江西省抚州市乐安县第二中学高三数学上学期第一次月考试题理

合集下载

乐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

乐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

乐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 对“a ,b ,c 是不全相等的正数”,给出两个判断:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是()A .①对②错B .①错②对C .①对②对D .①错②错2. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A .1:2:3B .2:3:4C .3:2:4D .3:1:23. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x4. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B (x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,)D .[0,)5. 若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )A .(﹣∞,0)B .C .[0,+∞)D .6. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.77. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是()A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1] 8. 与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D . 9. 图1是由哪个平面图形旋转得到的()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .10的倾斜角为()10y -+=A . B . C .D .150o120o60o30o11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( )A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.12.双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )A .13B .15C .12D .11二、填空题13.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A,则t= .14.i 是虚数单位,化简:= .15.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .16.设满足约束条件,则的最大值是____________. ,y x 2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩3z x y =+17.已知圆,则其圆心坐标是_________,的取值范围是________.22240C x y x y m +-++=:m 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.18.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .三、解答题19.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,曲线C 2的参数方程为(θ为参数).(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.20.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.21.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;(2)求体积V A′﹣ABCD与V E﹣ABD的比值.22.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.23.已知等差数列的公差,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列前n项的乘积为,求的最大值.24.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.乐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.2.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.3.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.4.【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f′(x)=x2+2mx+2m+3,由题意可得,判别式△>0,即有4m2﹣4(2m+3)>0,解得m>3或m<﹣1,又x1+x2=﹣2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k==x1+x2=﹣2m,则有直线AB:y﹣x12=﹣2m(x﹣x1),即为2mx+y﹣2mx1﹣x12=0,圆(x+1)2+y2=的圆心为(﹣1,0),半径r为.则g(m)=d﹣r=﹣,由于f′(x1)=x12+2mx1+2m+3=0,则g(m)=﹣,又m>3或m<﹣1,即有m2>1.则g(m)<﹣=,则有0≤g(m)<.故选C.【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.5.【答案】B【解析】解:y=|x|(1﹣x)=,再结合二次函数图象可知函数y=|x|(1﹣x)的单调递增区间是:.故选:B.6.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.7.【答案】D【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,∴单调间区间为[a,+∞)又∵f(x)在区间[1,2]上是减函数,∴a≤1∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,∵g(x)=在区间[1,2]上是减函数,∴﹣a>2,或﹣a<1,即a<﹣2,或a>﹣1,综上得a∈(﹣∞,﹣2)∪(﹣1,1],故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围. 8.【答案】A【解析】解:由于椭圆的标准方程为:则c 2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x 轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),双曲线方程可设为mx 2﹣ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m ,n 即可. 9. 【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.10.【答案】C 【解析】,可得直线的斜率为,故选C.110y -+=k =tan 60αα=⇒=o 考点:直线的斜率与倾斜角.11.【答案】B【解析】解:根据y=sinx 图象知该函数在(0,+∞)不具有单调性;y=lg2x =xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B 正确;根据y=lnx 的图象,该函数非奇非偶;根据单调性定义知y=﹣x 3在(0,+∞)上单调递减.故选B .【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义. 12.【答案】A【解析】解:设点P 到双曲线的右焦点的距离是x ,∵双曲线上一点P 到左焦点的距离为5,∴|x ﹣5|=2×4∵x >0,∴x=13故选A . 二、填空题13.【答案】 0或1 .【解析】解:由A ∪B=A 知B ⊆A ,∴t 2﹣t+1=﹣3①t 2﹣t+4=0,①无解 或t 2﹣t+1=0②,②无解或t 2﹣t+1=1,t 2﹣t=0,解得 t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键. 14.【答案】 ﹣1+2i .【解析】解: =故答案为:﹣1+2i . 15.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查. 16.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.12,33A ⎛⎫⎪⎝⎭73考点:线性规划.17.【答案】,.(1,2)-(,5)-∞【解析】将圆的一般方程化为标准方程,,∴圆心坐标,22(1)(2)5x y m -++=-(1,2)-而,∴的范围是,故填:,.505m m ->⇒<m (,5)-∞(1,2)-(,5)-∞18.【答案】 (﹣∞,﹣1) .【解析】解:函数的定义域为{x|x >3或x <﹣1}令t=x 2﹣2x ﹣3,则y=因为y=在(0,+∞)单调递减t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1) 三、解答题19.【答案】【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,根据曲线C 2的参数方程为(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2﹣8x=0,显然△=64>0,故曲线C 1与C 2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.20.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.21.【答案】【解析】(1)证明:设BD交AC于M,连接ME.∵ABCD为正方形,∴M为AC中点,又∵E为A′A的中点,∴ME为△A′AC的中位线,∴ME∥A′C.又∵ME⊂平面BDE,A′C⊄平面BDE,∴A′C∥平面BDE.(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.22.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)23.【答案】【解析】【知识点】等差数列【试题解析】(Ⅰ)由题意,得解得或(舍).所以.(Ⅱ)由(Ⅰ),得.所以.所以只需求出的最大值.由(Ⅰ),得.因为,所以当,或时,取到最大值.所以的最大值为.24.【答案】【解析】解:(I)∵2a1,a1+a2+2a3,a1+2a2成等差数列.∴2(a1+a2+2a3)=2a1+a1+2a2.∴2(1+q+2q2)=3+2q,化为4q2=1,公比q>0,解得q=.∴a n=.(II)∵数列{b n}满足a n+1=(),∴=,∴b n=n,∴b n=n•2n﹣1.∴数列{b n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1.2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,∴T n=(n﹣1)•2n+1.。

2020届江西省抚州市临川第二中学高三上学期第一次月考数学(理)试题(解析版)

2020届江西省抚州市临川第二中学高三上学期第一次月考数学(理)试题(解析版)

