TD-LTE网络优化方案设计

合集下载

LTE网络优化常见问题和优化方法

LTE网络优化常见问题和优化方法
业务速率质量优化时考虑的内容不同
• 与TD-S类似需要考虑覆盖、干扰、小区用户数的影响 • 需要考虑带宽配置对速率的影响 • 需要考虑天线模式对速率的影响 • 需要考虑时隙比例配置、特殊时隙配置对速率的影响 • 需要考虑功率配置对速率的影响 • 需要考虑下行控制信道占用符号数对速率的影响
干扰问题分析的重点和难点不同
© ZTE Corporation. All rights reserved.
覆盖问题分类(RSRP占主导)
弱覆盖(覆盖空洞)
越区覆盖
保证网络的连续 覆盖;
使实际覆盖与规划 一致,解决孤岛效 应导致的切换掉话 问题;
上下行不平衡
从上行和下行链 路损耗是否平衡 角度出发,解决 因为上下行覆盖 不一致的问题;
解决越区覆盖问题
Ø避免扇区天线的主瓣方 向正对道路传播;对于此 种情况应当适当调整扇区 天线的方位角,使天线主 瓣方向与街道方向稍微形 成斜交,利用周边建筑物 的遮挡效应减少电波因街 道两边的建筑反射而覆盖 过远的情况
Ø在天线方位角基本合理 的情况下,调整扇区天线 下倾角,或更换电子下倾 更大的天线。调整下倾角 是最为有效的控制覆盖区 域的手段。下倾角的调整… 包括电子下倾和机械下倾 两种,如果条件允许优先 考虑调整电子下倾角,其 次调整机械下倾角
解决无主导小区问题
Ø针对无主导小区的区域,确 定网络规划时用来覆盖该区域 的小区,应当通过调整天线下 倾角和方向角等方法,增强某 一强信号小区(或近距离小区) 的覆盖,削弱其他弱信号小区 (或远距离小区)的覆盖。
Ø如果实际情况与网络规划有 出入,则需要根据实际情况选 择能够对该区域覆盖最好的小 区进行工程参数的调整。
RF优化的基本流程图
RF优化开始

(完整版)TDD_LTE无线网络优化案例

(完整版)TDD_LTE无线网络优化案例

TDD_LTE无线网络优化案例一、浦东大道福山路道路优化案例1. 测试环境【路测设备】:JDSU W1314A—E01 Receiver【路测软件】:JDSU E6474A-X【测试路段】:浦东大道、源深路及福山路周边路段【测试环境】:从前期的测试中发现在浦东大道福山路附近路段存在弱覆盖情况,SINR在道路上分布不满足测试需求,通过RF手段进行优化后进行前后对比。

图1浦东大道福山路附近无线环境图浦东大道福山路周边无线环境图中看出,该区域由密集居民区、高层商务写字楼、厂房及学校组成,浦东大道北侧无线环境良好,南侧道路两旁有较多建筑,对无线信号有较强的阻挡,周边主要由利男居、浦福昌、钱栖站点覆盖周边道路。

2. 优化前覆盖情况图2浦东大道福山路优化前RSRP覆盖图图3浦东大道福山路优化前CINR覆盖图从优化前的测试数据中看出浦东大道福山路附近路段RSRP值主要在-90dbm左右,但是CINR覆盖较差,浦东大道福山路至源深路之间普遍在15dB以下,不能满足道路覆盖要求,该路段主要由利男居站点覆盖,但是从该站RSRP分布情况看出,该站在浦东大道上没有出现强信号,考虑对该站重点优化。

