高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2 (1)

合集下载

高中数学第1章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2

高中数学第1章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2

1.4 生活中的优化问题举例1.优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. 2.用导数解决优化问题的基本思路思考:解决生活中优化问题应注意什么?[提示] (1)在建立函数模型时,应根据实际问题确定出函数的定义域.(2)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的应舍去,如:长度、宽度应大于0,销售价为正数等.1.已知某生产厂家的年利润y (单位: 万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .7万件B .9万件C .11万件D .13万件B [设y =f (x ),即f (x )=-13x 3+81x -234.故f ′(x )=-x 2+81.令f ′(x )=0,即-x 2+81=0, 解得x =9或x =-9(舍去).当0<x <9时,f ′(x )>0,函数y =f (x )单调递增; 当x >9时,f ′(x )<0,函数y =f (x )单调递减. 因此,当x =9时,y =f (x )取最大值.故使该生产厂家获取最大年利润的年产量为9万件.]2.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8B .203C .-1D .-8C [由题意,f ′(x )=x 2-2x =(x -1)2-1, ∵0≤x ≤5,∴x =1时,f ′(x )的最小值为-1, 即原油温度的瞬时变化率的最小值是-1.]3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 mD .2 mC [设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8,因此h =25664=4(m).] 4.某一件商品的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为______元时,利润最大.115 [利润为S (x )=(x -30)(200-x ) =-x 2+230x -6 000,S ′(x )=-2x +230, 由S ′(x )=0,得x =115,这时利润达到最大.]去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[解] 设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12,即包装盒的高与底面边长的比值为12.1.立体几何中的最值问题往往涉及空间图形的表面积、体积,在此基础上解决与实际相关的问题.2.解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.1.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3. 4 00027π [设矩形的长为x cm , 则宽为(10-x )cm(0<x <10). 由题意可知圆柱体积为V =πx 2(10-x )=10πx 2-πx 3.∴V ′=20πx -3πx 2,令V ′(x )=0,得x =0(舍去)或x =203,且当x ∈⎝⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝⎛⎭⎪⎫203,10时,V ′(x )<0, ∴当x =203时,V (x )max =4 00027π cm 3.]层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. 思路探究:(1)由C (0)=8可求k 的值从而求出f (x )的表达式. (2)求函数式f (x )的最小值.[解] (1)由题设,每年能源消耗费用为C (x )=k3x +5(0≤x ≤10),再由C (0)=8,得k=40,因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10).(2)f ′(x )=6-2 400(3x +5)2,令f ′(x )=0,即2 400(3x +5)2=6,解得x =5或x =-253(舍去).当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值70万元.1.用料最省、成本(费用)最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.2.利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v ,(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值. [解] (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v=⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0;当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).1.在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗? [提示] 根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.2.你能列举几个有关利润的等量关系吗? [提示] (1)利润=收入-成本. (2)利润=每件产品的利润×销售件数.【例3】 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思路探究:(1)根据x =5时,y =11求a 的值.(2)把每日的利润表示为销售价格x 的函数,用导数求最大值.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6,从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)·(x -6),于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”建立函数关系式,再利用导数求最大值.解此类问题需注意两点:①价格要大于或等于成本,否则就会亏本;②销量要大于0,否则不会获利.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.1.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的体积最大时,箱子底面边长为( )A .30B .40C .50D .60B [V ′(x )=-32x 2+60x =-32x (x -40),因为0<x <60,所以当0<x <40时,V ′(x )>0, 此时V (x )单调递增;当40<x <60时,V ′(x )<0,此时V (x )单调递减,所以V (40)是V (x )的极大值,即当箱子的体积最大时,箱子底面边长为40.]2.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q 与零售价p 有如下关系:Q =8 300-170p -p 2.则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元D [设毛利润为L (p ),由题意知L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23 000元.]3.做一个无盖的圆柱形水桶,若要使水桶的体积是27π,且用料最省,则水桶的底面半径为________.3 [设圆柱形水桶的表面积为S ,底面半径为r (r >0),则水桶的高为27r2,所以S =πr2+2πr ×27r 2=πr 2+54πr (r >0),求导数,得S ′=2πr -54πr2,令S ′=0,解得r =3.当0<r <3时,S ′<0;当r >3时,S ′>0,所以当r =3时,圆柱形水桶的表面积最小,即用料最省.]4.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),为使银行获得最大收益,则存款利率应定为________.0.032 [存款利率为x ,依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,x ∈(0,0.048).所以银行的收益是y =0.048kx 2-kx 3(0<x <0.048),由于y ′=0.096kx -3kx 2,令y ′=0得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值.]5.用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?[解] 设长方体的宽为x m ,则长为2x m , 高为h =18-12x 4=(4.5-3x )m(0<x <32).故长方体的体积为V (x )=2x 2(4.5-3x )=(9x 2-6x 3)m 3⎝⎛⎭⎪⎫0<x <32.从而V ′(x )=18x -18x 2=18x (1-x ). 令V ′(x )=0,解得x =0(舍去)或x =1, 因此x =1.当0<x <1时,V ′(x )>0; 当1<x <32时,V ′(x )<0,故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值.从而最大体积V =V (1)=9×12-6×13=3(m)3,此时长方体的长为2 m ,高为1.5 m. 故当长方体的长为2 m ,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3.。