2020届江西省抚州市临川第二中学 高三上学期第一次月考数学(理)试题一、单选题1.已知集合{}2230,A x x x =+-≤{}2B xx =<,则A B =IA .{}31x x -≤≤B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】先化简集合A,B ,再求得解.【详解】{}{}31,04A x x B x x =-≤≤=≤<,所以A B =I {}01x x ≤≤. 故选B 【点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 2.设复数z =213ii-+,则|z |=( ) A .13B .23C .12D .22【答案】D【解析】先用复数的除法运算将复数z 化简,然后用模长公式求z 模长. 【详解】 解:z =213i i -+=(2)(13)(13)(13)i i i i --+-=1710i --=﹣110﹣710i ,则|z |22171010⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭501001222.故选:D . 【点睛】本题考查复数的基本概念和基本运算,属于基础题.3.在等差数列{a n }中,若a 3=5,S 4=24,则a 9=( ) A .﹣5 B .﹣7 C .﹣9 D .﹣11【答案】B【解析】由a 3=5,S 4=24用通项公式和前n 项和公式列出关于1a ,d 的方程,得到{}n a 的通项公式,从而求出答案. 【详解】数列{a n }为等差数列,设首项为a 1,公差为d , ∵a 3=5,S 4=24, ∴a 1+2d =5,4a 1+432⨯d =24, 联立解得a 1=9,d =﹣2, 则a 9=9﹣2×8=﹣7. 故选:B . 【点睛】本题考查等差数列的通项公式和前n 项和公式的应用,属于基础题.4.已知幂函数()f x =x α的图象经过点 (3,5),且a =(1e)α,b ,c =log α14,则a ,b ,c 的大小关系为( ) A .c <a <b B .a <c <b C .a <b <cD .c <b <a【答案】A【解析】先由条件求出幂函数f (x )=x α中的α的值,再结合指数、对数函数的单调性比较,,a b c 的大小即可. 【详解】解:∵幂函数f (x )=x α的图象经过点 (3,5), ∴3α=5,∴α=log 35∈(1,2),∴0<a =1ae ⎛⎫ ⎪⎝⎭<1,b 1,c =log α14<log α1=0, ∴c <a <b . 故选:A. 【点睛】本题主要考查应用指数函数、对数函数的单调性比较大小,属于基础题.5.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是( )A .该市总有 15000 户低收入家庭B .在该市从业人员中,低收入家庭共有1800户C .在该市无业人员中,低收入家庭有4350户D .在该市大于18岁在读学生中,低收入家庭有 800 户 【答案】D【解析】根据给出的统计图表,对选项进行逐一判断,即可得到正确答案. 【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%, 则该市总有低收入家庭900÷6%=15000(户),A 正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B 正确, 该市无业人员中,低收入家庭有15000×29%%=4350(户),C 正确, 该市大于18 岁在读学生中,低收入家庭有15000×4%=600(户),D 错误. 故选:D . 【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.6.平面内不共线的三点O ,A ,B ,满足OA u u u r =1,OB u u u r=2,点C 为线段AB 的中点,若OC u u u r3AOB =( )A .3π B .2π C .23π D .56π 【答案】C【解析】点C 为线段AB 的中点,在OAB V 中,则2OA OBOC +=u u u r u u u r u u u r , 将两边平方结合向量数积的定义得到答案. 【详解】解:点C 为线段AB 的中点,在OAB V 中,则2OA OB OC +=u u u r u u u r u u u r ,两边平方得:22224OA OA OB OB OC +⋅+=u u u r u u u r u u u r u u u r u u u r , 由OA u u u r =1,OB u u u r =2,OC u u u r 3OA u u u r ,OB uuu r 的夹角为AOB ∠即31+4+212cos =44AOB ⨯⨯⨯∠,解得:1cos 2AOB ∠=-.又,[0]AOB π∠∈,,所以2=3AOB π∠.故选:C . 【点睛】本题考查向量的数量积的定义及运算,本题还可以用余弦定理求解,属于中档题.7.8122y x ⎛⎫+- ⎪⎝⎭的展开式中x 2y 2项的系数是( ) A .420 B .﹣420C .1680D .﹣1680【答案】A【解析】由题意根据乘方的意义,组合数的计算公式,求得展开式中x 2y 2项的系数. 【详解】解:8122y x ⎛⎫+- ⎪⎝⎭表示8个因式1+22y x -的乘积,要得到展开式中含x 2y 2的项,则 故其中有2个因式取2x ,有2个因式取﹣y 2, 其余的4个因式都取1,可得含x 2y 2的项.故展开式中x 2y 2项的系数是28C •22•26C •212⎛⎫- ⎪⎝⎭•44C =420,故选:A .本题主要考查乘方的意义,组合数的计算公式,属于基础题.8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A .1003B .1043C .27D .18【答案】B【解析】由题得几何体为正四棱台,再利用棱台的体积公式求解. 【详解】由题意几何体原图为正四棱台,底面的边长分别为2和6,高为2, 所以几何体体积1104(436436)233V =++⨯⨯=. 故选B 【点睛】本题主要考查三视图还原几何体原图,考查棱台体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 9.函数2|sin |2()61x f x x=-+的图象大致为( )A .B .C .D .【答案】A【解析】用偶函数的图象关于y 轴对称排除C ,用()0f π<排除B ,用()42f π>排除D .故只能选A .因为22|sin()||sin|22()66()1()1x xf x f xx x--=-=-=+-+,所以函数()f x为偶函数,图象关于y轴对称,故可以排除C;因为2|sin|242()61111fπππππ=-=-++11101122<-=-=+,故排除B,因为2|sin|22()2()621()2fππππ=-=+426164ππ-+42616444>-+46662425=->-=-=由图象知,排除D.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.10.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗⋯⋯,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为()()()2222224,1111x yA x y x y x yx⎧⎫⎧+≤⎪⎪⎪⎪⎪⎪=+-≤++≥⎨⎨⎬⎪⎪⎪≤⎪⎪⎪⎩⎩⎭或,设点(,)∈x y A,则2z x y=+的取值范围是()A.[25--,5]B.[5-5]C.[25-25]+ D.[4-,25]+【答案】C【解析】结合图形,平移直线2z x y=+,当直线与阴影部分在上方相切时取得最大值.如图,作直线20x y +=,当直线上移与圆22(1)1y x +-=相切时,2z x y =+取最大值,此时,圆心(0,1)到直线2z x y =+的距离等于1,即15=,解得z 的最大值为:25+,当下移与圆224x y +=相切时,2x y +取最小值, 同理25=,即z 的最小值为:25-,所以[25,25]z ∈-+.故选:C . 【点睛】本题考查线性规划的数据应用,考查转化思想以及计算能力;考查分析问题解决问题的能力.11.关于函数()f x =|cosx |+cos |2x |有下列四个结论:①()f x 是偶函数;②π是()f x 的最小正周期;③()f x 在[34π,54π]上单调递增;④()f x 的值域为[﹣2,2].上述结论中,正确的个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】由二倍角的余弦公式和余弦函数的性质,化简()f x ,由()()f x f x =-,可判断①;可令|cos |t x =,可得2()21g t t t =+-,由函数的周期性可判断②;由|cos |y x =的单调性,结合复合函数的单调性可判断③;由二次函数的单调性可判断④. 【详解】解:f (x )=|cosx |+cos |2x |=|cosx |+2cos 2|x |﹣1,由cos |x |=cosx ,可得()f x =|cosx |+2cos 2x ﹣1=2|cosx |2+|cosx |﹣1,由(-)f x =22|cos()||cos()|1()x x f x -+--=,则()f x 为偶函数,故①正确;可令t =|cosx |,可得2g()21t t t =+-,由y =|cosx |的最小正周期π,可得()f x 的最小正周期为π,故②正确; 由y =cosx 在[﹣2π,0]递增,在[0,2π]递减,可得f (x )在[34π,π]递增,在[π,54π]递减,故③错误; 由t ∈[0,1],219g()2()48t t =+-,可得g()t 在[0,1]递增,则g()t 的值域为[﹣1,2],故④错误. 故选:B . 【点睛】本题考查余弦函数的图象和性质,考查函数的周期性和奇偶性、值域的求法,考查化简变形能力和运算能力,属于中档题.12.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推,若该数列前n 项和N 满足:①80N >②N 是2的整数次幂,则满足条件的最小的n 为A .21B .91C .95D .10【答案】C【解析】构造数列{}m b ()m N *∈,使得:012b =,0122+2b =,01232+2+2b =,...,01212+2+2...2m m b -=++,求出数列{}m b 的前m 项和,根据题意可表示出原数列n 与m 的关系,以及原数列前n 和与数列{}m b 的前m 项和的关系,讨论出满足条件的n 的最小值即可。