3. 优化思路及方案图4利男居站点平面图利男居各小区照片问题路段主覆盖站点为利男居,该站点位于浦东大道44号林顿酒店7楼,天馈采用抱杆安装,挂高24米,从利男居站点各小区安装位置中看出,该站3个小区天馈周边都有阻挡物,而按照当前设计方位角,利男居_1小区的天线方位角0°,在浦东大道上是旁瓣信号覆盖,而利男居_3小区天线方位角240°覆盖方向也存在自身楼面建筑的阻挡,从而得出浦东大道该站点信号偏弱的原因,通过实际情况看中看出,利男居_1小区50°方向角有自身建筑的阻挡,往该方向调整不但不能改善浦东大道的覆盖,反而会使得信号反射而出现在背面区域,于是考虑将利男居_1调整为280°、根据挂高计算出该小区下倾调整为2°覆盖效果为最佳;利男居_2主覆盖方向由两栋高楼阻挡,导致在源深路段覆盖较差,由于建筑的阴影效果通过调整天馈是无法改善覆盖,建议该小区调整为50°来覆盖浦东大道东侧路段、利男居_3当前信号阻挡明显,调整为180°可以很好的避开阻挡物,达到最佳的覆盖效果,同时为了改善福山路近浦东大道覆盖,调整浦福昌2、钱栖1小区天馈来避免由于利男居下倾角增大后出现的弱覆盖路段,综合路测情况分析,得出具体调整方案如下:SiteNameCN CellNameCN初始值调整后Height azimuth MDownTilt azimuth MDownTilt利男居利男居_1240—22802利男居_224170050—4利男居_3242403180-4浦福昌浦福昌_121030—4浦福昌_2211001110-1浦福昌_3212401240—4钱栖钱栖_1270230—4钱栖_2271207120—4钱栖_3272402240—24. 优化后覆盖情况图5浦东大道福山路优化后RSRP覆盖图图6浦东大道福山路优化后CINR覆盖图图7浦东大道福山路优化后CELL_Identity分布图5. 优化小结从优化后的测试数据中看出,利男居_1、2小区在浦东大道上RSRP有较大幅度的提升,其主覆盖方向CINR基本能达到30的极好点,浦福昌2小区在昌邑路福山路良好,钱栖1小区天馈调整后在福山路近浦东大道信号也有所提升,从调整后的整体效果中看出,此次优化达到优化目的,当前浦东大道福山路段信号覆盖良好,各小区信号分布合理,信号满足道路覆盖指标要求。

TDD-LTE覆过覆盖、弱覆盖、覆盖空洞、导频污染盖优化

TDD-LTE覆过覆盖、弱覆盖、覆盖空洞、导频污染盖优化

网优后台工程师 3. 覆盖路测数据分析 1. 路测数据分析表 No 覆盖指标是否满足要求 Yes 1. 现场问题反馈模板 其 它 问 题 4. 业务测试准备 1. ××城市TD-LTE基站信息 总表(工程参数) 网规网优工程师 分包商 站 点 题位 置 问 设 备 问 题 ? 天 馈 问 题 ? 参 数 问 题 ?
覆盖优化的流程
覆盖问题定义和优化方法
内部资料妥善保管▲
覆盖问题描述
移动通信网络中涉及到的覆盖问题主要表现为:
覆盖空洞:UE无法注册网络,不能为用户提供网络服务 覆盖弱区:接通率不高,掉线率高,用户感知差 越区覆盖:孤岛导致用户移动中掉话,用户感知差 导频污染:干扰导致信道质量差,接通率不高,下载速率低 邻区设定不合理:用户乒乓切换,容易掉线,下载速率不稳 上述问题的存在,使无线网络各项KPI无法满足要求,严重影响了用户感知。
RS-CINR解读



内部资料妥善保管▲
覆盖优化工具介绍
覆盖优化的工具分为覆盖测试工具、 分析工具以及优化调整工具 覆盖测试工具

覆盖优化使用什么工具?
在单站、簇覆盖优化时,采用CNT+LMT+ UE在IDLE或业务状态下进行覆盖测试 在开展片区覆盖优化时,测试的工具优先采 用反向覆盖测试系统,其次选择scanner,并 且天线放在车内