高中数学第一章导数及其应用1.4生活中的优化问题举例课件新人教A版选修2_2

高中数学第一章导数及其应用1.4生活中的优化问题举例课件新人教A版选修2_2

• 『规律总结』 用料最省、费用最低问题出现的形式多与几何体有 关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、
体积入手),将这一指标表示为关于自变量x的函数,利用导数或其
他方法求出最值,但一定要注意自变量的取值范围.
〔跟踪练习 3〕 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为 圆柱体,左右两端均为半球体,按照设计要求容器的体积为643π立方米.假设该容 器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为 3 千元, 半球体部分每平方米建造费用为 4 千元.设该容器的总建造费用为 y 千元. (1)将 y 表示成 r 的函数,并求该函数的 定义域; (2)确定 r 和 l 为何值时,该容器的建造 费用最小,并求出最小建造费用.
如何使汽油的使用效率最高?
• 1.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系 用围函.数关系式给予表示,还应确定自函变数量关系式中________的取值范
• 2.实际优化问题中,若只有一个极值点,则极值就最是值________.
• 3.解决优化问题的基本思路:
1.已知某生产厂家的年利润 y(单位:万元)与年产量 x(单位:万件)的函数关
• 『规律总结』 面积、体积(容积)最大,周长最短,距离最小等实 际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示 为变量的函数,再按函数求最值的方法求解,最后检验.
• 〔跟踪练习1〕
• (2017·临沂高二检测)如图,要设计一张矩形广告牌,该广告牌含 有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积 之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空 白的宽度为5cm.怎样确定广告的高与宽的尺寸(单位:cm),能使 矩形广告面积最小?