江西省乐安县第二中学2023届高三第一次校模考理科数学试题

江西省乐安县第二中学2023届高三第一次校模考理科数学试题

一、单选题二、多选题1.设A.B .0C .-3D .-112.将函数的图象向右平移个单位长度后,得到函数的图象,则( )A .1B.C.D.3. 下列命题正确的是( )A .,B .是的充分不必要条件C .,D .若,则4. 一袋里装有带编号的红色,白色,黑色,蓝色四种不同颜色的球各两个,从中随机选4个球,已知有两个是同一颜色的球,则另外两个球不是同一颜色的概率为( ).A.B.C.D.5. ( )A.B.C.D.6. 设全集,集合,,则( )A.B.C.D.7. 已知,,,则它们的大小关系正确的是( )A.B.C.D.8. 已知抛物线的焦点为,准线为,过点斜率为的直线与抛物线交于点(在轴的上方),过作于点,连接交抛物线于点,则A .2B.C .1D.9. 已知直线与曲线相切,则下列直线中可能与垂直的是( )A.B.C.D.10. 在直三棱柱中,各棱长均为2,分别为线段的中点,则( )A .平面平面B.C .直线和所成角的余弦值为D.该棱柱外接球的表面积为11. 若将函数f (x )=cos(2x +)的图象向左平移个单位长度,得到函数g (x )的图象,则下列说法正确的是( )A .g (x )的最小正周期为πB .g (x )在区间[0,]上单调递减C .x =是函数g (x )的对称轴D .g (x )在[﹣,]上的最小值为﹣12. 在《九章算术》中,底面是直角三角形的直三棱柱被称为“堑堵”.如图,在堑堵中,是的中点,,若平面α过点P ,且与平行,则( )江西省乐安县第二中学2023届高三第一次校模考理科数学试题江西省乐安县第二中学2023届高三第一次校模考理科数学试题三、填空题四、解答题A .异面直线与所成角的余弦值为B .三棱锥的体积是该“堑堵”体积的C .当平面α截棱柱的截面图形为等腰梯形时,该图形的面积等于D .当平面α截棱柱的截面图形为直角梯形时,该图形的面积等于13. 若曲线在在点处的切线为,则__________.14. 已知一组数据按从小到大的顺序排列为:23,28,30,x ,34,39,且其中位数是31,则数据的第50百分位数是___________.15.函数的定义域为________.16. 已知和是平面直角坐标系中两个定点,过动点的直线和的斜率分别为,,且.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点作相互垂直的两条直线与轨迹交于,两点,求证:直线过定点.17.已知抛物线,过点的直线交抛物线于两点,且.(1)求抛物线的方程;(2)过点作轴的平行线与直线相交于点,若是等腰三角形,求直线的方程.18. 已知是椭圆上一点,是椭圆的两个焦点,且满足(I)求椭圆方程;(Ⅱ)设,是椭圆上任两点,且直线,的斜率分别为,若存在常数使,求直线的斜率.19. 已知椭圆:的左右焦点分别为,过点的直线交椭圆于不同的两点.(1)若直线经过,求的周长;(2)若以线段为直径的圆过点,求直线的方程;(3)若,求实数的取值范围.20. 江西全面推进城市生活垃圾分类,在2021年底实现“零”填埋.据统计,截止2020年4月,全省11个设区市有1596个党政机关、2008个事业单位、369个公共场所、373个相关企业、51个示范片区1752个居民小区开展了垃圾分类工作,覆盖人口248.1万人.某校为了宣传垃圾分类知识,面向该校学生开展了“垃圾分类知识”网络问卷调查,每位学生仅有一次参与机会,通过抽样,得到100人的得分情况,将样本数据分成五组,并整理得到如下频率分布直方图:已知测试成绩的中位数为75.(1)求的值,并求出测试成绩的平均数(同一组中的每个数据可用该组区间中点值代替);(2)现用分层抽样从第四组和第五组按照比例抽选出6人进行垃圾分类知识竞答活动,再从中选出人进行一对一PK,求抽出的两人恰好来自同一组的概率.21. 已知函数(Ⅰ)求函数图象在点处的切线方程;(Ⅱ)若对于任意的,,均有成立,求实数的取值范围.。

