Ratchet effects in Luttinger liquids

合集下载

冰冻浓缩效应 绿色合成 英文

冰冻浓缩效应 绿色合成 英文

冰冻浓缩效应绿色合成英文The "cryo-concentration effect" refers to the processin which a liquid mixture is cooled to a temperature below the freezing point of the solvent, causing the formation of ice crystals. This results in the separation of the solvent from the solute, leading to a more concentrated solution. The cryo-concentration effect is often utilized in various industries, such as the food and beverage industry, for the production of concentrated juices and other liquid products.On the other hand, "green synthesis" refers to the development of chemical processes for the production of various compounds and materials that are environmentally friendly. This approach aims to minimize the use of hazardous substances, reduce waste generation, and promote sustainable practices. Green synthesis methods ofteninvolve the use of renewable resources, non-toxic solvents, and energy-efficient processes.In summary, the "cryo-concentration effect" involvesthe separation and concentration of a liquid mixture through freezing, while "green synthesis" pertains to the environmentally friendly production of compounds and materials. Both concepts are important in their respective fields and contribute to sustainable and responsible manufacturing practices.。

土耳其比尔肯特大学研制出一种全硫属化物可变红外滤光片

土耳其比尔肯特大学研制出一种全硫属化物可变红外滤光片
示 。该 红 外 光 谱 仪 由作 为 黑 体 源 的 热 灯 丝 、该
● 藿

( c )
图 1 () a 斜蒸 发 几何 结 构 示 意 图, () 间可 变多 b空 层 滤光 片 结构 ,() 0层 A 2 3G l s S i e C2 s 一 es 2 es 4 S A 方 法 的研 究 [. 外 与 毫 米 J红 1
波学报 , 0 6 2 () 4 4 . 2 0 , 5 5:32 34
t soy 【 . e a C e sr, 00 7 () 15 r cp J C r l hmi y 20 , 72: 5— o 】 e t
哥召开 的 “ 红外 系统与光 电子技 术” S I PE专题
会议上 , 土耳其 比尔肯特大 学的研 究人员 HE a .s t
IF A E M N HY/ O . , o7 U 00 N R R D( O T L )V L 1 N .,J L2 1 3
图 2 该 红 外光 谱 仪 实验 装 置 的草 图
【 8 】Do el . iee t tn i eu n o —i e u w lFE D f rni ig t o s dn nvt o s a vr a r
d r u um e t k r e s b sn e ri fa e p e wh a e n l y u i g n a —n r r d s e — ・ -
1 . 58
[ ] i b O 6 . ai a d nndsrci 1 Tg u M, dnP C R pd n o-et t e 2 a u v
a a y i fv g u fPi u a u a s e s u i g sn l n l ss o i o r o n s p t l e d sn i g e s e e r i fa e r n m it n e s c r n u — e d n a n r r d t a s t a c pe t a a d m l