高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_220181022346

高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_220181022346

§1.4生活中的优化问题举例学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)利用导数解决优化问题的实质是求函数最值.(3)解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.( √) 2.解决应用问题的关键是建立数学模型.( √)类型一几何中的最值问题例1 请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点利用导数求几何模型的最值问题题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍去)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验. 跟踪训练1 (1)已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题(2)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题答案 (1)6πS 3π (2)100π4+π解析 (1)设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh .∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S6π=6πS3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS3π. (2)设弯成圆的一段铁丝长为x (0<x <100),则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100).因此S ′=x2π-252+x 8=x 2π-100-x 8, 令S ′=0,则x =100π4+π.由于在(0,100)内,函数只有一个导数为0的点,则问题中面积之和的最小值显然存在,故当x =100π4+πcm 时,面积之和最小. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6),令f ′(x )=0,得x =4或x =6. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝ ⎛⎭⎪⎫1 0003x +2.7x≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38,综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m2x2(32x -512). 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. (2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2.令f ′(x )=0,即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cm B.2033 cm C.1633cm D.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝ ⎛⎭⎪⎫0,2033时,V ′>0,当h ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,故当h =2033时,体积最大.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700=-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍去). 又P ∈[20,+∞),故f (P )max =f (P )极大值, 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x+10×1×⎝ ⎛⎭⎪⎫2x +2×4x ,即y =20x +80x+80,y ′=20-80x2,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大? 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则多卖出的商品件数为kx 2. 若记商品一个星期的获利为f (x ),则有f (x )=(30-x -9)(432+kx 2)=(21-x )(432+kx 2).由已知条件,得24=k ×22,于是有k =6.所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,21]. (2)由(1)得,f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =12时,f (x )取得极大值. 因为f (0)=9 072,f (12)=11 664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值. 2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意(1)合理选择变量,正确写出函数解析式,给出函数定义域; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、选择题1若底面为等边三角形的直棱柱的体积为V ,则当其表面积最小时底面边长为( ) A.3V B.32V C.34VD .23V考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案 C解析 设底面边长为x , 则表面积S =32x 2+43xV (x >0), ∴S ′=3x2(x 3-4V ).令S ′=0,得x =34V ,可判断当x =34V 时,S 取得最小值.2.如果圆柱轴截面的周长l 为定值,则体积的最大值为( ) A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 A解析 设圆柱的底面半径为r ,高为h ,体积为V , 则4r +2h =l ,∴h =l -4r2.∴V =πr 2h =l2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4,则V ′=l πr -6πr 2.令V ′=0,得r =0或r =l6,而r >0, ∴r =l6是其唯一的极值点.∴当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润P (x )最大时,每年生产产品的单位数是( ) A .150 B .200 C .250D .300考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 由题意得,总利润P (x )=⎩⎪⎨⎪⎧-x 3900+300x -20 000,0≤x ≤390,70 090-100x ,x >390,当0≤x ≤390时,令P ′(x )=0,得x =300, 又当x >390时,P (x )=70 090-100x 为减函数, 所以当每年生产300单位的产品时,总利润最大,故选D. 4.若方底无盖水箱的容积为256,则最省材料时,它的高为( ) A .4B .6C .4.5D .8考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x, ∴S ′(x )=2x -4×256x2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值. ∴h =25682=4.5.某超市中秋前30天,月饼销售总量f (t )与时间t (0<t ≤30,t ∈Z )的关系大致满足f (t )=t 2+10t +12,则该超市前t 天平均售出⎝⎛⎭⎪⎫如前10天平均售出为f (10)10的月饼最少为( ) A .14个 B .15个 C .16个D .17个考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题 答案 D 解析 记g (t )=f (t )t =t +12t+10, 令g ′(t )=1-12t2=0,得t =23(负值舍去),则g (t )在区间(0,23)上单调递减,在区间(23,30]上单调递增, 由于t ∈Z ,且g (3)=g (4)=17,∴g (t )min =17.6.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.048 6),若使银行获得最大收益,则x 的取值为( ) A .0.016 2 B .0.032 4 C .0.024 3D .0.048 6考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 依题意,得存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6), 则y ′=0.097 2kx -3kx 2.令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0; 当0.032 4<x <0.048 6时,y ′<0.所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( ) A .2∶1 B .1∶2 C .1∶4D .4∶1考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设其体积为V ,高与底面半径分别为h ,r , 则V =πr 2h ,即h =V πr2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πrV πr 2=2πr 2+2V r. 令S ′=4πr -2Vr2=0,得r =3V2π,当r =3V2π时,h =Vπ⎝⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小. 二、填空题8.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案439解析 设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0,点B 坐标为⎝ ⎛⎭⎪⎫x2,1-x 24,∴矩形ABCD 的面积S =f (x )=x ·⎝ ⎛⎭⎪⎫1-x 24=-x 34+x ,x ∈(0,2).令f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴当x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是单调递增的,当x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是单调递减的, ∴当x =233时,f (x )取最大值439.9.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=1 1 280x 2+800x -154(0<x ≤120). 则y ′=x640-800x 2=x 3-803640x 2(0<x ≤120).令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数递减;当x ∈(80,120]时,y ′>0,该函数递增,所以当x =80时,y 取得最小值.10.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 20解析 设该公司一年内总共购买n 次货物,则n =400x,∴总运费与总存储费之和f (x )=4n +4x =1 600x+4x ,令f ′(x )=4-1 600x2=0,解得x =20,x =-20(舍去),x =20是函数f (x )的最小值点,故当x =20时,f (x )最小.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为____件时总利润最大. 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 25解析 由题意知502=k100,解得k =25×104.∴产品的单价P =25×104x=500x.∴总利润L (x )=x 500x -1 200-275x 3=500x -1 200-275x 3,L ′(x )=250x -12-225x 2,令L ′(x )=0,得x =25, ∴当x =25时,总利润最大.12.一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为________ m 时,帐篷的体积最大. 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 2解析 设OO 1=x ,则1<x <4. 由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2. 于是底面正六边形的面积为 6·34·(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V (x )=332(8+2x -x 2)⎣⎢⎡⎦⎥⎤13(x -1)+1=32(16+12x -x 3). 则V ′(x )=32(12-3x 2). 令V ′(x )=0,解得x =-2(不合题意,舍去)或x =2. 当1<x <2时,V ′(x )>0,V (x )为增函数; 当2<x <4时,V ′(x )<0,V (x )为减函数. 综上,当x =2时,V (x )最大. 三、解答题13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米,所以4πr 33+πr 2l =643π,解得l =643r 2-43r ,所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫643r 2-43r =128π3r -8πr 23, 两端两个半球的表面积之和为4πr 2,所以y =⎝ ⎛⎭⎪⎫128π3r -8πr 23×3+4πr 2×4=128πr +8πr 2.又l =643r 2-43r >0,即r <432,所以定义域为(0, 432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r2, 令y ′>0得2<r <243;令y ′<0得0<r <2,所以当r =2时,该容器的建造费用最小为96π千元,此时l =83.四、探究与拓展14.某民营企业生产甲、乙两种产品,根据以往经验和市场调查,甲产品的利润与投入资金成正比,乙产品的利润与投入资金的算术平方根成正比,已知甲、乙产品分别投入资金4万元时,所获得利润(万元)情况如下:该企业计划投入资金10万元生产甲、乙两种产品,那么可获得的最大利润(万元)是( ) A.92 B.6516 C.358D.174 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 ∵甲产品的利润与投入资金成正比, ∴设y 1=k 1x ,当投入4万时,利润为1万, 即4k 1=1,得k 1=14,即y 1=x4.∵乙产品的利润与投入资金的算术平方根成正比, ∴设y 2=k 2x ,当投入4万时,利润为2.5万, 即4k 2=52,得2k 2=52,即k 2=54,即y 2=5x4.设乙产品投入资金为x ,则甲产品投入资金为10-x,0≤x ≤10, 则销售甲、乙两种产品所得利润为y =14(10-x )+5x4, 则y ′=-14+58x =5-2x8x ,由y ′>0,得5-2x >0,即0≤x <254,由y ′<0,得5-2x <0,即254<x ≤10,即当x =254时,函数取得极大值同时也是最大值,此时y =14⎝ ⎛⎭⎪⎫10-254+54·254=1516+5016=6516. 15.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎪⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量) 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 由题意得,本年度每辆车的投入成本为10(1+x ), 每辆车的出厂价为13(1+0.7x ),年利润为f (x )=[13(1+0.7x )-10(1+x )]·y=(3-0.9x )×3 240×⎝ ⎛⎭⎪⎫-x 2+2x +53=3 240(0.9x 3-4.8x 2+4.5x +5), 则f ′(x )=3 240(2.7x 2-9.6x +4.5) =972(9x -5)(x -3),由f ′(x )=0,解得x =59或x =3(舍去),当x ∈⎝ ⎛⎭⎪⎫0,59时,f ′(x )>0,f (x )是增函数; 当x ∈⎝ ⎛⎭⎪⎫59,1时,f ′(x )<0,f (x )是减函数. 所以当x =59时,f (x )取极大值,f⎝ ⎛⎭⎪⎫59=20 000. 因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =59时,本年度的年利润最大,最大利润为20 000万元.精美句子1、善思则能“从无字句处读书”。

