:,2!211--=⇔k n n n 其中k 为某一自然数.(1985年第17届加拿大数学竞赛试题) [证明]2为质数,n!中含2的方次数为∑∞==1].2[)!(2t t n n 若∑∑∞=-=--------=-=++++====1111221111122221]2[]2[)!(2,2t k t k k t k t k k n n n 则故!.|21n n -反之,若n 不等于2的某个非负整数次幕,可设n=2s p ,其中p >1为奇数,这时总可以找出整数t ,使+++=<<--+ ]2[]2[)!(22!,222211p p n n p s s t s t 的方次数为中所含于是 ≤++- 0]2[p t s ].2[]22[])12(2[])222[(21p n p p p p t s t s s t t s t s s s -------+=-=-=+++由于12,2)!(22!,2]2[,221----≤-=-<<n t s ts n n n p 则的方次数中含故则n !.这与已知矛盾,故必要性得证.例2:对任意的∑∞=+*+=∈01].22[,K k kn S N n 计算和 (第10届IMO 试题)【解】因]212[]22[11+=+++k k n n 对一切k =0,1,…成立,因此,].2[]22[]212[111+++-⋅=+k k k nn n又因为n 为固定数,当k 适当大时,.)]2[]2([,0]2[,1201n nn S n n K k k k k ==-==<∑∞=+ 故从而例3:计算和式.]503305[502的值∑==n nS (1986年东北三省数学竞赛试题)【解】显然有:若.,,1][][][,1}{}{R y x y x y x y x ∈++=+=+则503是一个质数,因此,对n=1,2,…,502, 503305n 都不会是整数,但503305n +,305503)503(305=-n可见此式左端的两数的小数部分之和等于1,于是,[503305n ]+.304]503)503(305[=-n 故 ∑∑===⨯=-+==25115021.76304251304]),503)503(305[]503305([]503305[n n n n n S例4:设M 为一正整数,问方程222}{][x x x =-,在[1,M]中有多少个解? (1982年瑞典数学竞赛试题)【解】显然x =M 是一个解,下面考察在[1,M]中有少个解.设x 是方程的解.将222}{}{}{2][x x x x x +⋅+=代入原方程,化简得=}]{[2x x,1}{0].}{}]{[2[2<≤+x x x x 由于所以上式成立的充要条件是2[x ]{x }为一个整数..1)1(],1[,.)1())1(21(2),1[,11.2)1,[),12,,1,0(2}{,][个解中有原方程在因此个解中方程有可知在又由于个解中方程有即在则必有设+--⋅=-+++-≤≤+-==∈=M M M M M M M M m m m m m k mkx N m x例5:求方程.051][4042的实数解=+-x x (第36届美国数学竞赛题) 【解】.0][,1][][不是解又因<+<≤x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥>⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥<⎩⎨⎧≤-->--⎪⎩⎪⎨⎧≤+->+-+∴.217][,23][,211][;217][,23][,25][.07][2)(3][2(.0)11][2)(5][2(.051][4][4,051][40)1]([422x x x x x x x x x x x x x x 或 .2269,02694;2229,02294;2189,01894;229,0294:,876][2][2222==-==-==-==-==x x x x x x x x x x 分别代入方程得或或或解得经检验知,这四个值都是原方程的解. 例6:.][3]3[2]2[1][][:,,nnx x x x nx N n R x ++++≥∈+∈*证明 (第10届美国数学竞赛试题)这道题的原解答要极为复杂,现用数学归纳法证明如下. 【证明】.,2,1,][2]2[][ =+++=k kkx x x A k 令 由于.,1],[1命题成立时则==n x A.,,,],[][][][][][][])[])1([(]))2[(]2([])1[(]([][]2[])2[(])1[(][])1[(]2[][][])1[(]2[][][])1[(]2[][)(:].