内部资料妥善保管▲
覆盖空洞优化
没有网络覆盖怎么办?
优化方法

一般的覆盖空洞都是由于规划的站
点未开通、站点布局不合理或新建
建筑导致。最佳的解决方案是增加 站点或使用RRU,其次是调整周边 基站的工程参数和功率来尽可能的 解决覆盖空洞
内部资料妥善保管▲

华为TD-LTE优化-F+D组网优化指导书剖析

华为TD-LTE优化-F+D组网优化指导书剖析
(2)SINR对比下载速率趋势图
对比F和D的SINR vs RSRP,发现F频段随SINR增长速率提升较平稳,D频段随SINR增长速率提升较明显,两个频段趋势图拟合函数的交叉点在14至15dB之间,在无线覆盖好SINR大于15dB情况下,D频段的下载速率要明显高于F频段,在SINR小于15dB情况下,F频段速率要高于D频段。
thrpbitsueul丄astttilthrptimeueulrmvlasttti用户上行体验速率mbps不含lasttti小区pdcp层所接收到的上行数据的总吞吐量卜使ue缓存为空的最后一个tti所传的上行pdcp吞吐量扣除使ue缓存为空的最后一个tti之后的上行数传时长1526728259lthrpbitsul小区pdcp层所接收的上行数据的总吞吐1526729lthrpbitsueullastt使ue缓存为空的最后一个tti所传的上049tl行pdcp吞吐量1526729416lthrptimeueulrmvsmallpkt扣除小包调度之后的上行数传时长用户下行体验速率二lthrpbitsdllthrpbitsdl丄astttilthrptimedlrmvlasttti用户下行体验速率mbps不含lasttti小区pdcp层所发送的下行数据的总吞吐量卜使缓存为空的最后一个tti所传的下行pdcp吞吐量扣除使下行缓存为空的最后一个tti之后的数传时长1526728261lthrpbitsdl小区pdcp层所发送的下行数据的总吞吐1526729005lthrpbitsdllasttti使缓存为空的最后一个tti所传的下行pdcp吞吐量15267290lthrptimedlrmvl扣除使下行缓存为空的最后一个tti之后15asttti的数传时长对于fd站点同站同覆盖的f频段小区上行用户体验速率差值在1m以上下行用户休验速率在10m以上的站点必然存在用户数参数等方面的问题

TD-LTE网络TA和TA

TD-LTE网络TA和TA

延时到下一个 PO 发送。
寻呼相关参数及推荐配置如下: defaultPagingCycle nB 参数名称 可选配置 32、64、128、256 帧 1/8T, 1/16T, 1/32T 推荐配置 128(1.28 秒)
4T,2T, T, 1/2T, 1/4T, T (T 为一个 DRX 周期 包含的帧数)
SGSN-MME 的能力也会限制寻呼容量,其能力和 SCTP/S1 板子数量相关,目前 产业能力,1 块 SCTP/S1 板子可以同时处理 6000 个寻呼消息。 结合以上五点,单小区寻呼容量上限 = min(PDCCH 限制下寻呼容量,PDSCH 限制下寻呼容量, 寻呼阻塞限制下寻呼容量, eNB 处理能力限制下寻呼容量, MME 处理能力限制下寻呼容量) =min(Infinite, 830, 1195, 600, 6000)=600 次/秒。 (2) 单小区寻呼需求预测 预测单小区的寻呼需求需要分别预测单小区的用户数目以及单用户的寻呼 模型。 单小区的用户数目 单小区用户数目 Numue/cell 可用以下公式预测: S 为覆盖面积, 小区用户数:
开销就会增加; (3) 应设置在低话务区域 TA 的边界决定了 TA list 的边界。为减小位置更新的频率,TA 边界不应设在 高话务量区域及高速移动等区域, 并应尽量设在天然屏障位置 (如山川、 河流等) 。 在市区和城郊交界区域,一般将 TA 区的边界放在外围一线的基站处,而不 是放在话务密集的城郊结合部,避免结合部用户频繁位置更新。 同时, TA 划分尽量不要以街道为界, 一般要求 TA 边界不与街道平行或垂直, 而是斜交。此外,TA 边界应该与用户流的方向(或者说是话务流的方向)垂直 而不是平行,避免产生乒乓效应的位置或路由更新。 3、TA list 规划原则 由于网络的最终位置管理是以 TA list 为单位的,因此 TA list 的规划要满足两 个基本原则: (1) TA list 不能过大 TA list 过大则 TA list 中包含的小区过多, 寻呼负荷随之增加, 可能造成寻呼滞后, 延迟端到端的接续时长,直接影响用户感知; (2) TA list 不能过小 令开销,同时,UE 在 TA 更新过程中是不可及,用户感知也会随之降低。 (3) 应设置在低话务区域 如果 TA 未能设置在低话务区域,必须保证 TA list 位于低话务区。 TA list 过小则位置更新的频率会加大,这不仅会增加 UE 的功耗,增加网络信