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例学案 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例学案 新人教A版选修2-2

生活的优化问题举例
一、知识要点
1、函数的求导方法
0)()
x
x f x
x

+-
c
=(c为常数)
2、应用题的解题步骤是什么?
二、基础盘查
探究一
如果海报为如下图所示的竖向张贴的海报,要求版心面积为2
128dm,上、下两边各空2dm,左、
右两边各空1dm。

若海报版心高为xdm。

1.求四周空白面积关于x的函数解析式;
2.求四周空白面积最小值。

探究二
若海报材料用的是30dm的正方形硬纸板,活动结束后,学校准备将海报做成废品收集箱进行再利用。

如下图所示,从正方形纸板的 4 个角上分别切去面积相等的正方形,再把纸板的边沿虚线折起,用胶粘好,做成一个无盖的长方底箱子,问箱底的边长是多少时,箱子容积最大?最大容积是多少?
三、变式训练
1.建一个面积为512平方米的矩形堆料场,为充分利用已有资源,可以利用原有的墙壁作为一边,其他三边需要砌新的墙壁,要使新砌墙壁所用的材料最省,则长宽分别为多少米?
2.某工厂生产某种产品,已知该产品的月生产量为x 吨,且每吨产品的价格为2
302x -元,生产x 吨的成本为5002x +元,该工厂每月生产多少吨该产品才能使利润最大?并求出最大利润。

四、规律总结:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
1.解决优化问题的基本思路
2.求函数最值的常用方法
3.本节课所涉及的数学思想方法
五、作业:
(1)复习本节课的知识及方法。

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例导学案 新人教A版选修2-2(2021

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例导学案 新人教A版选修2-2(2021

福建省永安市高中数学第一章导数及其应用1.4 生活中的优化问题举例导学案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省永安市高中数学第一章导数及其应用1.4 生活中的优化问题举例导学案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省永安市高中数学第一章导数及其应用1.4 生活中的优化问题举例导学案新人教A 版选修2-2的全部内容。

1.4生活中的优化问题举例【第一环节】:导学 2分钟1、生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数解决一些生活中的优化问题。

2、请认真阅读例题,抓住题目中的关键字眼,并按照提示解决问题。

读题一般要读三遍:粗读、细读、带着问题读,关键字眼还可以划起来。

【第二环节】:自我探究、小组合作、老师评析探究点一面积、体积的最值问题自我探究5分钟、小组合作2分钟、老师评析3分钟例1:学校或班级举行活动,通常需要张贴海报进行宣传。

现让你设计一张如图1.4—1所示的竖向张贴的海报,要求版心面积为128 2dm,上、下两边各空2dm,左、右两边各空1dm.如何设计海报的尺寸,才能使四周空心面积最小?分析:1、这是一个求面积的最值问题。