[],2[22,],)1[()1()1(],[,][,][,].)1[(,],2[],[,1122112111221111121证毕均成立故原不等式对一切命题成立时即故相加得所以成立对一切即因为即有时命题成立设*---------∈=≤∴=+++≤++-++-++-+=+++-+-++-+++≤++++++-+++=+-+++=+++-==--=---=-=-=--≤≤≤-≤N n k n kx A kx k kx kx kx kx kx x x k x k x x k x x x x k x k kx x k x x A A A A kx x k x x kA kx x k x x A A A kA x A x A A x k A k A k kx kA kA k kx kA kA kkx A A x k A x A x A k n k k k k k k k k k k k k k k k例7:对自然数n 及一切自然数x ,求证:)].([]1[]2[]1[][苏联数学竞赛题nx nn x n x n x x =-+++++++【证明】则},{][x x x +=]1[]2[]1[][nn x n x n x x -+++++++].[]1[]2[]1[][}].{[]1}[{]2}[{]1}[{}][{.}]{[.1}{,}{11}{1}{.]1}[{]}[{]1}[{]2}[{]1}[{}][{,11}{,1}{,1,.}]{[]1}[{]2}[{]1}[{}][{}],{[][}]{][[][].1}[{]2}[{]1}[{}][{][],1}[{][]2}[{][]1}[{][}][{][]1}{][[]2}{][[]1}{][[}]{][[nx nn x n x n x x x n nn x n x n x x k n x n k n x n k n x n nk x n k x k n n n x n k x n k x n x n x x nk x n k x n k k x n nn x n x n x x x n x n x n x n nx nn x n x n x x x n n n x x n x x n x x x x n n x x n x x n x x x x =-+++++++=-+++++++-=+-<-≥<-+≥+-=-+++++-+++++++<-+≥+≤≤=-++++++++=+=-++++++++=-+++++++++++=-+++++++++++= 从而有知故知且知及由则而使设存在即可故只要证明例8:求出]31010[10020000+的个位数字.(第47届美国普特南数学竞赛试题)【解】先找出3101010020000+的整数部分与分数部分.3101010020000+=31033103)10(100200100200200100+++- .3108110310910310310]31010[,131093103.310310,3)10(|310310|3)10(,)3(])10[(3)10(1005020000100100200001002002000100200001001001002001002002000022100100200200002210010021002100200200100+-=+-=+-=+<+=++--+---=-知显然是整数知又知其中分母的个位数字为3,分子的个位数字为9,故商的个位数字为3.。
高斯函数

23 代入原方程有5 x 8 31 0, 得x 5 解法二:可由[ x ] x [ x ] 1及5 x 2[ x ] 31 0, 得 31 2[ x ] [ x] 1 26 31 5 不等式组 [ x] 7 7 31 2[ x ] [ x ] 5 23 又[ x ] Z , [ x ] 4, 再代入原方程求出x . 5
(2)当0 lg x 1时, 有[lg x] 0, 代入原方程得 lg x 2, 均不符合题意。
(3)当1 lg x 2时, 与[lg x ] 1, 代入原方程得 lg x 3, 但 lg x 3不符合题意, lg x 3, x2 10 3 . (4)当 lg x 2时,得x2 100, 原方程共有3个实根。
3
二、高斯函数y=[x]的性质
定理1:若n N * , x是正实数,则在区间[1, x ]中内, x 恰有[ ]个整数是n的倍数。 n 定理2::若n N * , 则在n !的质因数分解式中, n n n 质数p的指数是[ ] [ 2 ] [ 3 ] ... p p p
4
三、函数y={x}的性质
解:由定理2, n !中含有质因数2的个数是 n n n p [ ] [ 2 ] ... [ k 1 ],(其中k 满足2k 1 n 2k ) 2 2 2 又由[ x1 x2 ] [ x1 ] [ x2 ], 得 1 1 1 n p [n( 2 +...+ k 1 )] [n k 1 ] n 1 2 2 2 2
13
例4:求证:当且仅当存在某个正整数k , 使得n 2k 1 时, 2n 1 能整除n !(加拿大数学奥林匹克试题 ).