酸性离子液体催化一三二羰基化合物与叔醇之间的反应

酸性离子液体催化一三二羰基化合物与叔醇之间的反应

Bro¨nsted acid ionic liquid-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds with alcohols as well as one-pot synthesis of 4H -chromenesKazumasa Funabiki *,Takuya Komeda,Yasuhiro Kubota,Masaki MatsuiDepartment of Materials Science and Technology,Faculty of Engineering,Gifu University,1-1Yanagido,Gifu 501-1193,Japana r t i c l e i n f oArticle history:Received 14April 2009Received in revised form 3July 2009Accepted 3July 2009Available online 8July 2009Keywords:Ionic Bro¨nsted acid catalyst Substitution1,3-Dicarbonyl compounds Alcohola b s t r a c tRecyclable ionic Bro¨nsted acid was prepared in nearly quantitative yield by reacting 1-butylimidazole with an equimolar amount of 1,3-propanesultone,followed by treatment with an equimolar amount of tri-fluoromethanesulfonic acid.The ionic Bro¨nsted acid-catalyzed direct benzylation,allylation and prop-argylation of 1,3-dicarbonyl compounds with various alcohols in ionic liquid [N -ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf)],at 100 C for 3h proceeded smoothly to give the cor-responding products in good to excellent yields without the use of any hazardous or volatile solvents and without any by-product such as salts.Furthermore,tandem benzylation–cyclization–dehydration of 1,3-dicarbonyl compounds to give functionalized 4H -chromenes was also achieved in this catalytic reaction.Ó2009Elsevier Ltd.All rights reserved.1.IntroductionThe alkylation of 1,3-dicarbonyl compounds usually requires not only the transformation of 1,3-dicarbonyl compounds into more re-active species,such as enolates by reacting the 1,3-dicarbonyl com-pounds with base,but also the use of alkyl halides,since the hydroxyl group is not a good leaving group and 1,3-dicarbonyl compounds do not have high nucleophilicity.However,these requirements are limitations,as is the production of a salt as a by-product.From the standpoint of atom-economical and environmentally friendly chemistry,the catalytic direct carbon–carbon bond formation of 1,3-dicarbonyl compounds using alcohols in place of alkyl halides is one of the most ideal and salt-free reactions in organic synthesis,since steps are not needed for the generation of reactive enolate or for pre-conversion to the alkyl halides,and only water is generated as a by-product.Although some excellent catalysts,such as indium trichloride,1proton-exchanged montmorillonite,2trifluoromethanesulfonic acid,3p -toluenesulfonic acid,3,4polymer-supported p -toluenesulfonic acid,4metal triflate,5iron(III)chloride 6and hetropolyacid 7have recently been examined for catalytic direct carbon–carbon bond formation in active methylene compounds using alcohols as alkylating reagents,most of the reported reactions require hazardous or volatile solvents,such as nitromethane,dichloromethane,acetonitrile and toluene,and the re-covery and reuse of the catalysts far are still limited.2,4,5b Therefore,thedevelopment of a much more convenient,reusable,environmentally friendly system for the catalytic alkylation of 1,3-dicarbonyl com-pounds without the use of any hazardous or volatile solvents is needed.In this report,for the first time,we present our recyclable Bro¨nsted acid-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds with various alcohols as well as the tan-dem benzylation–cyclization–dehydration of 1,3-dicarbonyl com-pounds to give functionalized 4H -chromene in an ionic liquid system.2.Results and discussion2.1.Preparation of Bro¨nsted acid ionic liquid catalyst 1Recyclable Bro¨nsted acid ionic liquid catalyst 1,which was used for esterification,was prepared by modification of the method reported by Forbes et al.8as shown in Scheme 1.1-ButylimidazoleNNn -Bu SO 2O TfO 150°C,5hNN 3H n -Bu rt,20min 1(97%)CF 3SO 3H (1equiv.)NN SO 3n-Bu(98%)Scheme 1.Preparation of Bro¨nsted acid ionic liquid catalyst 1.*Corresponding author.Tel.:þ812932599;fax:þ812932794.E-mail address:funabiki@gifu-u.ac.jp (K.Funabiki).0040-4020/$–see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.tet.2009.07.012Tetrahedron 65(2009)7457–7463Contents lists available at ScienceDirectTetrahedronjournal homepage:www.elsevie /locate/tetwas allowed to react with an equimolar amount of 1,3-propane-sultone at room temperature to produce zwitterionic imidazolium salt in quantitative yield.Treatment of this zwitterionic imidazo-lium salt with an equimolar amount of trifluoromethanesulfonicacid at 150 C gave the Bro¨nsted acid ionic liquid catalyst 1in quantitative yield.2.2.Bro¨nsted acid ionic liquid 1-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds 2with alcohols 3The reaction of 2,4-pentanedione (2a )with 1-phenylethanol (3a )was conducted in the presence of 5mol %of the prepared Bro¨nsted acid ionic liquid catalyst 1in a commercially available ionic liquid,N -ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf),at 100 C for 3h.After the mixture was allowed to cool to room temperature,repeated extraction with a mixed solvent of diethyl ether and hexane (v/v ¼1:1)from EMIOTf,evaporation under vacuum,and chromatography with silica gel gave 3-(1-phenyl-ethyl)pentane-2,4-dione (4aa )in 77%yield,together with a small amount (7%)of (E )-but-1-ene-1,3-diyldibenzene (5)(styrene dim-mer)(Table 1,entry 1).Other ionic liquids carrying other counter anions,such as N -butyl-N -methylimidazolium tetrafluoroborate (BMIBF 4)and N -butyl-N -methylimidazolium hexafluorophosphite (BMIPF 6),were used (entries 2and 3).As a result,in the case of BMIBF 4,only trace amount of the product 4aa was formed,and 1,10-oxybis-(ethane-1,1-diyl)dibenzene (bis(1-phenylethyl)ether)was obtained as a main product (33%yield,dr ¼50:50)(entry 2).The reaction in BMIPF 6proceeded smoothly to give 4aa in 94%yield (entry 3).Surprisingly,when the ionic liquid catalyst 1was not added,the reaction of diketone 2a with alcohol 3a also proceeded to give the corresponding product 4aa in lower yield (61%),to-gether with styrene dimmer 5(20%yield)(entry 4).9The use of an equimolar amount of diketone 2a resulted in significant decrease of the yield (39%)of 4aa (entry 5).Employing trifluoromethansulfonicacid in place of the Bro¨nsted acid ionic liquid catalyst 1gave the similar yield (74%)of 4aa ,together with styrene dimmer 5(8%)as well as 4-phenylpentan-2-one (20%)(entry 6).The results of the Bro¨nsted acid ionic liquid 1-catalyzed reaction of 1,3-diketones 2,such as 2,4-pentanedione (2a )and 1,3-diphenyl-propane-1,3-dione (2b ),with various alcohols,such as 1-phenyl-ethanol (3a ),diphenylmethanol (3b ),(E )-1,3-diphenylprop-2-en-1-ol (3c ),(E )-pent-3-en-2-ol (3d ),and 1,3-diphenylprop-2-yn-1-ol (3e )in EMIOTf,are summarized in Table 1.In the case of diphenylmethanol (3b ),the reaction also proceeded smoothly to give 3-benzhy-drylpentane-2,4-dione (4ab )in 94%yield (entry 7).Allylation and propargylation using (E )-1,3-diphenylprop-2-en-1-ol (3c ),(E )-pent-3-en-2-ol (3d )and 1,3-diphenylprop-2-yn-1-ol (3e )also proceeded to give the corresponding allylated and propargylated diketones 4ac ,4ad and 4ae in 47–90%yields (entries 8–10).1,3-Diphenylpropane-1,3-dione (2b )participated well in the reaction with 1-phenylethanol (3a )and diphenylmethanol (3b )to produce the corresponding ben-zylated diketones 4ba and 4bb in 81–98%yields,without formation of the styrene dimer 5(entries 11and 12).The results of the Bro¨nsted acid ionic liquid-catalyzed reactions of ethyl 3-oxobutanoate (2c ),ethyl 3-oxopentanoate (2d )and ethyl 3-oxo-3-phenylpropanoate (2e )with various alcohols are sum-marized in Table 2.The use of various alcohols 3a –c ,e gave the corresponding benzylated,allylated and propargylated products 4cb ,4cc and 4ce in 76–91%yields (entries 2–4).However,the re-action of 2c with 1-phenylethanol (3a )gave the corresponding ketoester 4ca in 30%yield,together with a moderate amount (40%)of styrene dimer 5,probably due to lower nucleophilicity of ketoester 2c than those of diketones 2a ,b .Other ketoesters 2d ,e also participated well in the catalytic reaction with alcohol 3b to give the corresponding products 4db and 4eb in 89–97%yields (entries 5and 6).Diastereoselectivities of the products 4ca ,4cc and 4ce are quite low.To confirm the reaction mechanism for the formation of styrenedimer 5,the Bro¨nsted acid ionic liquid-catalyzed reaction of 1-phenylethanol (3a )in EMIOTf in the absence of 1,3-dicarbonyl compound 2was carried out,as shown in Scheme 2.Table 1Bro¨nsted acid ionic liquid 1-catalyzed direct benzylation,allylation and prop-argylation of 1,3-diketones 2a ,b with various alcohols 3EMIOTf,100°C,3h1(5mol%)R 34OH R 1R 2O O +32R 1R 2O O R 4R 343a R 3=Ph,R 4=Me 3b R 3=R 4=Ph3c R 3=(E )-PhCH=CH,R 4=Ph 3d R 3=(E )-MeCH=CH,R 4=Me 3e R 3=PhC C,R 4=Ph 2a R 1=R 2=Me 2b R 1=R 2=PhNNEt TfO EMIOTfNNn -Bu BMIBF 4BF 4NNn -Bu BMIPF 6PF 6Yields of isolated products.Values in parentheses show the yields of styrene dimer 5.bBMIBF 4was used in place of EMIOTf.1,10-Oxybis (ethane-1,1-diyl)dibenzene was obtained in 33%yield.cBMIPF 6was used in place of EMIOTf.dIL catalyst 1was not added.eAn eqimolar amount of 2a was used.fTrifluoromethanesulfonic acid was used in place of IL catalyst 1.4-Phenylpentan-2-one was also obtained in 20%yield.PhPh5K.Funabiki et al./Tetrahedron 65(2009)7457–74637458As a result,styrene dimer 5was formed as a sole product in 50%yield.This result can be explained by the following mechanism:(1)protonation of the hydroxyl group of alcohol 3a and successive dehydration produces the benzyl cation,and subsequent deproto-nation gives styrene.