首先请把题目中的信息标在图上。

2、版心面积为定值128dm2,海报的面积是否也为定值?3、如果设版心的高为xdm,那么版心的宽能用x表示吗?海报的面积能用x表示吗?海报四周空白的面积S能用x表示吗?其定义域是什么?4、海报四周空白的面积S(x)是否存在最值?若存在,如何求其最值?5、如何设计海报的尺寸,才能使四周空白面积最小?反思(1)在解决最优化问题时,往往要建立函数关系式,转化为求函数最值的问题。

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例说课稿 新人教A版选修22

高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例说课稿 新人教A版选修22

1.4生活中的优化问题举例1.内容和内容解析“优化问题”是现实生活中常碰到的问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。

而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值。

而本节内容主要是应用导数解决生活中的优化问题,使学生体会导数在解决生活中的优化问题的广泛作用和强大实力。

教材主要在效率、利润、最大容量三个方面举例说明。

从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的优化问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。

本节内容是导数知识的应用问题,所以数学建模,用导数求函数的单调性、最值,导数的意义是学生学习的必备知识。

2.目标和目标解析本节课主要培养学生数学知识的应用意识,应用导数, 解决生活中的优化问题。

同时教学中应突出导数的应用研究。

(1)熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案;(2)继续培养学生数学建模的能力。

为实现以上目标,可以分以下几步进行:(1)一般信息题的函数建模问题。

(2)设置能用二次函数,基本不等式解决优化问题的应用题。

(3)引导学生用导数解决一般的优化问题。

(4)总结解决优化问题的思路是: 第一步将优化问题转化为用函数表示的数学问题, 第二步是应用导数这个工具解决数学问题, 进而得到优化问题的答案。

3.教学问题诊断分析这一节的难点之一是数学建模问题。

比如,教材例1“汽油的使用效率何时最高”问题,题目的背景不熟悉,呈现形式不是很简洁,即使学生预习,也不知所云。

此题是用到“在曲线上求一点P,使得OP与曲线相切并切于点P”而解决此问题就要学生充分掌握导数几何意义。

作为函数的建模题,信息加工、数据的收集、函数图象呈现、图象的分析等都是学生的策手问题。

既然“导数的应用”作为本节的重点,那么在具体施教中不妨对例题作一些处理,化解难点,突出重点。

高中数学第一章导数及其应用1.4生活中的优化问题举例课件新人教A版选修2_2

高中数学第一章导数及其应用1.4生活中的优化问题举例课件新人教A版选修2_2

【新视角解答】
r2 2 我们已经求出利润和瓶子半径之间的关系式: f r 0.8 r ,0 r 6 。图象如图, 3
能否根据它的图象说出其实际意义?
当 r 0, 2 时, f r 为减函数,其实际意义为:瓶子的半径小于 2cm 时,瓶子的半径越 大,利润越小,半径为 2 cm 时,利润最小; 当 r 2,6 时, f r 为增函数,其实际意义为:瓶子的半径大于 2cm 时,瓶子的半径越 大,利润越大。 特别的, 当 r 3 时,f 3 0 , 即瓶子的半径为 3cm 时, 饮料的利润与饮料瓶的成本恰好相等, r 3 时,利润才为正值. 当 r 2 时, f 2 0 ,即瓶子的半径为 2cm 时,饮料的利润最小,饮料利润还不够饮料瓶子 的成本,此时利润是负值。
【问题】
(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
【分析】先建立目标函数,转化为函数的最值问题,然后利用导 数求最值. 【规范解答】
由于瓶子的半径为 r ,所以每瓶饮料的利润是
4 y f r 0 . 2 r 3 0.r82 3
新知探究
问题1:导数在实际生活中的应用主要是解决有关函数最大值、 最小值的实际问题,主要有几个方面? 1、与几何有关的最值问题; 2、与利润及其成本有关的最值问题; 3、效率最值问题。
问题2:解决优化问题的方法有哪些? 首先是需要分析问题中各个变量之间的关系,建立适当 的函数关系,并确定函数的定义域,通过创造在闭区间内求 函数取值的情境,即核心问题是建立适当的函数关系。再通
令 f r 0.8 (r 2 2r) 0 解得
r3 2 0 . 8 r 3

高中数学第一章导数及其应用1.4生活中的优化问题举例优化练习新人教A版选修2-2(2021年整理)

高中数学第一章导数及其应用1.4生活中的优化问题举例优化练习新人教A版选修2-2(2021年整理)

2017-2018学年高中数学第一章导数及其应用1.4 生活中的优化问题举例优化练习新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章导数及其应用1.4 生活中的优化问题举例优化练习新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章导数及其应用1.4 生活中的优化问题举例优化练习新人教A版选修2-2的全部内容。

1。

4 生活中的优化问题举例[课时作业][A组基础巩固]1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=13x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是( )A.8 B.20 3C.-1 D.-8解析:原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.答案:C2.以长为10的线段AB为直径作半圆,则它的内接矩形的面积的最大值为( )A.10 B.15C.25 D.50解析:如图,CDEF为半圆O的内接矩形,C、D为圆上的动点,连接OC,设∠COF=α,则CF=5sin α,OF=5cos α,∴S矩形CDEF=2×5cos α·5sin α=25sin 2α(0<α〈π2).∴S矩形CDEF的最大值为25。