抚州市第二中学2018-2019学年上学期高三数学10月月考试题

抚州市第二中学2018-2019学年上学期高三数学10月月考试题

抚州市第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.复数Z=(i为虚数单位)在复平面内对应点的坐标是()A.(1,3) B.(﹣1,3)C.(3,﹣1)D.(2,4)2.已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′(x)在区间[﹣2,2]上的最小值为()A.﹣12 B.﹣10 C.﹣8 D.﹣63.如图,三行三列的方阵中有9个数a ij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是()A.B.C.D.4.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( )ABCD5.设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=()A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i6.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A. B. C.D.7. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l8. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24259. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.10.已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是 图乙中的( )11.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 12.下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=二、填空题13.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB最小则直线的方程是 .14.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力. 17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________三、解答题18.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yy af x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.19.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .20.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)21.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标; (II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.22.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点C 为圆O 上一点,CP 为圆的切线,CE 为圆的直径,3CP =.(1)若PE 交圆O 于点F ,165EF =,求CE 的长; (2)若连接OP 并延长交圆O 于,A B 两点,CD OP ⊥于D ,求CD 的长.23.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.抚州市第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.2.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.3.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.4.【答案】A【解析】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,5.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.6.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.7.【答案】C111]【解析】考点:线线,线面,面面的位置关系8.【答案】A考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 9. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .10.【答案】B 【解析】试题分析:(||)f x 的图象是由()f x 这样操作而来:保留y 轴右边的图象,左边不要.然后将右边的图象关于y 轴对称翻折过来,故选B . 考点:函数图象与性质.【思路点晴】本题主要考查函数的奇偶性、数形结合的数学思想方法.由()f x 加绝对值所得的图象有如下几种,一个是()f x ——将函数()f x 在轴下方的图象翻折上来,就得到()f x 的图象,实际的意义就是将函数值为负数转化为正的;一个是()f x ,这是偶函数,所以保留y 轴右边的图象,左边不要.然后将右边的图象关于y 轴对称翻折过来.11.【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.12.【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确. 故选:C .二、填空题13.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用.14.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.15.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M ,使成立。

乐安县二中2018-2019学年高三上学期11月月考数学试卷含答案

乐安县二中2018-2019学年高三上学期11月月考数学试卷含答案

乐安县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=o,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C.D .1111]2. “x ≠0”是“x >0”是的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是()A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点4. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =可以为()A .B . C. D .5. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( )A .相离B .相切C .相交D .不能确定6. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 正方体的内切球与外接球的半径之比为( )A .B .C .D .9. 集合的真子集共有( ){}1,2,3A .个B .个C .个D .个10.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为()A .B .C .﹣6D .611.已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为()A .p ∧qB .p ∨qC .¬p ∨qD .p ∧¬q12.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )A .0<a ≤B .0≤a ≤C .0<a <D .a >二、填空题13.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到;④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号) 14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.已知向量满足,,,则与的夹角为 .b a ,42=2||=4)3()(=-⋅+【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.17.设集合 ,满足{}{}22|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.A B =∅I {}|52A B x x =-<≤U a =18.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥三、解答题19.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.20.(本题满分15分)如图是圆的直径,是弧上一点,垂直圆所在平面,,分别为,的中点.AB O C AB VC O D E VA VC (1)求证:平面;DE ⊥VBC (2)若,圆的半径为,求与平面所成角的正弦值.6VC CA ==O 5BE BCD【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.21.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.22.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.(1)当a=1时,解方程f(x)﹣1=0;(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围.23.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.24.已知函数f(x)=log a(1﹣x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为﹣4,求a的值.乐安县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.2. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立.当x >0时,一定有x ≠0成立,∴“x ≠0”是“x >0”是的必要不充分条件.故选:B . 3. 【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014;∴f ′(x )>0在(﹣1,0)上恒成立;故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题. 4. 【答案】A 【解析】试题分析:,为奇函()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=gg ()cos y g x x ∴=数,排除B ,D ,令时,故选A. 10.1x =0y >考点:1、函数的图象及性质;2、选择题“特殊值”法.5.【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 >4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=<=2,故直线和圆C相交,故选:C.【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题. 6.【答案】B【解析】p p q∨p⌝p q∨p⌝p⌝试题分析:因为假真时,真,此时为真,所以,“真”不能得“为假”,而“为p p q∨假”时为真,必有“真”,故选B.考点:1、充分条件与必要条件;2、真值表的应用.7.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B8.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C9.【答案】C【解析】考点:真子集的概念.10.【答案】B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.11.【答案】C【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q为假命题.则¬p∨q为真命题,其余都为假命题,故选:C.【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.12.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.二、填空题13.【答案】 ③⑤ 【解析】解:①函数y=|x|,(x∈R)与函数,(x≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域由0≤2x≤2,⇒0≤x≤1,它的定义域为:[0,1];故错;⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.故正确;故答案为:③⑤14.【答案】 ﹣3 .【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值.当x=2时,f(x)=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.15.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题. 16.【答案】32π【解析】17.【答案】7,32a b =-=【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.18.【答案】1e e-【解析】解析: 由得,如图所有实数对表示的区域的面积为,满足条件“”的ln a b ≥ab e ≤(,)a b e ab e ≤实数对表示的区域为图中阴影部分,其面积为,∴随机事件“”的概率为(,)a b 111|a a e da e e ==-⎰ln a b ≥.1e e-三、解答题19.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C :,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.20.【答案】(1)详见解析;(2.【解析】(1)∵,分别为,的中点,∴,…………2分D E VA VC //DE AC ∵为圆的直径,∴,…………4分AB O AC BC又∵圆,∴,…………6分VC ⊥O VC AC ⊥∴,,又∵,∴;…………7分DE BC ⊥DE VC ⊥VC BC C =I DE VBC ⊥面(2)设点平面的距离为,由得,解得E BCD d D BCE E BCD V V --=1133BCE BCD DE S d S ∆∆⨯⨯=⨯⨯12分 设与平面所成角为,∵,d =BE BCD θ8BC ==…………15分BE ==sin d BE θ==21.【答案】【解析】解:由题意可知过焦点的直线方程为y=x ﹣,联立,得,设A (x 1,y 1),B (x 2,y 2)根据抛物线的定义,得|AB|=x 1+x 2+p=4p=8,解得p=2.∴抛物线的方程为y 2=4x .【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p 的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.22.【答案】【解析】解:(1)a=1时,f (x )=4x ﹣22x +2,f (x )﹣1=(2x )2﹣2•(2x )+1=(2x ﹣1)2=0,∴2x =1,解得:x=0;(2)4x ﹣a •(2x+1﹣1)+1>0在(0,1)恒成立,a •(2•2x ﹣1)<4x +1,∵2x+1>1,∴a >,令2x =t ∈(1,2),g (t )=,则g ′(t )===0,t=t 0,∴g (t )在(1,t 0)递减,在(t 0,2)递增,而g (1)=2,g (2)=,∴a ≥2;(3)若函数f (x )有零点,则a=有交点,由(2)令g(t)=0,解得:t=,故a≥.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.23.【答案】【解析】解:∵,∴f′(x)=x2﹣4,由f′(x)=x2﹣4=0,得x=2,或x=﹣2,∵x∈[0,3],∴x=2,当x变化时,f′(x),f(x)的变化情况如下表:x0(0,2)2(2,3)3f′(x)﹣0+f(x)4单调递减极小值单调递增1由上表可知,当x=0时,f(x)max=f(0)=4,当x=2时,.24.【答案】【解析】解:(1)要使函数有意义:则有,解得﹣3<x<1,所以函数f(x)的定义域为(﹣3,1).(2)f(x)=log a(1﹣x)+log a(x+3)=log a(1﹣x)(x+3)==,∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,∵0<a<1,∴≥log a4,即f(x)min=log a4;由log a4=﹣4,得a﹣4=4,∴a==.【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力.。