(2)The obtained styrene attacks the other benzyl cation,and deprotonation at the b -carbon gives styrene dimer 5.After having successfully developed an efficient benzylation of 1,3-diketones 2a ,b and ketoesters 2c ,d ,e ,we then sought to apply this methodology to the synthesis of highly functionalized 4H -chromene 10via catalytic tandem benzylation,cyclization and de-hydration of the 2-(hydroxy(phenyl)methyl)phenol (3f ),prepared from salicylaldehyde and phenyllithium,as described in Table 3.This catalytic tandem reaction of 3f with diketones 2a ,b and ketoesters 2c ,d ,e proceeded smoothly to produce the corresponding 4H -chromenes,such as 1-(2-methyl-4-phenyl-4H -chromen-3-yl)-ethanone (6af ),(2,4-diphenyl-4H -chromen-3-yl)(phenyl)methanone (6bf ),ethyl 2-methyl-4-phenyl-4H -chromene-3-carboxylate (6cf ),ethyl 2-ethyl-4-phenyl-4H -chromene-3-carboxylate (6df )and ethyl 2,4-diphenyl-4H -chromene-3-carboxylate (6ef ),in good to excellent yields (77–98%),respectively.Furthermore,the Bro¨nsted acid ionic liquid-catalyzed reactions of 1,3-diphenylpropane-1,3-dione (2b )with an equimolar amount of a highly activated tertiary alkynol,1,1,3-triphenylprop-2-yn-1-ol (7),also proceeded smoothly to give not a propargylated product,but rather a dienyl product,1,3-diphenyl-2-(1,3,3-triphenylallyli-dene)propane-1,3-dione (8),in 66%yield,as shown in Scheme 3.Table 3Bro¨nsted acid ionic liquid 1-catalyzed tandem direct benzylation,cyclization and dehydration of 2with the alcohol 3f1(5mol%)R1R 2O O+3f2a R 1=R 2=Me 2b R 1=R 2=Ph2c R 1=Me,R 2=OEt 2d R 1=Et,R 2=OEt 2e R 1=Ph,R 2=OEtEMIOTf,100°C,3hO R 2O 6R 1R 1R 2O O OHOHOH2Yields of isolated products.Table 2Bro¨nsted acid ionic liquid 1-catalyzed direct benzylation,allylation and prop-argylation of ester 2with various alcohols 31(5mol%)R3R 4OH R1O O +32c R 1=Me 2d R 1=Et 2e R 1=PhOEtO O R 4R 343a R 3=Ph,R 4=Me 3b R 3=R 4=Ph3c R 3=(E )-PhCH=CH,R 4=Ph 3e R 3=PhC C,R 4=PhEMIOTf,100°C,3h2R 1Yields of isolated products.Values in parentheses show the yields of styrene dimer 5.bDetermined by GC.PhPhMe 5(50%)PhMeOH EMIOTf,120°C,3h1(5mol%)3a Scheme 2.Proposed reaction mechanism for the formation of 5.EMIOTf,100°C,24h1(5mol%)PhOH PhPhO O +72bPh PhO O Ph 8(66%)PhPh PhPhScheme 3.Bro¨nsted acid ionic liquid 1-catalyzed reaction of 1,3-diphenylpropane-1,3-dione (2b )with tertiary alkynol 7.K.Funabiki et al./Tetrahedron 65(2009)7457–74637459According to the previous report by Sanz et al.,3b this product could be produced by the tandem Meyer–Schuster rearrangement of tertiary alkynol 7,aldol condensation with diketone 2b and de-hydration,as shown in Scheme 4.2.3.Reuse of the Bro¨nsted acid ionic liquid catalyst 1Finally,reuse of the Bro¨nsted acid ionic liquid catalyst 1was carried out,as shown in Scheme 5.After the initial use of the catalyst 1in EMIOTf,the product 4aaand styrene dimer 5were extracted from EMIOTf three times with a mixed solvent of diethyl ether and hexane (1:1).Concentration of the mixed organic layer and purification by column chromatogra-phy gave the product 4aa with a trace amount of 5.Reuse of the catalyst in the second and third cycles gave the product 4aa in al-most the same yield along with a trace amount of 5.3.ConclusionIn conclusion,we have developed a new recyclable Bro¨nsted acid-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds with various alcohols in an ionic liquid,N -ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf),without the use of any hazardous or volatile solvents and without any by-product such as salts.Furthermore,this method could also be applied to the tandem benzylation–cyclization–dehydration of 1,3-dicarbonyl compounds to give functionalized 4H -chromenes in good to excellent yields.4.Experimental4.1.General1H (400MHz)or 13C (100MHz)NMR spectra were measured with a JEOL a -400FT-NMR spectrometer in deuteriochloroform (CDCl 3)solution with tetramethylsilane (Me 4Si)as an internal stan-dard.Melting points were obtained on a Yanagimoto MP-S2micro melting point apparatus and are uncorrected.IR spectra were mea-sured on a SHIMADZU FT-IR 8100A spectrometer.HRMS were measured on a JEOL JMS-700mass spectrometer.LRMS were mea-sured on a JEOL JMS-K9mass spectrometer.The pure products were isolated by column chromatography using silica gel (Wakogel C-200,100–200mesh,Wako Pure Chemical Ind.,Ltd.).N -Ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf)was a gift from the Central Glass Co.,Ltd.All chemicals were of reagent grade and,if necessary,purified in the usual manner prior to use.4.2.Preparation of 1-butyl-3-(3-sulfopropyl)-1H -imidazol-3-ium trifluoromethanesulfonate (1)To propanesultone (3.908g,31.97mmol)in a two-necked flask under argonwas slowly added 1-butylimidazole (4.005g,32.25mmol),and the mixture was stirred for 30min at room temperature.Repeated washing of the obtained solid with toluene (20ml Â5)and Et 2O (20ml Â5),and evaporation under vacuum at room temperature gave 3-(1-butyl-1H -imidazol-3-ium-3-yl)propane-1-sulfonate in 98%yield (7.797g).4.2.1.3-(1-Butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonateYield 98%;Mp 176.7–177.1 C;IR (KBr)1566(C ]C),1179(SO),1038(SO)cm À1;1H NMR (D 2O,400MHz)d 0.99(t,J ¼7.37Hz,3H,C H 3CH 2CH 2CH 2),1.38(sext,J ¼7.37Hz,2H,CH 3C H 2CH 2CH 2),1.88(quint,J ¼7.37Hz,2H,CH 3CH 2C H 2CH 2),2.32(quint,J ¼7.37Hz,2H,–C H 2CH 2SO 3À),2.80(t,J ¼7.37Hz,2H,–CH 2SO 3À),4.23(t,J ¼7.37Hz,2H,–C H 2N ]), 4.43(t,J ¼7.37Hz,2H,–CH 2N þ^),7.68(d,J ¼15.46Hz,1H,imidazolium-H),7.68(d,J ¼15.46Hz,1H,imidazo-lium-H),9.02(s,1H,imidazolium-H);13C NMR (D 2O,100MHz)d 24.2(s),30.4(s),36.7(s),42.8(s),58.8(s),59.3(s),61.0(s),133.9(s),134.2(s),147.0(s);HRMS found m /z 247.1112,calcd for C 10H 19N 2O 3S:M þH,247.1118.A mixture of 3-(1-butyl-1H -imidazol-3-ium-3-yl)propane-1-sulfo-nate (2.473g,10.0mmol)and trifluoromethanesulfonic acid (1.628g,10.85mmol)was heated to 150 C and stirred at the same temperature for 5h.After being allowed to cool to room temperature,the obtained ionic liquid was washed repeatedly with toluene (20ml Â5)and Et 2O (20ml Â5)to remove non-ionic residues,and dried under vacuum at room temperature to give 1-butyl-3-(3-sulfopropyl)-1H -imidazol-3-ium trifluoromethanesulfonate (1)(3.924g,99%).4.2.2.1-Butyl-3-(3-sulfopropyl)-1H-imidazol-3-ium trifluoromethanesulfonate (1)Yield 99%;IR (neat)3415(SO 3H),1566(C ]C),1227(SO),1170(SO),1030(SO)cm À1;1H NMR (D 2O,400MHz)d 0.92(t,3H,J ¼7.34Hz,Ph OH 7PhPh H +PhOHPhPh Ph -H +PhPhPh Ph O PhPhPh OO PhPhPh HO-H 2OPhPhOO Ph8PhPhPhPh O O2b Scheme 4.Proposed reaction mechanism for the formation of 8.PhOH MeMeO O +initial use 4aa (77), 5 (7)first reuse 4aa (77), 5 (7)second reuse 4aa (75), 5 (5)Product (%)aaYields of isolated productsScheme 5.Reuse of the Bro¨nsted acid ionic liquid catalyst 1.K.Funabiki et al./Tetrahedron 65(2009)7457–74637460C H3CH2CH2CH2),1.33(sext,2H,J¼7.34Hz,CH3C H2CH2CH2),1.87 (quint,J¼7.34Hz,CH3CH2C H2CH2), 2.34(quint,J¼7.34Hz,2H,–C H2CH2SO3À), 2.93(t,2H,J¼7.34Hz,–CH2SO3À), 4.22(t,2H, J¼7.34Hz,–CH2N]),4.38(t,2H,J¼7.34Hz,–CH2Nþ^),7.54(d, 1H,J¼9.42Hz,imidazolium-H),7.54(d,1H,J¼9.42Hz,imidazolium-H),8.82(s,1H,imidazolium-H);13C NMR(D2O,100MHz)d23.2(s),29.4(s),35.8(s),41.8(s),57.9(s),58.4(s),60.1(s),50.2(s),130.3(q, J¼317.9Hz),133.0(s),133.3(s),146.0(s);HRMS found m/z247.1123, calcd for C10H19N2O3S:MÀCF3SO3,247.1116.4.3.Typical procedure for the recyclable Bro¨nsted acid1-catalyzed direct carbon–carbon bond formation of1,3-dicarbonyl compounds with alcoholsA mixture of1-butyl-3-(3-sulfopropyl)-1H-imidazol-3-ium tri-fluoromethanesulfonate(1)(0.060g,0.151mmol),1-phenylethanol (3a)(0.370g,3.029mmol)and pentane-2,4-dione(2a)(1.503g, 15.01mmol)in1-ethyl-3-methyl-1H-imidazol-3-ium trifluorome-thanesulfonate(1ml)under argon was stirred at100 C for3h.The mixture was then cooled to room temperature and extracted from the ionic liquid with a mixed solvent of Et2O/hexane(1:1) (30mlÂ3).After the solvent was removed under reduced pressure, the product was purified by column chromatography on silica gel with hexane/EtOAc(20:1)to give3-(1-phenylethyl)pentane-2,4-dione(4aa)(0.478g,77%)and(E)-but-1-ene-1,3-diyldibenzene(5) (0.022g,7%).4.3.1.3-(1-Phenylethyl)pentane-2,4-dione(4aa)3aYield77%;Mp46.9–47.9 C(lit.43–45 C);R f0.38(hexane/ EtOAc¼5:1);IR(CHCl3)1697(C]O),1722(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.16(d,J¼7.00Hz,3H,CHC H3),1.78(s,3H, COCH3),2.22(s,3H,COCH3),3.51–3.59(m,1H,C H CH3),3.99(d, J¼7.00Hz,1H,C H COCH3),7.13–7.26(m,5H,aryl H);13C NMR (CDCl3,100MHz)d21.6(s),30.4(s),30.5(s),41.1(s),77.4(s),127.7 (s),128.0(s),130.0(s),143.8(s),204.1(s),204.2(s);HRMS found m/z204.1151,calcd for C13H16O2:M,204.1154.4.3.2.(E)-But-1-ene-1,3-diyldibenzene(5)3aYield7%;R f0.38(hexane);IR(neat)1600(C]C)cmÀ1;1H NMR (CDCl3,400MHz)d1.38(d,J¼7.00Hz,3H,CHC H3),3.55(quint, J¼7.00Hz,1H,C H CH3),6.30–6.32(m,2H,2Âvinyl H),7.08–7.28(m, 10H,aryl H);13C NMR(CDCl3,100MHz)d21.4(s),42.7(s),126.3(s), 126.4(s),127.2(s),127.4(s),128.6(s),135.3(s),137.7(s),145.7(s); HRMS found m/z208.1259,calcd for C16H16:M,208.1253.4.3.3.1,10-Oxybis(ethane-1,1-diyl)dibenzeneYield33%;dr¼50:50;R f0.60(hexane/CH2Cl2¼1:1);1H NMR (CDCl3,400MHz)d1.31(d,6H,J¼6.52Hz,2ÂCHC H3),1.39(d,6H, J¼6.52Hz,2ÂCHC H3),4.18(q,2H,J¼6.52Hz,2ÂC H CH3),4.46(q, 2H,J¼6.52Hz,2ÂC H CH3),7.13–7.31(m,20H,aryl H);13C NMR (CDCl3,100MHz)d23.9(s),25.6(s),75.3(s),75.5(s),127.1(s),127.2 (s),128.0(s),128.3(s),129.1(s),129.4(s),145.0(s),145.1(s);MS(EI) m/z226(M,7.5%).4.3.4.4-Phenylpentan-2-one11Yield20%;R f0.29(hexane/CH2Cl2¼1:1);IR(neat)1716 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.29(d,3H,J¼7.00Hz, C H3CHPh), 2.09(s,3H,COCH3), 2.68(dd,1H,J¼7.00,16.18Hz, CH2CO), 2.78(dd,1H,J¼7.00,16.18Hz,CH2CO), 2.78(sext, J¼7.00Hz,1H,CH3C H Ph),7.20–7.35(m,5H,aryl H);13C NMR (CDCl3,100MHz)d21.9(s),30.5(s),35.3(s),51.9(s),126.2(s),126.6 (s),128.4(s),146.1(s),207.8(s);MS(EI)m/z162(M,34.3%).4.3.5.3-benzhydrylpentane-2,4-dione(4ab)3aYield94%;Mp114.9–116.1 C(lit.112–114 C);R f0.43(hexane/ CH2Cl2¼1:3);IR(CHCl3)1697(C]O),1719(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d2.00(s,6H,2ÂCOCH3),4.81(d,J¼12.32Hz,1H,C H Ph),4.73(d,J¼12.32Hz,1H,C H COCH3),7.15–7.20(m,2H,aryl H),7.24–7.29(m,8H,arlyl H);13C NMR(CDCl3,100MHz)d30.5(s),52.1 (s),75.4(s),127.9(s),128.6(s),129.8(s),142.1(s),203.8(s);HRMS found m/z266.1308,calcd for C18H18O2:M,266.1307.4.3.6.