答案:C3.某人要购买8件礼物,分两次购买,商家规定每次购买礼物付款金额为当次购买礼物数量的三次方,若使购买礼物付款额最省,此人每次购买礼物的数量分别为( ) A.2,6 B.4,4C.3,5 D.1,7解析:设第一次购买了x件礼物,则第二次购买了8-x件,则付款额f(x)=x3+(8-x)3,f′(x)=3x2-3(8-x)2=3(16x-64),令f′(x)=0,得x=4,∴当x=4时,付款额最省.答案:B4.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x(0≤x≤390)的关系是R(x)=-错误!+400x,(0≤x≤390),则当总利润最大时,每年生产的产品单位数是( )A.150 B.200C.250 D.300解析:由题意可得总利润P(x)=-错误!+300x-20 000,0≤x≤390,由P′(x)=-错误!+300=0,得x=300.当0≤x<300时,P′(x)〉0;当300〈x≤390时,P′(x)〈0,所以当x=300时,P(x)最大.答案:D5.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k(k〉0),贷款的利率为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 生活中的优化问题举例[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 34~P 36的内容,回答下列问题. 某厂家计划用一种材料生产一种盛500 ml 溶液的圆柱形易拉罐. (1)生产这种易拉罐,如何计算材料用的多少呢? 提示:计算出圆柱的表面积即可. (2)如何制作使用材料才能最省?提示:要使用料最省,只需圆柱的表面积最小.可设圆柱的底面半径为x ,列出圆柱表面积S =2πx 2+1 000x(x >0),求S 最小时,圆柱的半径、高即可.2.归纳总结,核心必记 (1)优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. (2)解决优化问题的基本思路[问题思考]在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗? 提示:根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.[课前反思](1)生活中的优化问题主要涉及哪些问题?; (2)解决优化问题的基本思路是什么?.讲一讲1.某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O ,半径为100 m ,并与北京路一边所在直线l 相切于点M .点A 为上半圆弧上一点,过点A 作l 的垂线,垂足为点B .市园林局计划在△ABM 内进行绿化.设△ABM 的面积为S (单位:m 2),∠AON =θ(单位:弧度).(1)将S 表示为θ的函数;(2)当绿化面积S 最大时,试确定点A 的位置,并求最大面积. [尝试解答] (1)BM =AO sin θ=100sin θ,AB =MO +AO cos θ=100+100cos θ,θ∈(0,π).则S =12MB ·AB =12×100sin θ×(100+100cos θ)=5 000(sin θ+sin θcos θ),θ∈(0,π). (2)S ′=5 000(2cos 2θ+cos θ-1)=5 000(2cos θ-1)(cos θ+1).令S ′=0, 得cos θ=12或cos θ=-1(舍去),此时θ=π3.当θ变化时,S ′,S 的变化情况如下表:所以,当θ=π3时,S 取得最大值S max =3 750 3 m 2,此时AB =150 m ,即点A 到北京路一边l 的距离为150 m.(1)平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值.(2)立体几何中的最值问题往往涉及空间图形的表面积、体积,在此基础上解决与实际相关的问题.解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.练一练1.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12,即包装盒的高与底面边长的比值为12.讲一讲2.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.[尝试解答] (1)由题设,隔热层厚度为x cm ,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40, 因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2,令f ′(x )=0, 即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0≤x <5时,f ′(x )<0, 当5<x ≤10时,f ′(x )>0, 故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.所以,当隔热层修建5 cm 厚时,总费用达到最小值70万元.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值,此时根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.练一练2.一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为10 km/h 时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以多大的速度航行时,能使每千米的费用总和最少?解:设燃料费y =kv 3,因为当v =10时,y =6,∴k =3500,∴y =3500v 3. ∴每千米总费用:S =1v ⎝ ⎛⎭⎪⎫3500v 3+96=3500v 2+96v ,S ′=3250v -96v2. 令S ′=0得v =20, 当v ∈(0,20)时,S ′<0; 当v ∈(20,+∞)时,S ′>0.∴v =20 km/h 是S 的极小值点,也是最小值点, ∴v =20 km/h 时,每千米的费用总和最少. 知识点3 利润最大问题讲一讲3.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x 4x +32(x ∈N *). (1)将该厂的日盈利额T (元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件? [尝试解答] (1)因为次品率p =3x4x +32, 所以当每天生产x 件时,有x ·3x4x +32件次品,有x ⎝ ⎛⎭⎪⎫1-3x 4x +32件正品. 所以T =200x ·⎝⎛⎭⎪⎫1-3x 4x +32-100x ·3x4x +32=25·64x -x 2x +8(x ∈N *).(2)T ′=-25·(x +32)(x -16)(x +8)2, 由T ′=0,得x =16或x =-32(舍去). 当0<x <16时,T ′>0; 当x >16时,T ′<0; 所以当x =16时,T 最大,即该厂的日产量定为16件,能获得最大盈利.