小学奥数计算专题练习之高斯算法

小学奥数计算专题练习之高斯算法约翰·卡尔·弗里德里希·高斯(JohannCarlFriedrichGauss,1777年4月30日-1855年2月23日)德国数学家、物理学家、天文学家、大地测量学家,是近代数学奠基者之一,被认为是历最重要的数学家之一,并享有“数学王子”之称。
高斯和阿基米德、牛顿并列为世界三大数学家。
一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
计算方法(公式)具体的方法是:首项加末项乘以项数除以2项数的计算方法是末项减去首项除以项差(每项之间的差)加1.如:1+2+3+4+5+······+n,则用字母表示为:n(1+n)/2等差数列求和公式Sn=(a1+an)n/2Sn=n(2a1+(n-1)d)/2;d=公差Sn=An2+Bn;A=d/2,B=a1-(d/2)算法由来高斯小时候非常淘气,一次数学课上,老师为了让他们安静下来,给他们列了一道很难的算式,让他们一个小时内算出1+2+3+4+5+6+……+100的得数。
全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50个101,所以50×101就是1加到一百的得数。
后来人们把这种简便算法称作高斯算法。
1.1+2+3+……+8+9+10=2.1+3+5+……+17+19=3.1+2+3+……51+52+……+99+100=4.1+3+5+……51+53+……+97+99=5.2+4+6+……50+52+……+98+100=6.3+6+9+……+51+54+57+……+96+99=7.5+10+15+……+50+55+……+95+100=8.1+4+7+……+52+55+58+……+97+100=9.小添添家的时钟每整点时就敲钟,而敲的数目和当时的时间是一样的,而且在两个整点中还会敲一下,这时时钟一天内共敲多少下?10.有一列数:19、22、25、28……,这列数的前49个数(从19开始算起)的总和是的多少?。
高斯函数性质和竞赛

高斯函数性质和竞赛
高斯函数性质:
1、高斯函数是一种可以定义在实数上的函数,它具有某种可以用来描述统计性质的特性,可以用来表示概率分布;
2、高斯函数的形状取决于它的均值μ和方差σ,它的峰值出现在μ处,它的宽度取决于σ,当σ越大,它的宽度越宽;
3、高斯函数的值在μ处是最大的,在μ两边的值会越来越小;
4、高斯函数具有积分性质,即它的积分结果是1;
竞赛函数:
1、竞赛函数是一种特殊的函数,它可以用来模拟竞争环境中的激烈竞争;
2、竞赛函数的形状取决于它的参数,它的峰值出现在参数的均值处,它的宽度取决于参数的方差;
3、竞赛函数的值在参数的均值处是最大的,在均值两边的值会随着参数的变化而减小;
4、竞赛函数也具有积分性质,即它的积分结果是1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥赛辅导高斯函数知识、方法、技能这一讲介绍重要的数论函数][x y =,称为高斯函数,又称取整函数. 它是数学竞赛热点之一.定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -==由][x 、}{x 的定义不难得到如下性质:(1)][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[ (2)对任意实数x ,都有1}{0},{][<≤+=x x x x 且. (3)对任意实数x ,都有x x x x x x ≤<-+<≤][1,1][][.(4)][x y =是不减函数,即若21x x ≤则][][21x x ≤,其图像如图I -4-5-1;}{x y =是以1为周期的周期函数,如图I -4-5-2.图Ⅰ—4—5—1 图Ⅰ—4—5—2(5)}{}{];[][x n x x n n x =++=+.其中*∈∈N n R x ,. (6)∑∑==∈≥+≥++≥+ni iin i iR xx x y x y x x y x y x 11],[][};{}{}{{];[][][;特别地,].[][ba nb na ≥ (7)][][][y x xy ⋅≥,其中+∈R y x ,;一般有∑∏=+=∈≥ni iin i iR xx x 11],[][;特别地,*∈+∈≤N n R x x x n n ,],[][.(8)]][[][nx n x=,其中*∈+∈N n R x ,. 【证明】(1)—(7)略.(8)令Z m m nx ∈=,][,则1+≤≤m nxm ,因此,)1(+<≤m n x nm .由于nm , N m n ∈+)1(,则由(3)知,),1(][+<≤m n x nm 于是,.]][[,1][m nx m n x m =+<≤故证毕.取整函数或高斯函数在初等数论中的应用是基于下面两个结论.定理一:*∈+∈N n R x ,,且1至x 之间的整数中,有][nx 个是n 的倍数.【证明】因n n xx n n x n x n x nx ⋅+<≤⋅+<≤)1]([][,1][][即,此式说明:不大于x 而是n 的倍数的正整数只有这nx ][个:.][,,2,n nxn n ⋅定理二:在n !中,质数p 的最高方次数是.][][][)!(32 +++=pnp n p n n p【证明】由于p 是质数,因此!n 含p 的方次数)!(n p 一定是1,2,…,n n ,1-各数中所含p 的方次数的总和.由定理一知,1,2,…,n 中有][p n个p 的倍数,有][2pn个p 2的倍数,…,所以.][][)!