(Z)-3-(1,3-Diphenylallyl)pentane-2,4-dione(4ac)1Yield90%;Mp83.0–83.8 C(lit.85 C);R f0.20(hexane/ Et2O¼5:1);IR(CHCl3)1682(C]O),1732(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.92(s,3H,COCH3),2.25(s,3H,COCH3),4.30–4.37(m,2H,C H COCH3and CHPh),6.16–6.22(m,1H,PhCH]C H), 6.43(d,J¼15.70Hz,1H,PhC H]CH),7.20–7.33(m,10H,aryl H);13C NMR(CDCl3,100MHz)d30.4(s),30.7(s),49.8(s),127.0(s),127.9 (s),128.4(s),128.6(s),129.2(s),129.7(s),129.9(s),132.3(s),137.2 (s),140.7(s),141.9(s),203.4(s),203.5(s);HRMS found m/z 292.1475,calcd for C20H20O2:M,292.1464.4.3.7.(E)-3-(Pent-3-en-2-yl)pentane-2,4-dione(4ad)Yield47%;R f0.18(hexane/Et2O¼5:1);IR(neat)1698(C]O), 1722(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d0.96(d,J¼7.19Hz, 3H,CHC H3),1.62(d,J¼7.19Hz,3H,C H3CH:CH),2.11(s,3H,COCH3), 2.19(s,3H,COCH3), 2.97(sext,J¼7.19Hz,1H,C H CH3), 3.56(d, J¼7.19Hz,1H,C H COCH3),5.19–5.25(m,1H,CH3CH]C H),5.46–5.55 (m,1H,CH3C H]CH);13C NMR(CDCl3,100MHz)d17.8(s),19.0(s), 29.5(s),30.0(s),37.7(s),75.8(s),126.4(s),132.3(s),204.0(s),204.0 (s);HRMS found m/z168.1158,calcd for C10H16O2:M,168.1151. 4.3.8.3-(1,3-Diphenylprop-2-ynyl)pentane-2,4-dione(4ae)3bYield88%;Mp95.4–96.0 C(lit.90–92 C);R f0.50(hexane/ CH2Cl2¼1:3);IR(CHCl3)1701(C]O),1733(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.93(s,3H,COCH3),2.39(s,3H,COCH3),4.22(d, J¼10.87Hz,1H,C H Ph),4.67(d,J¼10.87Hz,1H,C H COCH3),7.25–7.42(m,10H,aryl H);13C NMR(CDCl3,100MHz)d28.7(s),31.1(s), 38.0(s),75.6(s),84.9(s),88.0(s),122.7(s),127.7(s),128.1(s),128.2 (s),128.3(s),128.9(s),131.6(s),138.2(s),201.6(s),201.6(s);HRMS found m/z290.1310,calcd for C20H18O2:M,290.1307.4.3.9.1,3-Diphenyl-2-(1-phenylethyl)propane-1,3-dione(4ba)3aYield81%;Mp126.1–126.8 C(lit.126–127 C);R f0.15(hexane/ EtOAc¼20:1);IR(KBr)1683(C]O),1733(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.33(d,J¼7.00Hz,3H,CHC H3),4.03–4.11(m, 1H,C H Ph),5.63(d,J¼7.00Hz,1H,C H COPh),7.04(t,J¼7.35Hz,1H, aryl H),7.14(t,J¼7.35Hz,2H,aryl H),7.22–7.26(m,4H,aryl H), 7.35–7.42(m,3H,aryl H),7.52(t,J¼7.35Hz,1H,aryl H),7.73(d, J¼7.35Hz,2H,aryl H),8.02(d,J¼7.35Hz,2H,aryl H);13C NMR (CDCl3,100MHz)d20.5(s),41.5(s),65.0(s),126.9(s),128.0(s), 128.7(s),128.8(s),129.1(s),129.1(s),133.3(s),133.9(s),137.1(s), 137.4(s),144.1(s),194.9(s),195.3(s);HRMS found m/z328.1467, calcd for C23H20O2:M,328.1464.4.3.10.2-Benzhydryl-1,3-diphenylpropane-1,3-dione(4bb)12Yield98%;Mp221.6–222.3 C(lit.228.6–230.2 C);R f0.28 (hexane/CH2Cl2¼1:1);IR(KBr)1661(C]O),1683(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d5.32(d,J¼11.71Hz,1H,C H COPh),6.35(d, J¼11.71Hz,1H,CHPh),7.05(t,J¼7.46Hz,2H,aryl H),7.15(t, J¼7.46Hz,4H,aryl H),7.24(s,4H,aryl H),7.33(t,J¼7.46Hz,4H,aryl H),7.47(t,J¼7.46Hz,2H,aryl H),7.83(d,J¼7.46Hz,4H,aryl H);13C NMR(CDCl3,100MHz)d52.4(s),62.3(s),126.6(s),128.3(s),128.5 (s),128.6(s),128.6(s),133.2(s),136.9(s),141.7(s),194.1(s);HRMS found m/z390.1618,calcd for C28H22O2:M,390.1621.4.3.11.Ethyl2-acetyl-3-phenylbutanoate(4ca)2bYield30%;R f0.63(hexane/EtOAc¼5:1);IR(neat)1717(C]O), 1747(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d0.85(t,J¼7.10Hz, 3H,COOCH2C H3),1.16(d,J¼8.88Hz,3H,CHC H3),1.21(t,J¼7.10Hz, 3H,COOCH2C H3), 1.22(d,J¼8.88Hz,3H,CHC H3), 1.85(s,3H,K.Funabiki et al./Tetrahedron65(2009)7457–74637461COCH3),2.22(s,3H,COCH3),3.44–3.48(m,2H,PhCH),3.67(d, J¼8.88Hz,1H,C H COCH3),3.72(d,J¼8.88Hz,1H,C H COCH3),3.80(q, J¼7.10Hz,2H,COOC H2CH3),4.14(q,J¼7.10Hz,2H,COOC H2CH3), 7.11–7.21(m,10H,aryl H);13C NMR(CDCl3,100MHz)d13.7(s),14.2 (s),20.4(s),20.6(s),29.6(s),29.9(s),39.8(s),40.1(s),61.2(s),61.5 (s),67.0(s),67.6(s),76.8(s),77.1(s),77.4(s),126.8(s),126.9(s), 127.4(s),127.5(s),128.5(s),128.7(s),143.1(s),143.3(s),168.2(s), 168.6(s),202.4(s);HRMS found m/z234.1263,calcd for C14H18O3: M,234.1256.4.3.12.Ethyl2-benzhydryl-3-oxobutanoate(4cb)3aYield91%;Mp87.8–89.0 C(lit.84–86 C);R f0.38(hexane/ CH2Cl2¼1:1);IR(CHCl3)1716(C]O),1738(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.00(t,J¼7.10Hz,3H,COOCH2C H3),2.09(s,3H, COCH3),3.98(q,J¼7.10Hz,2H,COOC H2CH3),4.52(d,J¼12.20Hz, 1H,CHPh),4.76(d,J¼12.20Hz,1H,C H COCH3),7.14–7.18(m,2H,arylH),7.23–7.30(m,8H,aryl H);13C NMR(CDCl3,100MHz)d13.4(s),29.7(s),50.5(s),61.2(s),64.9(s),126.5(s),126.6(s),127.4(s),127.5 (s),128.3(s),128.5(s),140.9(s),141.2(s),167.3(s),201.4(s);HRMS found m/z296.1419,calcd for C19H20O3:M,296.1413.Found:C, 76.91;H,6.87.C19H20O3requires C,77.00;H,6.80.4.3.13.(Z)-Ethyl2-acetyl-3,5-diphenylpent-4-enoate(4cc)7Yield76%;R f0.20(hexane/EtOAc¼20:1);IR(neat)1714(C]O), 1741(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d0.93(t,J¼7.10Hz, 3H,COOCH2C H3),1.16(t,J¼7.10Hz,3H,COOCH2C H3),1.99(s,3H, COCH3),2.26(s,3H,COCH3),3.89(q,J¼7.10Hz,2H,COOC H2CH3),4.05(d,J¼10.99Hz,2H,C H COCH3), 4.08(d,J¼10.99Hz,2H,C H COCH3),4.12(q,J¼7.10Hz,2H,COOC H2CH3),4.26(t,J¼10.99Hz, 2H,CHPh),6.18–6.30(m,2H,PhCH]C H),6.39(d,J¼10.99Hz,1H, PhC H]CH),6.43(d,J¼10.99Hz,1H,PhC H]CH),7.12–7.29(m,20H, aryl H);13C NMR(CDCl3,100MHz)d13.3(s),13.7(s),29.4(s),29.5 (s),48.3(s),48.5(s),60.9(s),61.1(s),64.8(s),65.1(s),125.9 (s),125.9(s),126.6(s),126.7(s),127.1(s),127.1(s),127.5(s),127.5(s), 128.0(s),128.2(s),128.4(s),128.8(s),129.0(s),131.0(s),131.3(s), 136.2(s),136.3(s),139.7(s),139.9(s),167.1(s),167.4(s),200.9 (s),201.2(s);HRMS found m/z322.1574,calcd for C21H22O3:M, 322.1570.4.3.14.Ethyl2-acetyl-3,5-diphenylpent-4-ynoate(4ce)3bYield84%;R f0.50(hexane/EtOAc¼15:1);IR(neat)1719 (C]O),1746(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.00(t, J¼7.06Hz,3H,COOCH2C H3),1.24(t,J¼7.06Hz,3H,COOCH2C H3), 1.97(s,3H,COCH3),2.39(s,3H,COCH3),3.95(q,J¼7.06Hz,2H, COOC H2CH3), 3.98(d,J¼10.69Hz,1H,C H COCH3), 4.04(d, J¼10.69Hz,1H,C H COCH3),4.22(q,J¼7.06Hz,2H,COOC H2CH3), 4.60(d,J¼10.69Hz,1H,CHPh),4.63(d,J¼10.69Hz,1H,CHPh), 7.20–7.42(m,20H,aryl H);13C NMR(CDCl3,100MHz)d13.8(s), 14.1(s),29.8(s),30.6(s),37.8(s),37.8(s),61.6(s),61.8(s),66.5 (s),66.8(s),84.1(s),84.7(s),88.2(s),88.5(s),122.8(s),123.1(s), 127.6(s),127.7(s),128.1(s),128.2(s),128.2(s),128.2(s),128.3 (s),128.6(s),128.7(s),131.6(s),138.2(s),138.3(s),166.8(s), 167.1(s),200.3(s),200.7(s);HRMS found m/z320.1413,calcd for C21H20O3:M,320.1415.4.3.15.Ethyl2-benzhydryl-3-oxopentanoate(4db)Yield89%;Mp87.8–88.1 C;R f0.38(hexane/CH2Cl2¼1:1);IR (KBr)1714(C]O),1747(C]O)cmÀ1;1H NMR(CDCl3,400MHz) d0.84(t,J¼7.25Hz,3H,COCH2C H3),0.97(t,J¼7.25Hz,3H, COOCH2C H3), 2.18–2.28(m,1H,COC H2CH3), 2.46–2.56(m,1H, COC H2CH3),3.90–4.01(m,2H,COOC H2CH3),4.56(d,J¼12.20Hz, 1H,CHPh),4.82(d,J¼12.20Hz,1H,C H COCH2CH3),7.11–7.32(m, 10H,aryl H);13C NMR(CDCl3,100MHz)d7.1(s),13.6(s),36.6(s), 50.7(s),61.2(s),64.0(s),126.6(s),126.7(s),127.5(s),127.7(s),128.4 (s),128.6(s),141.3(s),141.5(s),167.5(s),204.1(s);MS(EI)m/z292 (MÀH2O,19.3%).4.3.16.Ethyl2-benzhydryl-3-oxo-3-phenylpropanoate(4eb)11Yield97%;Mp137.0–137.5 C(lit.141.9–143.1 C);R f0.54(hex-ane/CH2Cl2¼1:1);IR(KBr)1682(C]O),1730(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d0.93(t,J¼7.12Hz,3H,COOCH2C H3),3.85–3.99 (m,2H,COOC H2CH3),5.08(d,J¼11.83Hz,1H,CHCOPh),5.41(d, J¼11.83Hz,1H,CHPh),7.03–7.07(m,1H,arlyl H),7.12–7.30(m,7H, arlyl H),7.34–7.45(m,4H,arlyl H),7.53–7.57(m,1H,arlyl H),8.00–8.02(m,2H,arlyl H);13C NMR(CDCl3,100MHz)d13.7(s),50.9(s), 59.4(s),61.5(s),126.5(s),126.8(s),127.7(s),128.2(s),128.5(s), 128.6(s),128.6(s),128.7(s),133.5(s),136.6(s),141.7(s),167.7(s), 192.8(s);MS(EI)m/z340(MÀH2O,46.4%).4.4.Typical procedure for the recyclable Bro¨nsted acid1-catalyzed tandem direct benzylation,cyclization and dehydration of the alcohol3fA mixture of1-butyl-3-(3-sulfopropyl)-1H-imidazol-3-ium tri-fluoromethanesulfonate(1)(0.020g,0.050mmol),2-(hydroxy-(phenyl)methyl)phenol(3f)(0.199g,0.994mmol)and pentane-2,4-dione(2a)(0.503g,5.024mmol)in1-ethyl-3-methyl-1H-imidazol-3-ium trifluoromethanesulfonate(1ml)under argon was stirred at 100 C for3h.The mixture was then cooled to room temperature and extracted from the ionic liquid with a mixed solvent of Et2O/hexane (1:1)(30mlÂ3).After the solvent was removed under reduced pressure,the product was purified by column chromatography on silica gel with hexane/CH2Cl2(1:4)to give1-(2-methyl-4-phenyl-4H-chromen-3-yl)ethanone(6af)(0.204g,77%).4.4.1.1-(2-Methyl-4-phenyl-4H-chromen-3-yl)ethanone(6af)Yield77%;R f0.58(hexane/CH2Cl2¼1:4);IR(neat)1682 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d2.13(s,3H,COCH3),2.43 (s,3H,CCH3),4.99(s,1H,CHPh),6.92–6.99(m,2H,aryl H),7.06–7.14 (m,3H,aryl H),7.19–7.30(m,4H,aryl H);13C NMR(CDCl3,100MHz) d20.5(s),30.5(s),42.6(s),114.5(s),116.7(s),124.9(s),125.2(s), 127.2(s),127.9(s),128.0(s),129.3(s),129.3(s),146.2(s),149.4(s), 159.5(s),199.2(s);HRMS found m/z264.1147,calcd for C18H16O2: M,264.1151.4.4.2.(2,4-Diphenyl-4H-chromen-3-yl)(phenyl)methanone(6bf)Yield98%;Mp152.5–153.0 C;R f0.30(hexane/CH2Cl2¼2:1);IR (KBr)1643(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d5.35(s,1H, CHPh),7.02–7.19(m,9H,aryl H),7.22–7.28(m,4H,aryl H),7.36–7.39 (m,2H,aryl H),7.43–7.51(m,4H,aryl H);13C NMR(CDCl3,100MHz) d43.9(s),114.4(s),116.5(s),124.6(s),126.7(s),127.6(s),127.8(s), 127.9(s),128.1(s),128.6(s),129.1(s),129.3(s),129.5(s),129.7(s), 131.7(s),133.3(s),138.4(s),145.2(s),150.3(s),155.3(s),197.2(s); HRMS found m/z388.1471,calcd for C28H20O2:M,388.1464.4.4.3.Ethyl2-methyl-4-phenyl-4H-chromene-3-carboxylate(6cf)9Yield84%;R f0.75(hexane/CH2Cl2¼1:4);IR(neat)1710 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.16(t,J¼7.12Hz,3H, COOCH2C H3),2.51(s,3H,CCH3),4.02–4.15(m,2H,COOC H2CH3),5.04(s,1H,CHPh),6.94–6.98(m,1H,aryl H),7.00–7.06(m,2H,arylH),7.09–7.15(m,2H,aryl H),7.20–7.24(m,4H,aryl H);13C NMR (CDCl3,100MHz)d13.6(s),19.0(s),41.0(s),59.6(s),105.6(s),115.7 (s),124.0(s),124.3(s),125.9(s),127.0(s),127.3(s),127.9(s),128.7 (s),146.2(s),148.8(s),159.5(s),166.6(s),HRMS found m/z 294.1265,calcd for C19H18O3:M,294.1256.4.4.4.Ethyl2-ethyl-4-phenyl-4H-chromene-3-carboxylate(6df)Yield80%;R f0.50(hexane/CH2Cl2¼1:1);IR(neat)1703 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.17(t,J¼7.30Hz,3H, CCH2C H3),1.29(t,J¼7.30Hz,3H,COOCH2C H3),2.84–3.00(m,2H, CC H2CH3),4.02–4.15(m,2H,COOC H2CH3),5.03(s,1H,CHPh),6.94–6.98(m,1H,aryl H),7.02–7.07(m,2H,aryl H),7.10–7.16(m,2H,arylH),7.21–7.23(m,4H,aryl H);13C NMR(CDCl3,100MHz)d11.9(s),K.Funabiki et al./Tetrahedron65(2009)7457–7463 7462。