高三上册数学第一次月考理科试题(带答案)

高三上册数学第一次月考理科试题(带答案)

高三上册数学第一次月考理科试题(带答案)2021届高三上册数学第一次月考文科试题〔带答案〕本试卷分第一卷(选择题)和第二卷(非选择题)两局部。

答题时120分钟,总分值150分。

第一卷(选择题共10小题,每题5分,共50分)一、选择题(每题给出的四个选项中,只要一个选项契合标题要求.)1.假定集合 , ,那么 ( )A. B. C. D.答案:A解析:集合A={ },A={ },所以,2.在复平面内,双数对应的点的坐标为()A. B. C. D.答案:A解析:原式= = ,所以,对应的坐标为(0,-1),选A3. 为等差数列,假定,那么的值为( )A. B. C. D.答案:D解析:由于为等差数列,假定,所以,,4. 函数有且仅有两个不同的零点,,那么()A.当时,,B.当时,,C.当时,,D.当时,,答案:B解析:函数求导,得:,得两个极值点:由于函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如以下图:因此,可知,,只要B契合。

5. 设集合是的子集,假设点满足:,称为集合的聚点.那么以下集合中以为聚点的有:① ; ② ; ③ ; ④ () A.①④B.②③C.①②D.①②④答案:A【解析】①中,集合中的元素是极限为1的数列,在的时分,存在满足0|x-1|1是集合的聚点②集合中的元素是极限为0的数列,最大值为2,即|x-1|1 关于某个a1,不存在0|x-1| ,1不是集合的聚点③关于某个a1,比如a=0.5,此时对恣意的xZ,都有|x﹣1|=0或许|x﹣1|1,也就是说不能够0|x﹣1|0.5,从而1不是整数集Z的聚点④ 0,存在0|x-1|0.5的数x,从而1是整数集Z的聚点应选A6. 在以下命题中, ① 是的充要条件;② 的展开式中的常数项为;③设随机变量 ~ ,假定 ,那么 .其中一切正确命题的序号是()A.②B.②③C.③D.①③答案:B解析:①是充沛不用要条件,故错误;② ,令12-4k=0,得,k=3,所以,常数项为2,正确;③正态散布曲线的对称轴是x=0,,所以,正确;7.偶函数 ,当时, ,当时, ( ).关于偶函数的图象G和直线 : ( )的3个命题如下:①当a=4时,存在直线与图象G恰有5个公共点;②假定关于 ,直线与图象G的公共点不超越4个,那么a③ ,使得直线与图象G交于4个点,且相邻点之间的距离相等.其中正确命题的序号是()A.①②B.①③C.②③D.①②③答案:D解析:由于函数和的图象的对称轴完全相反,所以两函数的周期相反,所以,所以,当时,,所以,因此选A。