(2 ++=pnp n n p 此定理说明:M p n n p ⋅=)!(!,其中M 不含p 的因数.例如,由于]72000[]72000[)!2000(72+= +…=285+40+5=330,则2000!=7330·M ,其中7 M .定理三:(厄米特恒等式)][]1[]2[]1[][,,nx nn x n x n x x N n R x =-+++++++∈∈ 则 【证法1】引入辅助函数].1[]2[]2[]1[][][)(n n x n n x n x n x x nx x f -+--+--+-+--= 因=+)1(nx f …)(x f =对一切R x ∈成立,所以)(x f 是一个以n 1为周期的周期函数,而当]1,0[nx ∈时,直接计算知0)(=x f ,故任意R x ∈,厄米特恒等式成立.【证法2】等式等价于}].{[][]1}[{]1}[{}][{][x n x n nn x n x x x n +=-++++++ 消去][x n 后得到与原等式一样的等式,只不过是对)1,0[∈x ,则一定存在一个k 使得n k x n k <≤-1,即k nx k <≤-)1(,故原式右端.1][-==k nx 另一方面,由nkx n k <≤-1知,n n k x n n k n i k x n i k n k n x n k n k n x n k 12,,1,,221,11-+<≤-+++<≤++<+≤++<+≤ ,在这批不等式的右端总有一个等于1,设k n t n t k -==+即,1. 这时,==+= ]1[][nx x 0][=-+n k n x ,而1]1[]1[=-+==+-+n n x n k n x ,因此原式的左端是1-k 个1之和,即左端.1-=k 故左=右.【评述】证法2的方法既适用于证明等式,也适用于证明不等式.,这个方法是:第一步“弃整”,把对任意实数的问题转化为)1,0[的问题;第二步对)1,0[分段讨论.高斯函数在格点(又叫整点)问题研究中有重要应用. 下面给出一个定理. 定理四:设函数],[)(b a x f y 在=上连续而且非负,那么和式∑≤<bt a b a t t f ],[)](([为内的整数)表示平面区域)(0,x f y b x a ≤<≤<内的格点个数.特别地,有(1)位于三角形:d x c b ax y ≤<>+=,0内的格点个数等于∑≤<+dx c x b ax 且]([为整数);(2)1),(=q p ,矩形域]2,0;2,0[pq 内的格点数等于.2121][][2/02/0∑∑<<<<-⋅-=+q x p y q p y p q x q p (3)0>r ,圆域222r y x ≤+内的格点个数等于∑≤<--++2/0222]2[4][8][41r x r x r r .(4)0>n ,区域:n xy y x ≤>>,0,0内的格点个数等于∑<<-nx n x n 02][][2. 这些结论通过画图即可得到.赛题精讲例1:求证:,2!211--=⇔k n n n 其中k 为某一自然数.(1985年第17届加拿大数学竞赛试题) [证明]2为质数,n!中含2的方次数为∑∞==1].2[)!(2t t n n 若∑∑∞=-=--------=-=++++====1111221111122221]2[]2[)!(2,2t k t k k t k t k k n n n 则故!.|21n n -反之,若n 不等于2的某个非负整数次幕,可设n=2s p ,其中p >1为奇数,这时总可以找出整数t ,使+++=<<--+ ]2[]2[)!(22!,222211p p n n p s s t s t 的方次数为中所含于是 ≤++- 0]2[p t s ].2[]22[])12(2[])222[(21p n p p p p t s t s s t t s t s s s -------+=-=-=+++由于12,2)!(22!,2]2[,221----≤-=-<<n t s ts n n n p 则的方次数中含故则n !.这与已知矛盾,故必要性得证.例2:对任意的∑∞=+*+=∈01].22[,K k kn S N n 计算和 (第10届IMO 试题)【解】因]212[]22[11+=+++k k n n 对一切k =0,1,…成立,因此,].2[]22[]212[111+++-⋅=+k k k nn n又因为n 为固定数,当k 适当大时,.)]2[]2([,0]2[,1201n nn S n n K k k k k ==-==<∑∞=+ 故从而例3:计算和式.]503305[502的值∑==n nS (1986年东北三省数学竞赛试题)【解】显然有:若.,,1][][][,1}{}{R y x y x y x y x ∈++=+=+则503是一个质数,因此,对n=1,2,…,502, 503305n 都不会是整数,但503305n +,305503)503(305=-n可见此式左端的两数的小数部分之和等于1,于是,[503305n]+.304]503)503(305[=-n 故∑∑===⨯=-+==25115021.76304251304]),503)503(305[]503305([]503305[n n n n n S例4:设M 为一正整数,问方程222}{][x x x =-,在[1,M]中有多少个解? (1982年瑞典数学竞赛试题)【解】显然x =M 是一个解,下面考察在[1,M]中有少个解.设x 是方程的解.