变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性

变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性

第50卷第6期2023年北京化工大学学报(自然科学版)Journal of Beijing University of Chemical Technology (Natural Science)Vol.50,No.62023引用格式:刘琪,兰光强.变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性[J].北京化工大学学报(自然科学版),2023,50(6):105-111.LIU Qi,LAN GuangQiang.Exponential stability of hybrid neutral stochastic differential delay equations with time⁃depend⁃ent delay feedback control[J].Journal of Beijing University of Chemical Technology (Natural Science),2023,50(6):105-111.变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性刘 琪 兰光强*(北京化工大学数理学院,北京 100029)摘 要:研究了变时滞反馈控制的混合中立型随机延迟微分方程(HNSDDEs)的指数稳定性㊂采用函数方法设置合适的变时滞反馈控制函数,得到了该系统的指数稳定性㊂对比已有的研究成果,本文的主要贡献是在变时滞反馈控制下对HNSDDEs 的指数稳定性作了进一步研究㊂最后,给出一个例子证明了结论的有效性㊂关键词:变时滞;混合中立型随机延迟微分方程(HNSDDEs);反馈控制;指数稳定性中图分类号:O211.6 DOI :10.13543/j.bhxbzr.2023.06.013收稿日期:2022-09-05基金项目:北京市自然科学基金(1192013)第一作者:女,1998年生,硕士生*通信联系人E⁃mail:langq@引 言带有变时滞反馈控制的混合中立型随机延迟微分方程(HNSDDEs)常被用于系统未来的建模,目前已经被广泛应用于种群生态㊁神经网络以及激光器动力学等领域㊂对于随机系统突然性的结构变化,常采用连续时间马氏链来描述,带有马氏链的随机延迟微分方程即为混合随机延迟微分方程㊂文献[1]具体研究了混合随机延迟微分方程,文献[2-4]则进一步考虑了其稳定性及有界性,文献[5-7]又扩展到了带中立项的混合随机延迟微分方程的稳定性研究㊂然而并非所有系统都是稳定的,因此设计一个合适的反馈控制使不稳定的系统变得稳定很有意义㊂相应地,文献[8-11]研究了系统稳定化问题㊂其中文献[8]研究了常时滞反馈控制的高阶非线性混合随机时滞微分方程的指数稳定性,文献[9]是在文献[10]的基础上进一步研究了变时滞反馈控制的HNSDDEs 的L p 渐进稳定性和H ∞稳定性㊂本文采用Lyapunov 函数方法,进一步研究了变时滞反馈控制下的HNSDDEs 的指数稳定性㊂文献[8]研究了常时滞反馈控制下的混合随机微分延迟方程的指数稳定性,其所涉及的时滞均为常量,本文进一步将常时滞推广到了函数时滞,并且将受控方程推广到了带有中立项的混合随机延迟微分方程,其难点在于找到时滞δ(t )的上界和利用引理2处理中立项㊂文献[9]研究了变时滞反馈控制的具有时变延迟的高度非线性HNSDDEs 的L p 渐近稳定性和H ∞稳定性,但缺少指数稳定性,本文则是通过进一步找到更合适的反馈函数确定了方程的收敛速度,即指数稳定性㊂1 基本假设与模型描述设(Ω,F ,{F t }t ≥0,P )是一个带有σ流(满足通常条件)的完备概率空间,{B (t )}t ≥0是定义在其上的m 维布朗运动,{r (t )}t ≥0是右连马氏链且独立于{B (t )}t ≥0,S ={1,2, ,N }是其状态空间,Γ=(γij )N ×N 是其生成算子㊂考虑变时滞反馈控制HNSDDEd ^x(t )=f (x (t ),x (t -τ(t )),t ,r (t ))d t +g (x (t ),x (t -τ(t )),t ,r (t ))d B (t ),t ≥0(1)其中^x(t )=x (t )-N (x (t -τ(t )),t ,r (t )),且初值满足{x(θ):-τ≤θ≤0}=φ∈C([-τ,0];n)r(0)=r0∈S(2)其中f,g,N均为Borel可测函数,并且满足f:n×n×+×S→ng:n×n×+×S→n×mN:n×+×S→n加上反馈控制函数u之后系统变为d^x(t)=[f(x(t),x(t-τ(t)),t,r(t))+u(x(t-δ(t)),t,r(t))]d t+g(x(t),x(t-τ(t)),t,r(t))㊃d B(t),t≥0(3)其中0≤δ(t)≤δ≤τ,0≤τ(t)≤τ㊂假设f(0,0,t,i)=N(0,t,i)≡0,g(0,0,t,i)≡0V(x,t,i)∈C2,1(n×+×S;+)为方便起见,简记^x=x-N(y,t,i)㊂对V(x,t,i)∈C2,1(n×+×S;+)定义如下算子LL V(x,y,t,i)=V t(^x,t,i)+V T x(^x,t,i)f(x,y,t, i)+12trace[g T(x,y,t,i)V xx(^x,t,i)g(x,y,t,i)]+∑j∈sγij V(^x,t,j)(4)为得到本文主要结论,提出以下假设㊂假设1 对任意l>0,存在K l>0,使得对任意i∈S,t∈+,且|x|∨|x|∨|y|∨|y|≤l,满足|f(x,y,t,i)-f(x,y,t,i)|∨|g(x,y,t,i)-g(x,y,t,i)|≤Kl(|x-x|+|y-y|)(5)假设2 存在K>0,m1>1,m2≥1,使得对∀x, y∈n,i∈S,t∈+,有|f(x,y,t,i)|≤K(|x|m1+|y|m1+1)|g(x,y,t,i)|≤K(|x|m2+|y|m2+1)(6)假设3 系统(3)中的时滞函数τ:+→[0,τ]满足τ′(t)=dτ(t)d t≤τ<1,t≥0(7)系统(3)反馈控制函数中的δ:+→[0,δ]满足δ′(t)=dδ(t)d t≤δ<1,t≥0(8)假设4 存在κ∈(0,1)使得对∀x,y∈n,i∈S,t∈+,有|N(x,t,i)-N(y,t,i)|≤κ(1-τ)|x-y|(9)并且N(0,t,i)≡0㊂假设5 存在常数c1,c2,c3,c4>0,c2>c3+c4和函数V∈C2,1(n×+×S;+),U1,U2∈C(×[-τ,+∞];+),使得对∀x,y∈n,i∈S,t∈+,有U1(x,t)≤V(x,t,i)≤U2(x,t)L V(x,y,t,i)+V x(x-N(y),t,i)u(z,t,i)≤c1-c2U2(x,t)+c3(1-τ)U2(y,t-τ(t))+c4(1-δ)U2(z,t-δ(t))(10)由文献[7]可得如下引理㊂引理1 设假设1~4成立,且假设5对于U1(x,t)=|x|w成立,那么系统(3)有唯一的全局解,并且满足sup-τ≤t<∞E|x(t)|w<∞,w≥2(m1∨m2)由文献[5]中引理2.2以及式(9)可得引理2 若p≥1,则[1-κ(1-τ)]p-1[|x|p-κ(1-τ)|y|p]≤|x-N(y,t,i)|p≤[1+κ(1-τ)]p-1[|x|p+κ(1-τ)|y|p](11) 2 主要结论与证明定义片段过程x(t)={x(t+s):-2τ≤s≤0,0≤t≤2τ}同理定义r(t),且令r(s)=r(0),s∈[-2τ,0)x(s)=φ(-τ),s∈[-2τ,-τ{)令U∈C2,1(n×+×S;+)且满足lim|x|→∞inf(t,i)∈+×SU(x,t,i[])=∞对于t∈+,定义V(x(t),t,r(t))=U(^x(t),t,r(t))+ρ∫0-δ∫t t+s J(v)㊃d v d s(12)其中ρ>0,且J(t):=δ|u(x(t-δ(t)),t,r(t))+f(x(t),x(t-τ(t)),t,r(t))|2+|g(x(t),x(t-τ(t)),t,r(t))|2对于x,y∈n,i∈S,s∈[-2τ,0),设f(x,y,s,i)≡f(x,y,0,i)g(x,y,s,i)≡g(x,y,0,i)u(z,s,i)≡u(z,0,i)由伊藤公式可得d U(^x(t),t,r(t))=[U t(^x(t),t,r(t))+ U T x(^x(t),t,r(t))(f(x(t),x(t-τ(t)),t,r(t))+ u(x(t-δ(t)),t,r(t)))+∑j∈Sγj,r(t)U(^x(t),t,j)+ 12trace[g T(x(t),x(t-τ(t)),t,r(t))U xx(^x(t),t,㊃601㊃北京化工大学学报(自然科学版) 2023年r(t))g(x(t),x(t-τ(t)),t,r(t))]d t+d B(t)(13)其中,B(t)是局部鞅,并且B(0)=0㊂整理式(13)得d U(^x(t),t,r(t))=l U(x(t),x(t-τ(t)),t, r(t))d t+U T x(^x(t),t,r(t))[u(x(t-δ(t)),t, r(t))-u(x(t),t,r(t))]d t+d B(t)其中,l U(x(t),x(t-τ(t)),t,r(t))=Ut(^x(t),t, r(t))+U T x(^x(t),t,r(t))[f(x(t),x(t-τ(t)),t, r(t))+u(x(t),t,r(t))]+∑j∈Sγj,r(t)U(^x(t),t,j)+ 12trace[g T(x(t),x(t-τ(t)),t,r(t))U xx(^x(t),t, r(t))g(x(t),x(t-τ(t)),t,r(t))]进而易得以下结论㊂引理3 V(x(t),t,r(t)),t≥0是伊藤过程,且有d V(x(t),t,r(t))=d B(t)+L V(x(t),t,r(t))㊃d t其中,L V(x(t),t,r(t))=l U(x(t),x(t-τ(t)),t, r(t))+ρδJ(t)-ρ∫t t-δJ(v)d v+U T x(^x(t),t,r(t))㊃[u(x(t-δ(t)),t,r(t))-u(x(t),t,r(t))](14)假设6 对于函数u:n×S×+→n,存在实数a i,a i,正数d i,d i和非负数b i,b i,e i,e i(i∈S),对于任意q1>1,p>2有x T[f(x,y,t,i)+u(x,t,i)]+12|g(x,y,t,i)|2≤a i|x|2+b i|y|2-d i|x|p+e i|y|px T[f(x,y,t,i)+u(x,t,i)]+q12|g(x,y,t,i)|2≤a i|x|2+b i|y|2-d i|x|p+e i|y|p且A1:=-2diag(a1,a2, ,a N)-ΓA2:=-(q1+1)diag(a1,a2, ,a N)-Γ是非奇异M矩阵(具体定义可参考文献[1]中的2.6部分),并有1>γ1,γ2>γ3,1>γ4,γ5>γ6(θ1,θ2, ,θN)T=A-11(1, ,1)T(θ1,θ2, ,θN)T=A-12(1, ,1)Tγ1=max i∈S2θi b i,γ2=min i∈S2θi d iγ3=max i∈S2θi e i,γ4=max i∈S(q1+1)θi b iγ5=min i∈S(q1+1)θi d i,γ6=max i∈S(q1+1)θi e i其中θi和θi是正数㊂需要注意的是,关于控制函数u的选取,考虑如下特殊情况x T f(x,y,t,i)+q-12|g(x,y,t,i)|2≤a(|x|2+ |y|2)-b|x|p+c|y|p其中a>0,b>c>0㊂由于|x|2,|y|2的系数均为正数,因此只能得到原方程的矩有界性,而得不到稳定性㊂此时可选取u(x,t,i)=Ax,其中矩阵A为实对称正定矩阵,且满足λmax(A)<-2a,从而x T[f(x,y,t,i)+u(x,t,i)]+q-12㊃|g(x,y,t,i)|2≤(λmax(A)+a)|x|2+a|y|2-b|x|p+c|y|p故加上控制项之后的系统指数稳定㊂假设7 存在U∈C2,1(n×+×S;+),H∈C(n;+),及常数0<α<1,0<β<λ,0<λ1,λ2,λ3,ρ1,ρ2,使得对任意的x,y∈n,i∈S,t∈+有l U(x,y,t,i)+λ1|U x(^x,t,i)|2+λ2㊃|f(x,y,t,i)|2+λ3|g(x,y,t,i)|2≤-λ|x|2+(1-τ)β|y|2-H(x)+(1-τ)αH(y)(15)其中,ρ1|x|p+q1-1≤H(x)≤ρ2(1+|x|p+q1-1)㊂假设8 存在λ4>0满足|u(x,t,i)-u(y,t,i)|≤λ4|x-y|(16)并且有u(0,t,i)=0㊂故有∀x∈n,u(x,t,i)≤λ4㊃|x|㊂定理1 令q∈[2,w),w≥2(m1∨m2)㊂若假设1~8成立,且常数满足κ(1-τ)<12δ≤λ1λ2(1-κ)(1-κ(1-τ))λ4∧2λ1λ3(1-κ)(1-κ(1-τ))λ24∧(λ-β)(1-δ)λ1(1-κ)(1-κ(1-τ))λ24则对任意初值,存在ε>0使得系统(3)的解满足lim t→∞sup1t ln(E|x(t)|q)≤-εw-q w-2(17)其中ε=ε1∧ε2∧ε3∧ε4,ε1,ε2,ε3,ε4分别是以下4个方程的根㊃701㊃第6期 刘 琪等:变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性εδ+2(1-κ)(1-κ(1-τ))=1[εh 3ρ-11(1+κ(1-τ))p +q 1-2](κe ετ+1)+e ετα=1ε(h 2+h 3)(1+κ(1-τ))(1+e ετκ)+βe ετ+2ρδ2λ24eεδ1-δ+λ4κ2(1-τ)e ετ(1-τ-δ+e εδ(1-τ ))λ1(1-δ-τ)=λ2e ετκ2(1-τ)2=1特别地,当q =2时有lim t →∞sup 1tln (E |x (t )|2)≤-ε(18)即满足均方指数稳定㊂证明:证明分为两步㊂1)第一步取k 0>0足够大使得‖φ‖:=sup -τ≤s ≤0φ(s )<k 0㊂定义σk =inf {t ≥0:|x (t )≥k |}(k ≥k 0),且inf ϕ=∞㊂由引理1和文献[7],当k →∞,则σk →∞,a.s.根据假设6再定义U (^x,i )=θi |^x |2+θi |^x |q 1+1(19)由伊藤公式有e εtEV (x (t ),t ,r (t ))=V (x (0),0,r (0))+∫te εs (εV (x (s ),s ,r (s ))+L V (x (s ),s ,r (s )))d s取h 1=min i ∈Sθi ,h 2=max i ∈S θi ,h 3=max i ∈Sθi ,结合式(12)可得h 1eε(t ∧σk )E |^x(t ∧σk )|2≤V (x (0),0,r (0))+∫t ∧σk0e εs E (L V (x (s ),s ,r (s )))d s +ερJ 1(t ∧σk )+∫t ∧σke εs (εh 2E |^x(s )|2+εh 3E |^x (s )|q 1+1)d s (20)其中,J 1(t ∧σk )=E ∫t ∧σke ε(s∫0-δ∫ss +uJ (v )d v d )u ㊃d s ㊂对于式(20)中的E |^x(t ∧σk )|2结合基本不等式可得到E |x (t ∧σk )|2≤2E |^x(t ∧σk )|2+2κ2(1-τ)2E |x (t ∧σk -τ(t ∧σk ))|2(21)对于式(20)中的L V (x (t ),t ,r (t ))结合式(14)和假设7有L V (x (t ),t ,r (t ))≤-λ|x (t )|2+(1-τ)β㊃|x (t -τ(t ))|2-H (x (t ))+(1-τ)αH (x (t -τ(t )))-λ1|U x (^x(t ),t ,r (t ))|2-λ2|f (x (t ),x (t -τ(t )),t ,r (t ))|2-λ3|g (x (t ),x (t -τ(t )),t ,r (t ))|2+ρδJ (t )-ρ∫tt-δJ (v )d v +U T x (^x (t ),t ,r (t ))㊃[u (x (t -δ(t )),t ,r (t ))-u (x (t ),t ,r (t ))]由假设8运用均值不等式可以得到U T x (^x (t ),t ,r (t ))[u (x (t -δ(t )),t ,r (t ))-u (x (t ),t ,r (t ))]≤λ1|U x (^x(t ),t ,r (t ))|2+λ244λ1㊃|x (t -δ(t ))-x (t )|2定义ρ=λ242λ1(1-κ)(1-κ(1-τ)),由定理1中δ满足的不等式知2ρδ2≤λ2,ρδ≤λ3㊂再由Hölder 不等式有E |x (t -δ(t ))-x (t )|2≤2E |^x(t )-^x (t -δ(t ))|2+2E |N (x (t -τ(t )),t ,r (t ))-N (x (t -τ(t )-δ(t ),t ,r (t ))|2≤4E∫tt-δ[δ|u (x (v -δ(v )),v ,r (v ))+f (x (v ),x (v -τ(v )),v ,r (v ))|2+|g (x (v ),x (v -τ(v )),v ,r (v ))|2]d v +2κ2(1-τ)2E |x (t -τ(t ))-x (t -τ(t )-δ(t ))|2所以有E L V (x (t ),t ,r (t ))≤-λE |x (t )|2+(1-τ)㊃βE |x (t -τ(t ))|2-EH (x (t ))+(1-τ)αEH (x (t -τ(t )))+2ρδ2λ24E |x (t -δ(t ))|2(+λ24λ1-)ρ㊃E∫t t -δJ (v )d v +λ4κ2(1-τ)22λ1E |x (t -τ(t ))-x (t -τ(t )-δ(t ))|2(22)对于式(20)中的E |^x(t )|q 1+1有以下关系式E |^x(t )|q 1+1≤E |^x (t )|2+E |^x (t )|p +q 1-1(23)又由假设7有|x (t )|p +q 1-1≤ρ-11H (x (t ))(24)所以结合式(20)~(23)有12h 1e ε(t ∧σk )E |x (t ∧σk )|2≤Π1+Π2+Π3+∫t ∧σke εs (εh 2E |^x(s )|2+εh 3E |^x (s )|2+εh 3㊃E |^x(s )|p +q 1-1)d s +∫t ∧σke εs E [-λ|x (s )|2+(1-τ)㊃β|x (s -τ(s ))|2-H (x (s ))+(1-τ)αH (x (s -τ(s )))+2ρδ2λ24|x (s -δ(s ))|2+λ4κ2(1-τ)22λ1㊃|x (s -τ(s ))-x (s -τ(s )-δ(s ))|2]d s(25)其中,Π1=h 1e ε(t ∧σk )κ2(1-τ)2E |x (t ∧σk -τ(t ∧σk ))|2Π2=V (x (0),0,r (0))㊃801㊃北京化工大学学报(自然科学版) 2023年Π3=ερJ 1(t ∧σk )(+λ24λ1-)ρJ 2(t ∧σk )J 2(t ∧σk )=E∫t ∧σke ε[s∫ss -δJ (v )d ]v d s易得J 1(t ∧σk )≤δJ 2(t ∧σk )㊂取ε1为ε1ρδ+λ24λ1-ρ=0的唯一解,则由ρ的定义知,对任意0<ε≤ε1,有Π3≤0㊂结合式(11),令k →∞,结合式(24),式(25)化为12h 1e εt E |x (t )|2≤Π1+Π2+Π4+Π5(26)其中,Π1=h 1e εt κ2(1-τ)2E |x (t -τ(t ))|2Π4=∫teεs{εh 3ρ-11[1+κ(1-τ)]p +q 1-2㊃[EH (x (s ))+κ(1-τ)EH (x (s -τ(s )))]-EH (x (s ))+(1-τ)αEH (x (s -τ(s )))}d sΠ5=∫te εs {ε(h 2+h 3)[1+κ(1-τ)]㊃[E |x (s )|2+κ(1-τ)E |x (s -τ(s ))|2]}d s +∫teε[s-λE |x (s )|2+(1-τ)βE |x (s -τ(s ))|2+2ρδ2λ24E |x (s -δ(s ))|2+λ4κ2(1-τ)22λ1E |x (s -τ(s ))-x (s -τ(s )-δ(s ))|]2d s对于Π2,由初值条件㊁假设2㊁假设8㊁引理2和式(12)得V (x (0),0,r (0))<∞,并且记为C 0,C 0为常数㊂对于Π4,根据假设3化简有Π4≤{[εh 3(1+κ(1-τ))p +q 1-2ρ-11](κe ετ+1)+e ετα-1}∫te εs E [H (x (s ))]d s +e ετ[εh 3(1+κ(1-τ))p +q 1-2ρ-11κ+α]∫-τe εs E [H (x (s ))]d s取ε2为[ε2h 3(1+κ(1-τ))p +q 1-2ρ-11](κe ε2τ+1)+e ε2τα-1=0的唯一解,则对任意0<ε≤ε2以及0<α<1即可满足Π4≤e ετ[εh 3(1+κ(1-τ))p +q 1-2ρ-11κ+α]㊃∫0-τe εs E [H (x (s ))]d s <∞(27)对于Π5,令ε3为ε3(h 2+h 3)(1+κ(1-τ))(1+e ε3τκ)+βe ε3τ+2ρδ2λ24eε3 δ1-δ+λ4κ2(1-τ)e ε3τ(1-τ-δ+e ε3δ(1-τ ))λ1(1-δ-τ)=λ的唯一解,对任意0<ε≤ε3,有Π5≤e [ετε(h 2+h 3)(1+κ(1-τ))κ+β+λ4κ2(1-τ)λ]1∫0-τe εs E |x (s )|2d s +2ρδ2λ24eεδ1-δ∫0-δe εs㊃E |x (s )|2d s +λ4κ2(1-τ)2e ε(τ+δ)λ1(1-δ-τ)∫-δ-τe εs E |x (s )|2d s [+ε(h 2+h 3)(1+κ-κτ)(1+e ετκ)+βe ετ+2ρδ2λ24eεδ1-δ+λ4κ2(1-τ)e ετ(1-τ-δ+e εδ(1-τ ))λ1(1-δ-τ)-]λ∫te εs E |x (s )|2d s ≤e [ετε(h 2+h 3)(1+κ(1-τ))κ+β+λ4κ2(1-τ)λ]1∫0-τe εs E |x (s )|2d s +2ρδ2λ24e εδ1-δ∫-δe εsE |x (s )|2d s +λ4κ2(1-τ)2e ε(τ+δ)λ1(1-δ-τ)㊃∫-δ-τe εs E |x (s )|2d s <∞(28)综上对任意0<ε≤ε1∧ε2∧ε3,可得12h 1e εt E |x (t )|2≤h 1e εt κ2(1-τ)2E |x (t -τ(t ))|2+C 1(29)其中C 1是一个常数㊂2)第二步式(29)经过整理可以得到e εt E |x (t )|2≤2e ετe ε(t -τ(t ))κ2(1-τ)2E |x (t -τ(t ))|2+2C 1h 1,故有sup 0≤s ≤t e εs E |x (s )|2≤2C 1h 1+2e ετκ2(1-τ)2sup 0≤s ≤t e εs ㊃E |x (s )|2+2κ2(1-τ)2e ετsup -τ≤s ≤0‖ϕ‖2由κ(1-τ)<12,令ε4为1-2e ε4τκ2(1-τ)2=0的唯一解,则对任意0<ε≤ε1∧ε2∧ε3∧ε4,有sup 0≤s ≤t e εs E |x (s )|2≤2C 1h 1+2κ2(1-τ)2e ετsup -τ≤s ≤0‖φ‖21-2κ2(1-τ)2e ετ:=C 2即当t ∈[0,∞)时,e εt E |x (t )|2≤C 2,即E |x (t )|2≤C 2e -εt ㊂对于任意的q ∈[2,w ),由Hölder 不等式得到㊃901㊃第6期 刘 琪等:变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性E |x (t )|q≤(E |x (t )|2)w - qw -2(E |x (t )|w)q -2w -2㊂由引理1知C 3:=E |x (t )|w <∞,故E |x (t )|q ≤C q -2w -23(C 2e -εt )w - qw -2≤C 4e -εt w - qw -2所以式(17)成立㊂特别地,当q =2时,有式(18)成立㊂3 例子考虑一维HNSDDEd[x (t )-N (x (t -τ(t )),t ,r (t ))]=f (x (t ),x (t -τ(t )),t ,r (t ))d t +g (x (t ),x (t -τ(t )),t ,r (t ))d B (t ),t ≥0(30)其中f (x ,y ,t ,1)=0.5x +y 3-6x 3f (x ,y ,t ,2)=x +y 3-4x3g (x ,y ,t ,1)=g (x ,y ,t ,2)=0.5y 2τ(t )=0.1(1-cos t ),N (y )=0.1y显然f ,g 不满足线性增长条件㊂令r (t )为一个连续的马氏链,状态空间S ={1,2},算子Γ=-22æèçöø÷1-1,B (t )为标准布朗运动且独立于r (t )㊂定义初值x (u )=0.2+cos u ,u ∈[-0.2,0],r (0)=2㊂由文献[10]可知系统(30)不稳定,以下将通过引入一个反馈控制函数使系统稳定㊂增加控制函数u (x ,t ,1)=-x ,u (x ,t ,2)=-2x ,增加控制函数后系统(3)的具体形式为 d[x (t )-0.1x (t -τ(t ))](=12x (t )+(x (t -τ(t )))3-6x (t )3-x (t - δ(t )))d t +12(x (t -τ(t )))2d B (t ),i (=1x (t )+(x (t -τ(t )))3-4x (t )3-2x (t - δ(t )))d t +12(x (t -τ(t )))2d B (t ),i ìîíïïïïïïïïïüþýïïïïïïïïï=2其中δ(t )=τ(t )㊂以下验证假设1~8㊂假设1显然成立㊂令m 1=3,m 2=2,可知假设2成立㊂令λ4=2,可知假设8成立㊂假设3对如下常数成立:δ=τ=0.2,δ=τ=0.1,且假设4对κ=19成立㊂取U 1(x ,t )=V (x ,i ,t )=|x |6,U 2(x ,t )=2.2x 6+x 8,由Young 不等式可得L V (x ,y ,t ,i )+V x (x -N (y ),t ,i )u (z ,t ,i )≤sup x ∈(43x 6-0.229x 8)-8×U 2(x ,t )+589×(1-τ)×U 2(y ,t -τ(t ))+109×(1-δ)×U 2(z ,t -δ(t ))故假设5对c 1=sup x ∈(43x 6-0.229x 8)<∞,c 2=8,c 3=589,c 4=109成立㊂取p =4,q 1=3,可知假设6成立㊂取U (x ,t ,i )=2x 2+x 4,i =1x 2+x 4,i ={2,再由Young 不等式,令λ1=0.05,λ2=0.1,λ3=4可得l U (x ,y ,t ,i )+λ1|U x (^x(t ),t ,i )|2+λ2㊃|f (x ,y ,t ,i )|2+λ3|g (x ,y ,t ,i )|2≤-1.845|x |2+0.369(1-τ)|y |2-6(x 4+x 6)+0.955×(1-τ)×6(y 4+y 6)若令H (x )=6(x 4+x 6),λ=1.845,β=0.369,α=0.955,则假设7成立㊂根据定理1条件发现κ,τ取值合理,进而可以得到δ≤0.0576时,定理1所有条件成立,故对∀w ≥6,∀q ∈[2,w ),存在ε>0使得lim t →∞sup1t ln (E |x (t )|q )≤-εw -qw -2特别地,q =2时有lim t →∞sup1tln (E |x (t )|2)≤-ε㊂4 结论本文采用函数方法,受文献[5]的启发在多项式增长的条件下讨论了变时滞反馈控制下的HNS⁃DDEs 的指数稳定性㊂最后,用一个例子证明了结论的有效性㊂参考文献:[1] MAO X R,YUAN C G.Stochastic differential equations with Markovian switching[M].London:Imperial CollegePress,2006.[2] FEI W Y,HU L J,MAO X R,et al.Delay dependentstability of highly nonlinear hybrid stochastic systems[J].Automatica,2017,82:165-170.[3] FEI C,SHEN M X,FEI W Y,et al.Stability of highlynonlinear hybrid stochastic integro⁃differential delay equa⁃tions[J].Nonlinear Analysis:Hybrid Systems,2019,31:180-199.㊃011㊃北京化工大学学报(自然科学版) 2023年[4] HU L J,MAO X R,SHEN Y.Stability and boundednessof nonlinear hybrid stochastic differential delay equations [J].Systems &Control Letters,2013,62:178-187.[5] WU A Q,YOU S R,MAO W,et al.On exponential sta⁃bility of hybrid neutral stochastic differential delay equa⁃tions with different structures [J].Nonlinear Analysis:Hybrid Systems,2021,39:100971.[6] SHEN M X,FEI W Y,MAO X R,et al.Stability ofhighly nonlinear neutral stochastic differential delay equa⁃tions[J].Systems &Control Letters,2018,115:1-8.[7] SHEN M X,FEI C,FEI W Y,et al.Boundedness andstability of highly nonlinear hybrid neutral stochastic sys⁃tems with multiple delays[J].Science China Information Sciences,2019,62:202205.[8] LI X Y,MAO X R.Stabilisation of highly nonlinear hy⁃brid stochastic differential delay equations by delay feed⁃back control[J].Automatica,2020,112:108657.[9] 周之薇,宋瑞丽.变时滞反馈控制的混合中立型随机延迟微分方程的稳定性[J].井冈山大学学报(自然科学版),2022,43(3):6-14.ZHOU Z W,SONG R L.Stabilization of the hybrid neu⁃tral stochastic differential equations controlled by thetime⁃varying delay feedback [J].Journal of Jinggangshan University (Natural Science),2022,43(3):6-14.(in Chinese)[10]SHEN M X,FEI C,FEI W Y,et al.Stabilisation by de⁃lay feedback control for highly nonlinear neutral stochasticdifferential equations [J ].Systems &Control Letters,2020,137:104645.[11]CHEN W M,XU S Y,ZOU Y.Stabilization of hybridneutral stochastic differential delay equations by delayfeedback control[J].Systems &Control Letters,2016,88:1-13.Exponential stability of hybrid neutral stochastic differential delay equations with time⁃dependent delay feedback controlLIU Qi LAN GuangQiang *(College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China)Abstract :The exponential stability of hybrid neutral stochastic differential delay equations (HNSDDEs)with time⁃dependent delay feedback control has been ing the Lyapunov function method,the exponential sta⁃bility of the system can be obtained by setting an appropriate feedback control function with a variable ⁃pared with the existing research results,the results of this work increase our understanding of the exponential stabil⁃ity of HNSDDEs under the influence of variable delay feedback.Finally,an example is given to prove the validity of the conclusions.Key words :time⁃dependent delay;hybrid neutral stochastic differential delay equations (HNSDDEs);feedbackcontrol;exponential stability(责任编辑:吴万玲)㊃111㊃第6期 刘 琪等:变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性。