江西省抚州市乐安县第二中学高三数学上学期第一次月考

江西省抚州市乐安县第二中学高三数学上学期第一次月考

江西省抚州市乐安县第二中学2017届高三数学上学期第一次月考试题 文第Ⅰ卷(选择题 共50分)一、选择题:本答题共10小题,每小题5分,共50分.1.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则A B =IA.{}12x x -≤≤ B .{}10x x -≤≤ C .{}12x x ≤≤ D .{}01x x ≤≤2. 设ω是正实数,函数f (x )=2cos ωx 在x ∈⎣⎢⎡⎦⎥⎤0,2π3上是减函数,那么ω的值可以是( )A.12 B .2 C .3 D .4 3. 下列说法不正确...的是( ) A.若“p 且q ”为假,则p ,q 至少有一个是假命题B.命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥” C.“2πϕ=”是“()sin 2y x ϕ=+为偶函数”的充要条件D.当0α<时,幂函数()0,y x α=+∞在上单调递减4. 若函数x y a b =+的图象如图1,则函数11y b x a=+++的图象为( )5. 函数()sin 6f x x π⎛⎫=+⎪⎝⎭的图象同左平移3π个单位,再将图象上各点的横坐标缩短为原来的12,那么所得图象的一条对称轴方程为( ) (A) 3x π=(B) 4x π=(C) 4x π=-(D) 2x π=-6. 在△ABC 中,角A 、B 、C 的对边分别是,,a b c . 若sin sin 3sin sin .a A c C a C b B +-=则角B 等于( ) A.56π B.23π C.3πD.6π图17. 函数y =sin(2x -π3)在区间[-π2,π]的简图为( )8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( ) A .f (x )是偶函数 B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)9.函数)(x f 是定义在)2,2(-上的奇函数,当)2,0(∈x 时,,12)(-=xx f 则)31(log 2f 的值为( ) A .2- B .32-C .7D .123- 10. 己知函数()()()2ln x x b f x b R x +-=∈.若存在1,22x ⎡⎤∈⎢⎥⎣⎦,使得()()f x x f x '>-⋅,则实数b 的取值范围是A .(-∞B .3,2⎛⎫-∞ ⎪⎝⎭C . 9,4⎛⎫-∞ ⎪⎝⎭D . (),3-∞第Ⅱ卷(非选择题 共100分)二、填空题:每小题5分,共25分.11. 已知函数()5log ,0,2,0xx x f x x >⎧=⎨≤⎩则125f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭__________. 12. 已知扇形AOB (∠AOB 为圆心角)的面积为2π3,半径为2,则△ABO 的面积为________.13.函数y =x e x在其极值点处的切线方程为________. 14. 己知命题p :“000,32xx ∃>=”,则p ⌝是15. 小明爸爸开车以80 /km h 的速度沿着正北方向的公路行驶,小明坐在车里观察,在点A 处望见电视塔P 在北偏东030方向上,15分钟后到点B 处望见电视灯塔在北偏东075方向上,则汽车在点B 时与电视塔P 的距离是______km .三、解答题:本大题共6小题,共75分.16. 已知集合A ={}x |x 2-2x -3≤0,B ={x |x 2-2mx +m 2-9≤0},m ∈R.(1)若m =3,求A ∩B ;(2)已知命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数m 的取值范围.17. 已知函数()sin(),(0,0,),f x A x A x R ωϕωπϕπ=+>>-<<∈,图象的一条对称轴是38x π=,且这条对称轴与此函数图象交于点3(,2)8π,这条对称轴与相邻对称轴间的曲线交x 轴于点5(,0)8π. (1)求这个函数的解析式.(2)该函数的图象是由sin ()y x x R =∈的图象经过怎样的变换得到?(用两种方法解答) 18. 已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a 的取值范围.19.在ABC ∆中, c b a ,,分别是角C B A ,,的对边,且2cos cos (tan tan 1)1A C A C -=. (1)求B 的大小; (2)若332a c +=,3b =,求ABC ∆的面积. 20. 如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园,种植桃树,已知角A 为120°,AB ,AC 的长度均大于200米.现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙AP ,AQ 总长为200米,如何围可使三角形地块APQ的面积最大?(2)已知AP 段围墙高1米,AQ 段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?21.已知函数f (x )=ln x +1x+ax (a 是实数),(1)当a =2时,求函数f (x )在定义域上的最值;QPCBA(第20题)(2)若函数f(x)在[1,+∞)上是单调函数,求a的取值范围.第一次月考数学答案(文)题号 1 2 3 4 5 6 7 8 9 10 答案 DACADDADAC11.1412. 3 13.y =-1e 14. 0,32xx ∀>≠ 15. 10216.解:(1)由题意知,A ={}x |-1≤x ≤3,B ={}x |m -3≤x ≤m +3.当m =3时,B ={}x |0≤x ≤6, ∴A ∩B =[0,3].(2)由q 是p 的必要条件知,A B ⊆,结合(1)知⎩⎪⎨⎪⎧m -3≤-1,m +3≥3解得0≤m ≤2.故实数m 的取值范围是[0,2].17. 解:(1)由题意,函数f (x )的周期534()88T πππ=-=, ∴()2sin(2)f x x ϕ=+, 又当38x π=时()f x 取最大值,所以322,82k k Z ππϕπ⨯+=+∈, 又πϕπ-<<,∴4πϕ=-,()2sin(2)4f x x π=-(2)略18.解:(1)f (x )=2cos 2x -sin ⎝⎛⎭⎪⎫2x -7π6=(1+cos 2x )-⎝ ⎛⎭⎪⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝ ⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2. 当且仅当sin ⎝ ⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2,k ∈Z,即x =k π+π6,k ∈Z 时取到.∴函数取最大值时x 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π6,k ∈Z. (2)由题意,f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1,当且仅当a =c =1时取等号. 又由b +c >a 得a <2, ∴a 的取值范围是[1,2).19.解:(Ⅰ)由2cos cos (tan tan 1)1A C A C -=得:sin sin 2cos cos (1)1cos cos A CA C A C-= ∴2(sin sin cos cos )1A C A C -=∴1cos()2A C +=-,∴1cos 2B =,又0B π<<3B π∴=(Ⅱ)由余弦定理得:2221cos 22a cb B ac +-==22()2122a c ac b ac +--∴=, 又33a c +=,3b = 27234ac ac ∴--=,54ac = 115353sin 224ABC S ac B ∆∴==⨯=20.解 设AP x =米,AQ y =米.(1)则200x y +=,APQ ∆的面积13sin12024S xy xy =︒=.∴S 23()42x y +≤3=当且仅当100x y ==时取“=”. (注:不写“=”成立条件扣1分)答:当100AP AQ ==米时,三角形地块APQ 的面积最大为25003平方米;(2)由题意得100(1 1.5)20000x y ⨯⋅+⋅=,即 1.5200x y +=. 要使竹篱笆用料最省,只需其长度PQ 最短,所以2222cos120PQ x y xy =+-︒22x y xy =++22(200 1.5)(200 1.5)y y y y =-++- 21.7540040000y y =-+(40003y <<) 当8007y =时,PQ 有最小值200217,此时2007x =.答:当2007AP =米800,7AQ =米时,可使竹篱笆用料最省.21. 解:(1)当a =2时,f (x )=ln x +1x+2x ,x ∈(0,+∞),f ′(x )=1x -1x 2+2=2x 2+x -1x2=2(21)(1)x x x-+, 令f ′(x )=0,得x =-1或x =12.当x ∈⎝ ⎛⎭⎪⎫0,12时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫12,+∞时,f ′(x )>0, 所以f (x )在x =12处取到最小值,最小值为3-ln 2;无最大值.(2)f ′(x )=1x -1x 2+a =ax 2+x -1x2,x ∈[1,+∞), 显然a ≥0时,f ′(x )≥0,且不恒等于0,所以函数f (x )在[1,+∞)上是单调递增函数,符合要求. 当a <0时,令h (x )=ax 2+x -1,当x ―→+∞时,h (x )―→-∞, 所以函数f (x )在[1,+∞)上只能是单调递减函数.所以Δ=1+4a ≤0或0(1)0112h a⎧⎪∆>⎪≤⎨⎪⎪-≤⎩,解得a ≤-14.综上:满足条件的a 的取值范围是⎝⎛⎦⎥⎤-∞,-14∪[0,+∞).。