解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有(1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.练一练3.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42,即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.——————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是利用导数解决生活中的优化问题. 2.本节课要重点掌握的规律方法(1)利用导数解决面积、体积的最值问题,见讲1; (2)利用导数解决成本最低(费用最省)问题,见讲2; (3)利用导数解决利润最大问题,见讲3.3.在利用导数解决生活中的优化问题时,要注意函数的定义域应使实际问题有意义,这也是本节课的易错点.课下能力提升(八)[学业水平达标练]题组1 面积、体积的最值问题1.如果圆柱轴截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π解析:选A 设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l , ∴h =l -4r2,V =πr 2h =12πr 2l -2πr 3⎝⎛⎭⎪⎫0<r <l 4.则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,∴r =l6是其唯一的极值点.当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.2.用边长为48 cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( )A .6 cmB .8 cmC .10 cmD .12 cm解析:选B 设截去的小正方形的边长为x cm ,铁盒的容积V cm 3.由题意,得V =x (48-2x )2(0<x <24),V ′=12(x -24)(x -8),令V ′=0,得x =8或x =24(舍去).当x ∈(0,8)时,V ′>0;当x ∈(8,24)时,V ′<0. ∴当x =8时,V 取得最大值. 题组2 成本最低(费用最省)问题3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 m解析: 选C 设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8,因此h =25664=4(m).4.某公司一年购买某种货物2 000吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为12x 2万元,要使一年的总运费与总存储费之和最小,则x =________.解析:设该公司一年内总共购买n 次货物,则n =2 000x,总运费与总存储费之和f (x )=4n +12x 2=8 000x +12x 2,令f ′(x )=x -8 000x2=0,解得x =20.且当0<x <20时f ′(x )<0,当x >20时f ′(x )>0,故x =20时,f (x )最小. 答案:205.甲、乙两地相距400 千米,汽车从甲地匀速行驶到乙地,速度不得超过100 千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数是P =119 200v 4-1160v 3+15v ,(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大的速度行驶?并求此时运输成本的最小值. 解:(1)Q =P ·400v=⎝⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v=⎝⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).题组3 利润最大问题6.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C 因为y ′=-x 2+81,所以当∈(9,+∞)时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9时函数取最大值.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q 与零售价p 有如下关系:Q =8 300-170p -p 2.则最大毛利润为(毛利润=销售收入—进货支出)( )A .30 元B .60 元C .28 000 元D .23 000 元解析:选D 设毛利润为L (p ),由题意知L (p )=pQ -20Q =Q (p -20)=(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30 元时,最大毛利润为23 000元.8.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),为使银行获得最大收益,则存款利率应定为________.解析:存款利率为x ,依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,x ∈(0,0.048).所以银行的收益是y =0.048kx 2-kx 3(0<x <0.048),由于y ′=0.096kx -3kx 2,令y ′=0得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值.答案:0.0329.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交4元的管理费,预计当每件产品的售价为x 元(8≤x ≤11)时,一年的销售量为(12-x )2万件.(1)求分公司一年的利润L (万元)与每件产品的售价x 之间的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大?并求出L 的最大值. 解:(1)分公司一年的利润L (万元)与售价x 之间的关系为:L (x )=(x -3-4)(12-x )2=(x -7)(12-x )2,即L (x )=(x -7)(12-x )2,其中x ∈[8,11]. (2)由于L (x )=(x -7)(12-x )2,∴L ′(x )=(12-x )2+(x -7)·2(12-x )·(-1) =(12-x )(12-x -2x +14)=(12-x )(26-3x ), 令L ′(x )=0得x =12或x =263,由于x ∈[8,11],所以取x =263,当x ∈⎣⎢⎡⎭⎪⎫8,263时,L ′(x )>0;x ∈⎝ ⎛⎦⎥⎤263,11时,L ′(x )<0,所以当x =263时,L (x )在[8,11]上取得极大值,也是最大值,L ⎝ ⎛⎭⎪⎫263=50027(万元). 故当每件售价为263元时,分公司一年的利润L 最大,最大利润是50027万元.[能力提升综合练]1.将8分为两个非负数之和,使两个非负数的立方和最小,则应分为( ) A .2和6 B .4和4C .3和5D .