几种植物叶提取物对铝的缓蚀性能研究

几种植物叶提取物对铝的缓蚀性能研究
i v siae n ic se n d t i n e t td a d d s u s d i e al h e u t h w t a h e e v s e t c s rt r f c iey t e c ro i n o l mii m n g .T e r s l s o h tt r e l a e x r t ea d ef t l h o so f au n u i s a e v
种植物 叶提取 物的缓蚀性能在 同等条件 下的顺 序为 :A E> B E> Y E N L A L M L 。极化 曲线表 明 3种植物提取 物均 为混合抑
制型缓蚀 剂。
关 键 词 : 植 物 ; 取 物 ; 1缓 蚀 剂 提 HC ;
中图分类号 : Q 5 T31
文献标 识码 : A
la e e t c MY E ntec r s no u iim i h do h r c o t n w r tde rt r m ymasl s e v s x a t( L )o o oi f m nu y rc l ca i s l i e s id f e f s t e b s s r h o l a n o i d uo e u o h i ti o
e et o es oaa sa nsl vset c N L ,Ae urein m lae x at( B E) f c f oi cl f i e e x at( A E) crbegr u evset c A L ,Mahl u n nni f s N n mu f a i r a r cisy naes u s第 3 卷Biblioteka 3期 l 21 0 1年 6月
林 产 化 学 与 工 业
C e s y a d I d sr fF rs rd cs h mit n n u t o oe t o u t r y P

萘-甲醇标准溶液液相色谱分析条件研究

萘-甲醇标准溶液液相色谱分析条件研究

萘-甲醇标准溶液液相色谱分析条件研究李锋丽许思思张森孙华许爱华黄清波(山东省计量科学研究院,济南2500U)摘要:用液相色谱仪分析萘_甲醇溶液标准物质,通过研究波长、流动相比例、流速、柱温对杂质峰与目标峰的分离度及对目标物的峰面积、峰高的影响,确定了分析萘-甲醇溶液标准物质的最佳条件:波长275nm;流动相比 例 80%(甲醇:水=80 : 20);流速 0.5 mL/min;柱温 40*C。

关键词:液相色谱仪萘-甲醇波长流动相比例流速柱温DOI:10. 3969/j.issn. 1001-232x.2018. 04. 020Research on analytical conditions of naphthalene- methanol standard solution by liquid chromatography. Li Fengli,Xu Sisi,Z h a n g Se n,S u n Hua,Xu Aihua,H u a n g Q in g b o{S h a n d o n g In s t it u t e of M e tro lo g y,J in a n 250014, C h in a)Abstract:T h e naphthalene-methanol standard solution was analyzed by liquid chromatography.Theinfluences of the wavelength,proportion of mobile phase,flow rate and column temperature on the separa­tion degree of the impurity peaks and target peaks were investigated while the effects on the peak areas and peak heights of the target substances were studied as well.T h e optimum conditions were as follows: 275 n m as the wavelength, 80%(the proportion of methanol to water was 80%) as the proportion of mobile phase, 0. 5 m L/m i n as the flow rate and 40°C as the column temperature.Key words:Liquid chromatography;Wavelength;Proportion of mobile phase;Flow rate;Column temperaturei引言液相色谱仪广泛应用于食品、环境等检测领 域,其工作原理是利用液体混合物在流动相与固定 相中的分配或吸附等差异,由流动相将样品带入色 谱柱中进行分离,经检测器检测进行数据处理后,根据保留时间和峰面积(峰高)进行定性定量分析。