江西省乐安县第二中学2023届高三第一次校模考理科数学试题

江西省乐安县第二中学2023届高三第一次校模考理科数学试题

=
1 3
uuuv DA


uuuv AE
=
uuuv AD
+
uuuv DE
=
uuuv AD
+
1 2
uuuv AB

uuuv BF
=
uuuv AF
-
uuuv AB
=
2 3
uuuv AD
-
uuuv AB


uuuv AE
×
uuuv BF
=
æ çè
uuuv AD
+
1 2
uuuv AB
ö ÷ø
æ çè
2 3
uuuv AD
试卷第51 页,共33 页
(2)当
x
³
-
π 2
时,
xex
+
x
cos
x
-
ax2
-
2x
³
0
恒成立,求
a
的取值范围.
22.在直角坐标系
xOy
中,直线
l
的参数方程为
ì í î
x y
= =
6+ -t
t,

t
为参数),以坐标原点
O
为极点, x 轴的非负半轴为极轴建立极坐标系,曲线 C
的极坐标方程为 r 2
3 = 1+ 2sin2q
-
uuuv AB
ö ÷ø
=
2 3
uuuv AD
2
-
1 2
uuuv AB
2
-
2 3
uuuv AD
×
uuuv AB
=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省抚州市乐安县第二中学2017届高三数学上学期第一次月考试题 理一.选择题(每小题5分,共50分)1.设全集R U =,集合{}2log |2≤=x x A ,()(){}013|≥+-=x x x B ,则()=A B C U A.(]1,-∞- B .(]()3,01, -∞- C .[)3,0 D. ()3,0 2.设命题nn N n p 2,:2>∈∃,则p ⌝为A.nn N n 2,2>∈∀ B .nn N n 2,2≤∈∃C .nn N n 2,2≤∈∀ D.nn N n 2,2=∈∃3.设α是第二象限角,(),4P x 为其终边上的一点,且1cos tan 25x αα=,则= A.247B. 247-C. 127D. 127-4.若()()sin 2f x x θ=+,则“()f x 的图象关于3x π=对称”是“6πθ=-”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.由直线2,21==y y ,曲线xy 1=及y 轴所围成的封闭图形的面积是 A .2ln 2 B .12ln 2- C .2ln 21 D .456. 已知()⎪⎭⎫⎝⎛+-=-απαπ2sin 2sin ,则ααcos sin ⋅等于A.52 B .52-C. 52或52- D .51-7.函数()()ϕω+=x A x f sin (其中2,0,0πϕω<>>A )的图象如图所示,为了得到()sin3g x x=的图象,只需将()f x 的图象 A.向右平移4π个单位 B.向左平移4π个单位C.向右平移12π个单位 D.向左平移12π个单位 8. 如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34 C .38 D .3169.已知函数())0(212<-+=x e x x f x与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是( )A. )1,(e -∞ B. ),(e -∞ C. ),1(e e - D. )1,(ee - 10.已知函数()()R k x x x kx xf ∈⎩⎨⎧>≤+=.0,ln ,0,2,若函数()k x f y +=有三个零点,则实数k 的取值范围是A .2≤kB .2-≤kC .12-≤≤-kD .01<<-k 二.填空题(每小题5分,共25分) 11.若函数()()10.2,log 3,2,6≠>⎩⎨⎧>+≤+-=a a x x x x x f a 且的值域是[)+∞,4,则实数a 的取值范围是 .12. 已知()f x 为R 上增函数,且对任意x R ∈,都有()34x f f x ⎡⎤-=⎣⎦,则(2)f =____________. 13.已知()()0sin nf n nx dx π=⎰,若对于,R x ∈∀()()()1321-++<+++x x n f f f 恒成立,则正整数n 的最大值为___________.14.定义在R 上的奇函数()f x ,当0x >时, ()2f x =;则奇函数()f x 的值域是 .15.已知函数()()0103223>+-=m nx mx x f 有且仅有两个不同的零点,n m 22lg lg +的最小值为______________.三.解答题(共6小题,共75分) 16.(本小题满分12分)(1)已知在△ABC 中,51cos sin =+A A ,求A tan 的值.(2)已知παπ2<<,()537cos -=-πα,求()⎪⎭⎫ ⎝⎛-⋅+πααπ27tan 3sin 的值.17. (本小题满分12分)已知0>c ,且1≠c ,设p :函数xc y =在R 上单调递减;q :函数()122+-=cx x x f 在⎪⎭⎫⎝⎛+∞,21上为增函数,若“q p ∧”为假,“q p ∨”为真,求c 的取值范围.18.(本小题满分12分) 已知函数()()02sin 2sin 32>-=ωωωxx x f 的最小正周期为π3.(1)求函数()x f 在区间⎥⎦⎤⎢⎣⎡-43,ππ上的最大值和最小值; (2)在ABC ∆中,c b a ,,分别为角C B A ,,所对的边,且c b a <<,23sin =C , 1311223=⎪⎭⎫ ⎝⎛+πA f ,求B cos 的值.19.(本小题满分12分)为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (万元)与处理量x (吨)之间的函数关系可近似地表示为:[)[]⎪⎩⎪⎨⎧∈+-∈+=.50,30,160040,30,10,64025123x x x x x y ,且每处理一吨二氧化碳可得价值为20万元的某种化工产品. (1)当[]50,30∈x 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少.20.(本小题满分13分)已知函数f (x )=x 3+ax 2+bx+c 在x=﹣与x=1时都取得极值 (1)求a 、b 的值与函数f (x )的单调区间.(2)若对x ∈[﹣1,2],不等式f (x )<c 2恒成立,求c 的取值范围.21. (本小题满分14分) 已知关于x 函数()()()()22ln ,g x a x a R f x x g x x=-∈=+, (1)试求函数()g x 的单调区间;(2)若()f x 在区间()0,1内有极值,试求a 的取值范围; (3)0a >时,若()f x 有唯一的零点0x ,试求[]0x .(注:[]x 为取整函数,表示不超过x 的最大整数,如[][][]0.30,2.62, 1.42==-=-; 以下数据供参考:ln 20.6931,ln3 1.099,ln5 1.609,ln 7 1.946====)数学(理)参考答案一,选择题 1-5 DCABA 6-10 BCABC二,填空题 11.(]2,1 12.10 13.3 14. {-2,0,2} . 15.131三,16. 解 (1))1.(51cos sin =+A A ∴两边平方得,251cos sin 21=+A A 02512cos sin <-=∴A A ,又π<<A 0,可知0cos ,0sin <>A A ,……2分 ()254925241cos sin 21cos sin 2=+=-=-A A A A , 又0cos ,0sin <>A A ,0cos sin >-∴A A ,)2.