华为td-lte组网及工程实施方案_2

华为td-lte组网及工程实施方案_2
华为TD-LTE组网及 工程实施方案
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 1
目录
1 TD-LTE组网全景图和工程建设总体思路 2 核心网实施方案及关键点 3 承载网实施方案及关键点 4 无线网实施方案及关键点 5 杭州、深圳TD-LTE试验网工程经验
传输时延
抖动
≤5ms
≤2ms
60ms
100ms
≤10ms (2倍S1延时) ≤3.5ms
丢包率 ≤0.001% ≤0.001% ≤0.001% ≤0.001%
连接关系 eNB-SGW eNB- NMS eNB-MME eNB-eNB
➢ S1-u接口对延时要求最严格。 带宽最大,是网络设计保障的 重点;
TD-LTE网络网元介绍
网元 类型
核心网
承载网 无线
网元
说明
SGW
MME HSS CG MSC
SGSN DNS PCRF
实现所有LTE 业务的路由和转发功能,使用10GE链路同L3 PTN、 CMNET CE连接 LTE业务的信令控制和转发核心节点
负责用户数据管理,鉴权,存储位置信息,类似2/3G网络的HLR网元 4G网络的计费网元 实现现网CS用户与4G用户的短信互通以及CSFB语音回落功能。需进 行版本升级 实现2/3/4G互操作。需进行版本升级 负责2/3/4G网络的路由解析转发 负责实现计费和QOS控制策略
口信息按照IP地址转发给SGW/MME或SGW/MME pool中相应的SGW、MME
汇聚层组网方案: PTN汇聚接入设备沿用现有L2 VPN分组转发功能为基站提供到核心层PTN节点的二
层传输管道。汇聚层采用10GE PTN设备组建环网

TDL优化原理

TDL优化原理

• PRACH密度数值指示每10ms 帧发射多少随机接入信
道资源。
– RACH density=1 每帧发射一个随机接入信道资
源 – RACH density=2每帧发射2个随机接入信道资源
建议: 同站所有小区配置相同 prachConfIndex 如果RACH density=1,则该值设置为 3/4/5; 如果RACH density=2,则该值设置为 6/7; (Preamble Format 0)

在UMTS 中类似于扰码规划 – 相同的PCI设置在隔离尽可能大的小区间 为保证手机永远不同时接收到超过一个小区的相同识别号 • 物理小区识别由参数phyCellID定义
Parameter phyCellId Object LNCEL Range 0 to 503 Default Not Applicable
• 频域 (prachFreqOff) – PRACH频域位置应紧随PUCCH信道区域,或者在频带的上边界,或者在频带的下边界, 不能与PUCCH信
道区域有重叠。 – PRACH配置避免把PUSCH信道区域分成两个区域。 – 所有小区设置相同的配置。
• 序列 (PRACH CS and rootSeqIndex) – 所有相邻小区使用不同的序列