将222}{}{}{2][x x x x x +⋅+=代入原方程,化简得=}]{[2x x,1}{0].}{}]{[2[2<≤+x x x x 由于所以上式成立的充要条件是2[x ]{x }为一个整数..1)1(],1[,.)1())1(21(2),1[,11.2)1,[),12,,1,0(2}{,][个解中有原方程在因此个解中方程有可知在又由于个解中方程有即在则必有设+--⋅=-+++-≤≤+-==∈=M M M M M M M M m m m m m k mkx N m x例5:求方程.051][4042的实数解=+-x x (第36届美国数学竞赛题) 【解】.0][,1][][不是解又因<+<≤x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥>⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥<⎩⎨⎧≤-->--⎪⎩⎪⎨⎧≤+->+-+∴.217][,23][,211][;217][,23][,25][.07][2)(3][2(.0)11][2)(5][2(.051][4][4,051][40)1]([422x x x x x x x x x x x x x x 或 .2269,02694;2229,02294;2189,01894;229,0294:,876][2][2222==-==-==-==-==x x x x x x x x x x 分别代入方程得或或或解得经检验知,这四个值都是原方程的解. 例6:.][3]3[2]2[1][][:,,nnx x x x nx N n R x ++++≥∈+∈*证明 (第10届美国数学竞赛试题)这道题的原解答要极为复杂,现用数学归纳法证明如下. 【证明】.,2,1,][2]2[][ =+++=k kkx x x A k 令 由于.,1],[1命题成立时则==n x A.,,,],[][][][][][][])[])1([(]))2[(]2([])1[(]([][]2[])2[(])1[(][])1[(]2[][][])1[(]2[][][])1[(]2[][)(:].[],2[22,],)1[()1()1(],[,][,][,].)1[(,],2[],[,1122112111221111121证毕均成立故原不等式对一切命题成立时即故相加得所以成立对一切即因为即有时命题成立设*---------∈=≤∴=+++≤++-++-++-+=+++-+-++-+++≤++++++-+++=+-+++=+++-==--=---=-=-=--≤≤≤-≤N n k n kx A kx k kx kx kx kx kx x x k x k x x k x x x x k x k kx x k x x A A A A kx x k x x kA kx x k x x A A A kA x A x A A x k A k A k kx kA kA k kx kA kA kkx A A x k A x A x A k n k k k k k k k k k k k k k k k例7:对自然数n 及一切自然数x ,求证:)].([]1[]2[]1[][苏联数学竞赛题nx nn x n x n x x =-+++++++【证明】则},{][x x x +=]1[]2[]1[][nn x n x n x x -+++++++].[]1[]2[]1[][}].{[]1}[{]2}[{]1}[{}][{.}]{[.1}{,}{11}{1}{.]1}[{]}[{]1}[{]2}[{]1}[{}][{,11}{,1}{,1,.}]{[]1}[{]2}[{]1}[{}][{}],{[][}]{][[][].1}[{]2}[{]1}[{}][{][],1}[{][]2}[{][]1}[{][}][{][]1}{][[]2}{][[]1}{][[}]{][[nx n n x n x n x x x n nn x n x n x x k n x n k n x n k n x n nk x n k x k n n n x n k x n k x n x n x x nk x n k x n k k x n nn x n x n x x x n x n x n x n nx nn x n x n x x x n n n x x n x x n x x x x n n x x n x x n x x x x =-+++++++=-+++++++-=+-<-≥<-+≥+-=-+++++-+++++++<-+≥+≤≤=-++++++++=+=-++++++++=-+++++++++++=-+++++++++++= 从而有知故知且知及由则而使设存在即可故只要证明例8:求出]31010[10020000+的个位数字.(第47届美国普特南数学竞赛试题) 【解】先找出3101010020000+的整数部分与分数部分.3101010020000+=31033103)10(100200100200200100+++-.3108110310910310310]31010[,131093103.310310,3)10(|310310|3)10(,)3(])10[(3)10(1005020000100100200001002002000100200001001001002001002002000022100100200200002210010021002100200200100+-=+-=+-=+<+=++--+---=-知显然是整数知又知其中分母的个位数字为3,分子的个位数字为9,故商的个位数字为3.。