(57cos sin =-∴A A ……4分 由()()2,1可得53cos ,54sin -==A A , 345354cos sin tan -=-==∴A A A .--------------6分(2)()()53cos 7cos 7cos -=-=-=-ααππα ,53cos =∴α.-9分 .53cos cos sin sin 2cos 2sin sin 2tan sin 27tan )3sin(==⋅=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅=⎪⎭⎫⎝⎛-⋅=⎪⎭⎫ ⎝⎛-⋅+∴αααααπαπααπαπααπ--------------12分 17. 解 ∵函数xc y =在R 上单调递减,10<<∴c . -----------------2分 即p :10<<c ,∵0>c ,且1≠c ,1:>⌝∴c p . -----------------3分 又函数()122+-=cx x x f 在⎪⎭⎫⎝⎛+∞,21上为增函数,21≤∴c .即210:≤<c q ,∵0>c ,且1≠c ,∴21:>⌝c q 且1≠c . ------------5分 “q p ∧”为假,“q p ∨”为真,q p ,∴中必有一真一假. ----------6分① 当p 真,q 假时,{}⎭⎬⎫⎩⎨⎧<<=⎭⎬⎫⎩⎨⎧≠><<121|121|10|c c c c c c c 且 . -------------------8分②当p 假,q 真时,{}φ=⎭⎬⎫⎩⎨⎧≤<>210|1|c c c c . -------------------10分 综上所述,实数c 的取值范围是⎭⎬⎫⎩⎨⎧<<121|c c . ---------------------12分 18.解(1)()16sin 22cos 12sin 32sin 2sin 32-⎪⎭⎫ ⎝⎛+=-⋅-=-=πωωωωωx x x x x x f . 由函数()x f 的最小正周期为π3,即πωπ32=,解得32=ω. ()1632sin 2-⎪⎭⎫ ⎝⎛+=∴πx x f -------------3分⎥⎦⎤⎢⎣⎡-∈43,ππx 时,πππ326322≤+≤-x ,1632sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以当π-=x 时,()x f 的最小值为3-,当2π=x 时,()x f 的最大值为1.6分(2)在ABC ∆中,由23sin =C ,可得,323ππ或=C c b a << ,3,32ππ=+=∴B A C . ------------8分由1311223=⎪⎭⎫⎝⎛+πA f ,得1312cos =A ,.135cos 1sin ,02=-=∴<<A A A π263512sin 3sin cos 3cos 3cos cos +=+=⎪⎭⎫⎝⎛-=∴A A A B πππ.----------12分 19.(1)当[]50,30∈x 时,设该工厂获利为S ,()()700301600402022---=+--=x x x x S . 所以当[]50,30∈x 时,0<S ,因此,该工厂不会获利,所以国家至少需要补贴700万元,才能使工厂不亏损 ------------4分 (2)由题意可知,二氧化碳的每吨平均处理成本为:[)[]⎪⎪⎩⎪⎪⎨⎧∈-+∈+==50,30,40160030,10,640251)(2x x x x xx x y x p①当[)30,10∈x 时,,640251)(2x x x p +=()()2322580002640252x x x x x P -=-='∴ []20,10∈∴x 时,()0<'x P ,()x P 为减函数;[]30,20∈x 时,()0>'x P ,()x P 为增函数,∴当20=x 时,()x P 取得最小值,即48=P ; ------------8分② 当[]50,30∈x 时,,404016002401600)(=-⋅≥-+=xx x x x p 当且仅当xx 1600=,即[]50,3040∈=x 时,()x P 取得最小值()4040=P 4048> ,∴当处理量为40吨时,每吨的平均处理成本最少.------------12分20,解 (1)f (x )=x 3+ax 2+bx+c ,f'(x )=3x 2+2ax+b由解得, 3分f'(x )=3x 2﹣x ﹣2=(3x+2)(x ﹣1),函数f (x )的单调区间如下表:(不列表也行) x(﹣∞,﹣) ﹣ (﹣,1)1 (1,+∞) f′(x ) + 0﹣+f (x ) ↑极大值 ↓ 极小值 ↑所以函数f (x )的递增区间是(﹣∞,﹣)和(1,+∞),递减区间是(﹣,1). (2), (上边不列,下边要列表)当x=﹣时,f (x )=+c 为极大值,而f (2)=2+c ,所以f (2)=2+c 为最大值.要使f (x )<c 2对x∈[﹣1,2]恒成立,须且只需c 2>f (2)=2+c . 12分 解得c <﹣1或c >2. 13分(步骤不好,适当扣分) 21. 解:(1)由题意)(x g 的定义域为),0(+∞2222-)(xax x a x x g +-=-=' ①若0≥a ,则()0<'x g 在),0(+∞上恒成立,),0(+∞为其单调递减区间; ②若0<a ,则由()0='x g 得a x 2-=,)2,0(ax -∈时,()0<'x g ,),2(+∞-∈a x 时,()0>'x g ,所以)2,0(a -为其单调递减区间;),2(+∞-a为其单调递增区间; ---4分(2))()(2x g x x f += 所以)(x f 的定义域也为),0(+∞,且()2322222xax x x ax x x f --=+-=' 令),0[,22)(3+∞∈--=x ax x x h (*),则()a x x h -='26(**)当0<a 时, ()0≥'x h 恒成立,所以)(x h 为),0[+∞上的单调递增函数,又0-)1(,02)0(>=<-=a h h ,所以在区间)1,0(内)(x h 至少存在一个变号零点0x ,且0x 也是()x f '的变号零点,此时)(x f 在区间)1,0(内有极值. --------8分0≥a 时)1,0(,0)1(2)(3∈<--=x ax x x h ,即在区间)1,0(上()0<'x f 恒成立,此时, )(x f 无极值.综上所述,若)(x f 在区间)1,0(内有极值,则a 的取值范围为)0,(-∞. -------9分(3) 0>a ,由(II )且3)1(=f 知]1,0(∈x 时()01)(>≥f x f ,10>∴x .又由(*)及(**)式知)(x f '在区间),1(+∞上只有一个极小值点,记为1x , 且),1(1x x ∈时)(x f 单调递减, ),(1+∞∈x x 时)(x f 单调递增,由题意1x 即为0x ,⎩⎨⎧='=∴0)(0)(00x f x f ⎪⎩⎪⎨⎧=--=-+∴0220ln 20200020ax x x a x x 消去a ,得131ln 2300-+=x x 0>a 时令)0(131)(),1(ln 2)(321>-+=>=x x x t x x x t , 则在区间),1(+∞上为)(1x t 单调递增函数, )(2x t 为单调递减函数, 且)2(710577.022ln 2)2(21t t =<=⨯<= ,)3(263123ln 2)3(21t t =+>>= 320<<∴x 2][0=∴x -----------------------14分。

相关文档
最新文档