如果有增加扇区的可能(如从3到6),则每第二个识别组能被分配在初始的规划中
当一个站的小区数量从3个增加到6个时,许可NodeB从两个相邻的组中分配识别号。


分配PCI时,在国际边境需协调
这将帮助运营商在相邻地理区域相同载频上分配相同的小区识别号。
For internal use Unique document identifier (ID) / Version number / Life cycle status 10 © Nokia Siemens Networks 2011

TD-LTE优化无线网络优化及应用

TD-LTE优化无线网络优化及应用

TD-LTE优化无线网络优化及应用摘要:本文通过对TD-LTE无线网络的规范研究分析,提出了相关网络维护优化方案,以解决网络下行吞吐量低的问题,结合典型工作案例,提出了常见故障并详细阐述了其处理方法,具有一定的参考意义,供相关人员学习借鉴。

关键词:TD-LTE;下行峰值;故障分析;优化方案前言当下TD-LTE网络系统的吞吐量问题引起了广泛深入研究,由于下行吞吐量与网络用户的感知成正比关系,所以如何保证4G网络的使用达到建设预期要求,并提高网络配置提高下行峰值量及速率是当下移动网络优化建设最值得探讨的问题。

在TD-LTE网络系统设计、资源规划和分配时,精确地估计系统峰值吞吐量是关键。

现通过研究TD-LTE系统峰值吞吐量相关原理,造成吞吐量低的常见问题进行总结,分析了影响TD-LTE系统峰值吞吐量的关键因素,提出了相关提升下行吞吐量的优化方案,通过计算测试结果可得,该优化方案确行有效,值得推广使用。

1 下行吞吐量的常见问题分析1.1 影响下行吞吐量的常见因素下行指的是eNodeB(以下简写作eNB)发往UE方向,eNB侧会根据实际资源情况和调度算法,给UE分配相应的下行资源。

对下行吞吐量造成影响的常见因素主要有:占用的下行带宽大小、编码速率限制、信道条件好坏、UE能力限制。

在LTE系统中,占用的下行带宽大小与分配的RB数、频带占用机会(由DLgrant决定)有关;编码速率限制与MCS有关;信道条件好坏可以表征为误码率,主要考虑初次传输的IBLER;UE能力限制与本身硬件支持的等级速率有关,通常要求终端达到CAT4等级,支持峰值速率为下行150Mbit/s,上行50Mbit/s。

1.2 与吞吐量有关的关键信令在MME下发给eNB的Initial UE context setup request信令中包含:UE支持的能力等级和业务的QCI、QoS配置参数。

1.3 下行吞吐量的常见问题下行数据流从服务器生成到传输至UE,共涉及到6大因素:主要包括数据源、网管参数配置、占用的下行带宽大小、编码速率限制、信道条件好坏、UE能力限制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川师范大学成都学院本科毕业设计TD-LTE网络优化方案设计学生姓名王明学号2012101063所在学院通信工程学院专业名称通信工程班级2012级广播电视方向倪磊指导教师四川师范大学成都学院二○一六年五月TD-LTE网络优化方案设计学生:王明指导教师:倪磊内容摘要:TD-LTE无线网络优化有两个运行阶段:一就是工程优化阶段,第二,运营阶段。