钛源修饰P25浆料用于染料敏化太阳能电池

钛源修饰P25浆料用于染料敏化太阳能电池
素 有关 . T i O: 纳米 薄膜 光 电极 的 性 能 起着 关 键 的 作用 , 它既 是 染 料 的载 体 又 是 光 生 电子 的传 输 通
道, 对 电池 的性 能有 着 至 关 重要 的影 响. 为 了 获 得
更有 效 的方 法. 瑞 士洛桑联邦高等技术学 院( E P —
F I ) M .Gr t i t z e l 教 授 领 导 的 研 究 小 组 自上 个 世 纪
复 合.
极. 它将 吸 附有染 料 Ti O 半导 体 纳 米 薄膜 作 为 电
为 了提 高 T i O 纳米 薄 膜 中 电子 的 传输 效 率 ,
池 的光 电极 , 表 面镀有 铂 的导 电玻璃作 为 电池 的对
电极 , 并 在 光 电极 与 对 电极 之 间 加 入 氧 化 一 还 原 电
化 还原 反应 回到 基态 , 而 T i O 中的 电子 通 过 外 电
路 流 向对 电极 , 电解 质 中 的氧化 剂 扩 散 到对 电极 ,
在 对 电极处 得到 电子 被还原 . 然 而并不 是所有 光 电 子 都能够 通 过 Ti O 半 导 体 流 到 外 电 路 形 成 光 电 流, 在 D S S C中电子 损 失 主要 是 来 自于 Ti O 导带 中的 电子 和 电 解 质 中 氧 化 态 物 质 ( I ) 的复合 , 其
个部 分 组 成 : 光 电极 、 染料敏化剂 、 电 解 质 和 对 电
性 能优 异 的 D S S C, 光 电极 必 需具 有 足够 大 的 比表 面 面积 , 以尽 可能 多 的 吸 附染 料 , 增 加 对 光 子 的捕 获率; 还 要有 良好 的 电子 传输 能 力 , 以减 少 电 子在 多 孔膜 传 输 过 程 中 和 电解 质 氧 化 态 物 质 ( I ) 的

累托石吸附分离水中金霉素(英文)

累托石吸附分离水中金霉素(英文)

累托石吸附分离水中金霉素(英文)吕国诚;吴丽梅;王晓龙;廖立兵;王小雨【期刊名称】《中国化学工程学报:英文版》【年(卷),期】2012(20)5【摘要】The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CT C on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.【总页数】5页(P1003-1007)【关键词】累托石;吸附水;金霉素;Langmuir模型;最适pH值;最大吸附量;吸附动力学;CTC【作者】吕国诚;吴丽梅;王晓龙;廖立兵;王小雨【作者单位】School of Materials Sciences and Technology, China University of Geosciences;School of Engineering and Technology, China University of Geosciences【正文语种】中文【中图分类】S831.5;P578.94【相关文献】1.固定化生物累托石处理分散生活污水的研究(Ⅱ)——固定化生物累托石的吸附机理 [J], 孙家寿;张蕾;陈伟亚;王进;陈茂荣2.改性累托石的制备及其对水中磷的吸附研究 [J], 徐贵钰;殷海青;扈金莲;孙全文3.累托石对水中扑尔敏的吸附性能 [J], 王小雨;吕国诚;王乾乾;朱忠军;李朝晖;毛飞;吴丽梅4.钠基累托石对模拟废水中Ni2+的吸附研究 [J], 李东;杜卫刚;郭迎卫;蒋金龙;谭立强5.改性累托石对废水中NO_3^-的吸附性能研究 [J], 徐贵钰;殷海青;赵延辉因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rX iv:c ond-ma t/39512v2[c ond-m at.m es -hall]11Dec23RATCHET EFFECTS IN LUTTINGER LIQUIDS D.E.Feldman Department of Physics,Brown University,182Hope Street,Providence,RI 02912,USA;Landau Institute for Theoretical Physics,Chernogolovka,Moscow region 142432,Russia Dima2applications in physics and biology[1].As specific examples,we men-tion diodes and photovoltaic current rectifiers.Here we address the possibility of realizing such effects in Luttinger liquids,which is of in-terest in connection with nanostructured devices.Motivated by recent experiments on quantum dots[2],carbon nanotubes[3],and quantum Hall systems[4],we examine ratchet effects caused by two unequal con-strictions as point scatterers.2.ModelWe consider a one-dimensional spinless electron liquid at zero tem-perature subject to an impurity potential V(x)and a pair interaction W(x)with the HamiltonianH=−¯h22dx dx′Ψ†(x)Ψ†(x′)W(x−x′)Ψ(x′)Ψ(x).(1)The impurity potential V(x)is chosen to describe two unequal point scatterers at a distance a.In the absence of interactions,the application of a voltage U leads to a current I with afinite conductance G=I/U. The conductance is proportional to E F+eU/2E F−eU/2dE T(E)with the trans-mission probability T(E)for electrons with incident energy E in the vicinity of the Fermi energyF F.As a consequence of time reversal sym-metry,T(E)does not depend on the direction of the incoming momen-tum and therefore noninteracting electrons have a symmetric transport characteristic with an odd function I(U).Therefore,the inclusion of interactions is mandatory for the analysis of ratchet effects.3.BosonizationFor the inclusion of interactions,the bosonized representation of the model is particularly convenient.The bosonization technique[5]maps the quantum dynamics of the electron liquid onto a path integral for a bosonicfieldϑwhich essentially describes collective displacements of the electron liquid.In terms of thisfield,the particle density of the electrons readsρ(x)=1π∂xϑ(x)+1πϑ(x)]+h.c. .(2)Here,k F is the Fermi wave vector andαis a microscopic cutofflength scale of the order of k−1F.The particle current is given by j=−1π ∂tϑ , and the charge current by I=ej.Ratchet effects in Luttinger liquids3 In terms of thefieldϑ,the relevant contributions to the action corre-sponding to the Hamiltonian(1)readS= dtdx ¯h2g2(∂xϑ)2−1πϑ(x)]+h.c.].(3)−W0πϑ(x)]+h.c.]Forward scattering by the interaction is included in the“free”bosonic theory via the Luttinger parameter g:=[1+W0/(π¯h v F)]−1/2which is less than unity for repulsive interaction.Assuming that W(x)is short ranged due to screening effects,only its weight W0= dx W(x)is effective.The second and third lines of Eq.(3)describe backscattering offthe impurity potential and by the interaction,respectively.For a single point-like scatterer,V(x)≃V0δ(x),it was shown[6,7,8] that repulsive electron interactions(g<1)lead to a vanishing linear conductance.A weak scatterer was found to suppress the conductance according to∆G∼−V20U2g−2,(4) where∆G:=G−G0is conductance change due to the presence of the scatterer.On the other hand,for a strong scatterer,the conductance vanishes like G≃t2U2/g−2with the amplitude t for hopping across the scatterer.We subsequently focus on the weak-barrier case,deferring the strong currugation limit to Ref.[9].4.Hartree pictureThe suppression of the conductance in the presence of interactions can be attributed to the backscattering of electrons from a Hartree-type potential caused by Friedel oscillation in the vicinity of the impurity.In the framework of the bosonic action(3),this backscattering arises from the second-line contribution,and the third-line contribution is irrelevant for the asymptotics(4).To illustrate the mechanism at work,it is instructive to briefly recall the scattering features of single electrons by a double barrier V(x)= V lδ(x+a/2)+V rδ(x−a/2).We assume the amplitudes V l and V r to be positive.a is the distance between the two paring the probability density|ψ→(x)|2for a particle incident from x=−∞with wave vector k>0to the density|ψ←(x)|2for a particle inci-dent from x=∞with wave vector−k,one observes that the densi-ties are not only different but also not related by reflection symmetry,4|ψ→(x )|2=|ψ←(−x )|2(cf.Fig.1).This implies that the contribu-tions to the Hartree potential for both cases also will not display this symmetry.Therefore,in a current carrying state the effective scattering potential will depend on the current direction such that the net amount of scattering depends on the current direction.Therefore,one expects a ratchet effect from the interplay between asymmetric scattering poten-tials and interactions.-3-2-101230.9511.051.1-3-2-101230.9511.051.1|ψ→(x)|2|ψ←(x)|2x/a x/aFigure 1.Density profiles |ψ→,←(x )|2averaged over a period π/k for a potential with V l <V r .The averaged densities show drops at the positions x =±a/2of the scatterers.The amplitudes of the density drops depend on the direction of the incident wave.Coming back to the electron liquid in the bosonic representation,we find it important to include the third-line contribution in the action(3).In this term,the Hartree approximation amounts to replacing ∂x ϑ–which is proportional to the slowly varying part of the density,cf.Eq.(2)–by its average value ∂x ϑ .This average is readily calculated from the action perturbatively to second order in V .Then,the third-line contribution can be absorbed into the second-line contribution by replacing the bare potential V (x )with the effective potential ˜V (x )=V (x )+δV (x )including the correction δV (x )=2W 0 ∂x ϑ(x ) /√Ratchet effects in Luttinger liquids5 Performing the systematic calculation outline above,we obtain an asymmetric ratchet contribution to the conductance∆G|ratch∝W0U4g−2sin(2k F a)V l V r(V l−V r)×H g(geUa¯h vF)](5) with the functionH g(z)=√Γ(g)J g−1/2(z)πθj).However,the order-of-magnitude estimate of the current is valid in a more general case in-cluding our one-band model(3).This can be verified by analyzing the expression for the current in the forth order of the perturbation theory.5.ConclusionsEquation(5)is our main result.Its proportionality to W0reflects the fact that the ratchet effect vanishes in the absence of interactions.It is valid provided the backscattering current can be obtained within per-turbation theory.This is the case for weak scattering,more specifically forV/E F≪(eU/E F)1−g.(7) Within this limit,one can distinguish two regmies.(i)At lower voltages geUa≪¯h v F,H g(z)≈1and the effect is inagreement with the above estimate.Additional oscillating factors reflect resonances due to quantum interferences[10].The absolute value of the ratchet current grows with decreasing voltage for g< 1/2.(ii)In the high-voltage regime geUa≫¯h v F,H g(z)∼z−g cos(z−πg/2).Then∆G|ratch∝U3g−3.In this regime,the ratchet current grows with decreasing votalge for g<2/3.This result shows that the ratchet effect can be increasing with decreas-ing voltage.At low voltages beyond the point where the condition(7) breaks down and the total current vanishes with decreasing voltage,also the ratchet current has to vanish.Nevertheless,it can give a sizeable6contribution to the total current.This explains the pronounced asym-metry observed experimentally in corrugated nanotubes[3].Although the Hamiltonian(1)does not describe quantum Hall sys-tems,the bosonized form(3)captures tunneling of electron or quasipar-ticles between edges[11].In a fractional quantum Hall state withfilling factorν≪1,the tunneling of quasiparticles corresponds to the case g=ν.Thus,the interesting regime with small g is physically accessible. References[1]For a survey,cf.the special issue on“Ratchets and Brownian motios:Basics,Experiments,and Applications”,Appl.Phys.A75(August2002).[2]O.M.Auslaender et al.,Phys.Rev.Lett.84,1764(2000)[3]H.W.C.Postma et al.,Science293,76(2001)[4] forti et al.,Nature(London)416,515(2002)[5]For a review,see e.g.J.Voit,Rep.Prog.Phys58,977(1995)[6] C.L.Kane and M.P.A.Fisher,Phys.Rev.Lett.68,1220(1992);Phys.Rev.B46,15233(1992)[7] A.Furusaki and N.Nagaosa,Phys.Rev.B47,4631(1993)[8]K.A.Matveev,D.Yue,and L.I.Glazman,Phys.Rev.Lett.71,3351(1993);Phys.Rev.B49,1966(1994)[9] D.E.Feldman,S.Scheidl,and V.M.Vinokur,in preparation[10]See also Yu.V.Nazarov and L.I.Glazman,cond-mat/0209090;D.G.Polyakovand I.V.Gornyi,cond-mat/0212355[11] C.de C.Chamon et al.,Phys.Rev.B55,2331(1997)。

相关文档
最新文档