以上都不对解析:选B 设一个数为x ,则另一个数为8-x ,则其立方和y =x 3+(8-x )3=83-192x +24x 2(0≤x ≤8),y ′=48x -192.令y ′=0,即48x -192=0,解得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0.所以当x =4时,y 最小.2.设底为等边三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( ) A.3V B.32V C.34V D .23V 解析:选C 设底面边长为x ,高为h , ∴34x 2·h =V ,∴h =4V 3x2=43V 3x 2. ∴S 表=2·34x 2+3x ·h =32x 2+43Vx, S ′(x )=3x -43Vx2,令S ′(x )=0可得3x =43V x2,x 3=4V ,x =34V .当0<x <34V 时,S ′(x )<0;当x >34V 时,S ′(x )>0, ∴当x =34V 时,S (x )最小.3.某厂要围建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,其他三边要砌新墙,当砌新墙所用的材料最省时,堆料场的长和宽分别为( )A .32 m ,16 mB .30 m ,15 mC .40 m ,20 mD .36 m ,18 m解析:选A 设建堆料场与原墙平行的一边边长为x m ,其他两边边长为y m ,则xy =512,堆料场的新砌墙的长l =x +2y =512y +2y (y >0),令l ′=-512y2+2=0,解得y =16(另一负根舍去),当0<y <16时,l ′<0;当y >16时,l ′>0,所以当y =16时,函数取得极小值,也就是最小值,此时x =51216=32.4.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x (0≤x ≤390),则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300解析:选D 由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390,由P ′(x )=-x 2300+300=0,得x =300.当0≤x <300时,P ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.5.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________cm. 解析:设高为h ,则底面半径r =400-h 2,0<h <20,V =13π·r 2·h =13π·(400-h 2)·h=4003πh -π3h 3. 由V ′=4003π-πh 2=0得h 2=4003,h =2033或h =-2033(舍去),因为当0<h <2033时,V ′>0,当h >2033时,V ′<0,所以当h =2033时,V 最大.答案:20336.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________.解析:设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x2,0, 点B 坐标为⎝ ⎛⎭⎪⎫x 2,1-⎝ ⎛⎭⎪⎫x 22,∴矩形ACBD 的面积S =f (x )=x ·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫x 22=-x 34+x ,x ∈(0,2).由f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是递增的,x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是递减的, ∴当x =233时,f (x )取最大值439.答案:4397.某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.根据经验知道,每台机器产生的次品数P (万件)与每台机器的日产量x (万件)(4≤x ≤12)之间满足关系:P =0.1x 2-3.2 ln x +3.已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元.(利润=盈利-亏损)(1)试将该工厂每天生产这种元件所获得的利润y (万元)表示为x 的函数; (2)当每台机器的日产量x (万件)为多少时所获得的利润最大,最大利润为多少? 解:(1)由题意得,所获得的利润为y =10[2(x -P )-P ]=20x -3x 2+96ln x -90(4≤x ≤12).(2)由(1)知,y ′=-6x 2+20x +96x =-2(3x +8)(x -6)x.当4≤x <6时,y ′>0,函数在[4,6)上为增函数;当6<x ≤12时,y ′<0,函数在(6,12]上为减函数,所以当x =6时,函数取得极大值,且为最大值,最大利润为y =20×6-3×62+96ln 6-90=96ln 6-78(万元).故当每台机器的日产量为6万件时所获得的利润最大,最大利润为(96ln 6-78)万元. 8.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 1,l 2所在的直线分别为y ,x 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.解:(1)由题意知,M 点的坐标为(5,40),N 点的坐标为(20,2.5),代入曲线C 的方程y =ax 2+b,可得⎩⎪⎨⎪⎧40=a52+b,2.5=a202+b .解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知曲线C 的方程为y =1 000x 2(5≤x ≤20),y ′=-2 000x3, 所以y ′|x =t =-2 000t3即为l 的斜率.又当x =t 时,y =1 000t2,所以P 点的坐标为⎝⎛⎭⎪⎫t ,1 000t2,所以l 的方程为y -1 000t 2=-2 000t3(x -t ). 令x =0,得y =3 000t2;令y =0,得x =32t .所以f (t )=⎝ ⎛⎭⎪⎫32t 2+⎝ ⎛⎭⎪⎫3 000t 22,其中5≤t ≤20. ②由①知f (t )=⎝ ⎛⎭⎪⎫32t 2+⎝ ⎛⎭⎪⎫3 000t 22,其中5≤t ≤20.令g (t )=⎝ ⎛⎭⎪⎫32t 2+⎝ ⎛⎭⎪⎫3 000t 22=94t 2+9×106t4,所以g ′(t )=92t -4×9×106t 5=92·t 6-8×106t 5=92·t 6-(102)6t 5.因为5≤t ≤20,令g ′(t )<0,得5≤t <102;令g ′(t )=0,得t =102;g ′(t )>0,得102<t ≤20.所以g (t )在区间[5,102)单调递减,在(102,20]单调递增.所以g (102)=675是g (t )的极小值,也是最小值.所以当t =102时,f (t )取得最小值,最小值为f (102)=15 3.即最短长度为15 3.。

相关文档
最新文档