本文的研究方向就是工程优化阶段。

工程优化阶段分为阶段的单站优化,优化集群,整个网络优化阶段。

每个阶段的任务就是不一样的,但我们的目标就是一样的,两个阶段的目标都就是相同的,两个阶段的目标就是让用户得到最大价值,实现最佳组合的网络覆盖、容量与价值。

用户通过无线网络优化方法提高产量与节约成本。

为了达到要求的KPI指标,我们针对优化工作:覆盖优化,切换优化,干扰优化,RR优化做出分析。

经过这些反复的优化流程以确保广大用户能正常使用LTE无线网路。

本文将重点介绍上述工程优化三个阶段的优化流程与方法,以及介绍无线网络优化主要优化任务,还有优化过程中经常遇到的问题与解决方法。

关键词:TD- LTE 覆盖优化切换优化干扰优化 RP优化Design Of Optimization in The TD-LTE Network Abstract: The TD-LTE wireless network optimization, there are two operation stages: one is the engineering optimization phase, the second, the operational phase、 In this paper, the research direction is engineering optimization Phase、Engineering optimization phase is divided into phases single station optimization, optimization of the cluster, the entire network optimization phase、 Each stage task is different, but our goal is the same, two Goals are the same, the two stages the goal is to let users get the most value, to achieve the best combination of network coverage, capacity and value、 Users via wireless network optimization method to Increase production and save cost、 In order to satisfy the the requirements of KPI, we optimized work: coverage optimization, the switch optimization, optimization, RR optimization analysis、 After these repeated optimization process to ensure that users can use normally LTE wireless networks、This article focuses Three stages of optimization in engineering optimization processes and methods, and introduce the wireless network optimization mainly optimization tasks, there are often encountered in the process of optimization problems and solutions、Keywords:The TD-LTE Coverage optimization Switch to optimize Interference optimization The RP optimization、目录前言 (1)1 无线网络优化 (2)1、1 通信技术简介 (2)1、2 网络优化的意义 (2)2 TD-LTE基本原理 (4)2、1 2G、3G关键技术 (4)2、1、1 Rake接收技术 (4)2、1、2 信道编码技术 (4)2、1、3 功率控制技术 (5)2、1、4 多用户检测技术 (5)2、1、5 智能天线 (5)2、2 核心技术 (5)2、2、1 OFDM技术 (5)2、2、2 OFDM的优点 (7)2、2、3 基于DFT的OFDM有快速算法 (7)4 网优方案设计 (10)4、1 LTE网络优化关键步骤 (10)4、2 网络优化内容 (11) (14) (14) (15)4、2、7 切换干扰优化 (16)5 总结与展望 (17)参考文献 (18)TD-LTE网络优化方案设计前言3 GPP LTE推出了新一代无线通信技术,并发展成新一代移动通信技术的主流。

目前大多数的国际主流通信运营商选择LTE作为下一代移动通信的发展方向,每个人都在积极推动LTE的产业化开发。

LTE技术成为新一代的网络通信技术,网络的结构也发生了很大的改变。

此外,LTE网络应用大量的新的无线通信技术,包括正交频分复用(OFDM),多天线技术(MIMO),LTE网络优化的方法从一个新的解决方案与新角度来解决满足网络优化的需要。

中国据有自主知识产权的3G标准就是TD-SCDMA,中国为此在世界上赢得了很多发达国家的关注,这对中国移动通信事业的开展起到了决定性的作用。

随着通信技术快速发展领域的应用程序中,用户要求的数据服务质量与传输速率增加,使得TD-SCDMA必须加快进化步伐以满足用户对数据传输速率的需求。

LTE无线网络优化涵盖了无线网络运维优化与无线网络工程优化。

两者都要求达到相应的考核标准,无线网络运维优化的时间就是运维期,在网络运行正常的时候进行,其中网络的性能指标、用户满意度、网络覆盖率、设备利用率等等就是其优化的重点。

无线网络优化就是一个长期运行的过程,从网络优化到网路建设再到网络运维都需要它。

本篇论文中主要介绍的就是无线网络优化的工程优化。

无线网络优化就是建立在无线网络建设的基础上展开进行的,当一个片区的无线网络覆盖到一定范围时,就可以进行网路优化。

并确保无线网络的容量能满足用户的需求,为广大用户能感觉到真正的满意度从心理学,并通过无线网络使用户能够提高产量与节约成本,使每个用户可以使用放心,快乐与安心。

网络优化着眼于降低操作节约成本方面的进一步改善系统必须能够满足现有的无线接入网络系统,将改变宽带CDMA技术系统可以更有效的对OFDM技术的多路径干扰。

OFDM技术起源于1960年代,其后飞速发展,在短时间内成为当时通信技术的核心技术。

王志威、刘云在《LTE技术发展与研发管理》提出了4G网络优化与之前的2/3G优化相比存在的优势,以及4G网络优化在未来发展的方向[1]。

樊昌信在《通信原理》提出了通信系统的模型组成,其中包含数字通信与模拟通信,简单的阐述了通信的过程与基本原理[2]。

王映民、孙韶辉在《TD- LTE技术原理与系统设计》提出了4G网络优化的一个具体实施步骤方向,全面的讲解了4G优化的原理以及一些可能存在的故障实例[3]。

本文共分五章,第一章将对无线网络优化历程做一个大概的介绍;第二章介绍TD-LTE优化所需要用到的一些关键技术;第三章介绍网络优化的架构,实施网络优化的步骤;第四章将描述网络优化实施过程中可能遇到的问题,以及一些解决方案;最后第五章就是对全文的一个总结与延伸,概括全文写作过程中遇到的问题,以及解决思路还有这项技术未来的发展前景。

1 无线网络优化1、1 通信技术简介现代通信主要技术包含计算机通信、移动通信、卫星通信、光钎通信等。

当前无线网络优化分2/3G优化与4G优化,其测试工具存在巨大差异,2/3G设备只能测试语音、通话质量、掉话等问题而4G设备能测试数据传输速率即网速。

目前网络优化的测试工具包括诺优、鼎力、烽火等。

实现这些技术的步骤大致见图1、1-1。

图1、1-1 通信技术实现步骤由上图可知,网络优化与网络建设都就是建立在通信技术的基础之上,其中网络建设的一般步骤就是先进行规划咨询了解需要建设的真实数据,然后对这些数据进行分析整理得出相应的研究报告,在确定需要建设网络之后进行实地勘察,这些都就是网络建设前期需要准备的工作,在网络建设初期必然会出现网络故障问题,这就是本文将重点介绍的内容。

1、2 网络优化的意义随着网络时代的步伐,已经有越来越多的用户从之前的传呼机,小灵通转向手机电脑等新时代产物,现有的网络状况根本不能满足大部分用户的需求,大家都知道青年就是接收新事物最快的人群,随着大型网络游戏、3D电影等的出现,现有的网络资源“不堪重负”因此,网络优化这门技术“应运而生”它最终的目的就是解决当前网络拥挤、网速慢、延迟高、不流畅等问题,网络优化还能应付越来越多的网络用户更多达到网络费用低运营商收益高的双赢局面。

网络优化需要具备方方面面的知识,这些的实现都需要通过相关技术来缓解并最终解决用户反馈的问题,在实践中总结经验,然后整理出一套系统化的网络优化方案其中主要技术见图1、2-1所示。

图1、2-1 网络优化主要技术由上图可以瞧出网络优化就是逐步展开的,首先需要做好优化准备比如检测测试设备就是否完好,测试类型的确定一般分为室分优化,城市DT,高铁,高速优化优化场景的不同决定了需要选取的设备类型计划方案;其次,需要明白我们要优化的区域,大致可以分为簇优化、区域优化、边界优化等。

然后需要对测试的参数进行核对比较,排除差距较大的参数然后取均值,经反复核查之后得出结论。

2 TD-LTE基本原理2、1 2G、3G关键技术2、1、1 Rake接收技术窄频带在蜂窝系统中,有多径衰落。

在宽带CDMA系统中,不同的路径就是可以独立的,区分多路径信号可以用加权来调整,使合成后的信号增强,从而达到减少多径衰落造成负面影响的目的。

要完成相干Rake的接收,必须发射未经过调制的导频,这样接收方就能对多路信号的相位进行估计。

用以区分这两个信号的方法具体见图2、1、1-1所示。

图2、1、1-1 Rake接收技术的系统框图上图就是Rake接收技术的系统框图,首先就是让基带信号进入相关器然后把该信号分别传输到数据分配器(DMUX)与低频滤波器中,经过数据分配器的判断处理之后由于数据分配器一个输入多个输出的原理,流向低频滤波器内,然后与经过符号判断最终得出预测的相位与幅度结果I/Q信号。

相关文档
最新文档