2015年长宁区中考数学二模试卷及答案
上海市长宁区、嘉定区2015届高三下学期第二次质量调研(二模)数学(文)试题 含解析

2014学年上海长宁区、嘉定区高三年级第二次质量调研数学试卷(文)一、填空题(本大题有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1。
已知集合},2||{R ∈≤=x x x A ,},01{2R ∈≥-=x x x B ,则=B A ________.【答案】12{-≤≤-x x 或}21≤≤x 【解析】 试题分析: 因为{||2,}={|22}A xx x x x =≤∈-≤≤R ,2{10,}{|11}B x x x x x x =-≥∈=≤-≥R 或,所以=B A 12{-≤≤-x x 或}21≤≤x .考点:集合的运算. 2.抛物线28xy =的焦点到准线的距离是______________.【答案】4 【解析】试题分析:抛物线28x y =的焦点是()0,2 ,准线方程是2y =-,所以焦点到准线的距离是4。
考点:抛物线性质.3.若(1i)i 2i a b +=-,其中a 、b R ∈,i 是虚数单位,则|i |a b +=_________. 【答案】5【解析】试题分析:由(1i)i 2i a b +=-得2a =-,1b =- ,所以()()22|i ||12i|=125a b +=---+-=。
考点:复数相等、复数的模。
4。
已知函数xx g 2)(=,若0>a ,0>b 且2)()(=b g a g ,则ab 的取值范围是_______.【答案】⎥⎦⎤⎝⎛41,0【解析】试题分析:由()()1222124a ba b g a g b a b ab ++⎛⎫=⇒=⇒+=⇒≤= ⎪⎝⎭ ,又,0>a ,0>b ,所以104ab <≤。
考点:1。
指数运算;2。
基本不等式。
5.设等差数列{}na 满足115=a,312-=a ,{}n a 的前n 项和n S 的最大值为M ,则lg M=__________.【答案】2 【解析】 试题分析:由115=a ,312-=a 得公差3112125d --==--,所以()()1152212,n a n n =+--=- 故()()()22119220101001002nn n Sn n n n -=+-=-+=--+≤,所以100M =,lg 2M =。
长宁区2015年初三数学教学质量检测试卷参考答案

长宁区2015年初三数学教学质量检测试卷参考答案一、单项选择题:(本大题共6题,每题4分,满分24分) 1. A ;2. D ;3. B ;4. A ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分)7.31; 8. 26n m ; 9. -1; 10. 6或-2; 11. 125; 12. 40; 13. ±3; 14. 内切;15. 310;16. 555-; 17. 2正根,1负根; 18. 1或611.二、填空题:(本大题共12题,每题4分,满分48分) 19.(本题满分(10分)解: ⎪⎩⎪⎨⎧<≥+323532m m (3分)(2分)化简得 ⎩⎨⎧<≥21m m(3分)∴不等式组的解集是21<≤m .(2分) 20.(本题满分10分) 解:原式=()()()aaa a a a a -÷⎪⎪⎭⎫⎝⎛-+-+11112--122(2分) =a aa a a a -⨯⎪⎭⎫⎝⎛--+1122--1222(2分) =a aa a -⨯1-132(2分)=a+13(2分) =33=3(2分)21.(本题满分10分) 解:(1)0.5;(2分)(2)设)0(≠+=k b kx y (1分) 把(2.5,120)和(5,0)分别代入得⎩⎨⎧+=+=bk bk 505.2120,h )解得⎩⎨⎧=-=24048b k (3分)∴解析式为()55.224048≤≤+-=x x y .(1分) (3)当 x = 4时,48240448=+⨯-=y (2分)∴这辆汽车从甲地出发4 h 时与甲地的距离48 km. (1分) 22.(本题满分10分)解: 作EF ⊥AD 于点F . (1分) ∵AD ⊥BC ∴∠ADB =90° 在Rt △ABD 中,AD =4, 54sin ==AB AD B∴AB =5 ∴3-22==AD AB BD∵等腰△ABC ∴AB =AC ∴AC =5∵AD ⊥BC ∴DB =DC ∴DC =3 (4分) ∵EF ⊥AD AD ⊥BC ∴EF //BC∴AD AFDC EF AC AE == ∵32EC AE = AC =5 DC =3 ∴EF =56 AF =58 DF =512(4分)∴在Rt △EFD 中,2cot ==∠EF DFADE .(1分)23.(本题满分12分) 证:(1)∵正方形ABCD ∴AB =AD ∠B =∠D =90°在Rt △ABD 和Rt △ACD 中⎩⎨⎧==AFAE ADAB ∴△ABE ≌△ADF ∴BE =DF . (5分)(2)∵正方形ABCD ∴BC =CD∵ BE =DF ∴CE =CF ∴△ECF 是等腰三角形∵正方形ABCD ∴AC 平分∠BCD ∴AC ⊥EF 且EO =OFFABCD E第22题图∵AO =OG∴四边形AEGF 是平行四边形(5分) ∵AC ⊥EF∴四边形AEGF 是菱形. (2分) 24.(本题满分12分)解:(1)()2--22222t x t tx x y =-+-= ∴A (t ,-2)(2分)∵点C 的横坐标为1,且是线段AB 的中点 ∴t =2 (1分) ∴()2-2-x 2=y∴P (1,-1).(1分)(2)据题意,设C (x ,-2)(0< x < t ),P (x ,(-t x AC = t -x ,PC =2)(t x - (1分) ∵AC =PC ∴t-x =2)(t x - ∵x < t ∴ t - x =1 即x = t - 1 ∴AC =PC =1 (2分) ∵DC //y 轴 ∴ABACEB PC = ∴EB = t ∴OE =2-t∴23221)1)(3(21)(212-+-=--=⨯+=t t t t OD DP OE S (1< t <2). (2分) (3)t t AB DP S ADE 2112121=⨯⨯=⨯=∆(1分)∵ S S ADE 2=∆ ∴)23221(2212-+-=t t t解得231=t ,22=t (不合题意)∴ 23=t .(2分)25.(本题满分14分)(1)证:作OH ⊥DC 于点H ,设⊙O 与BC 边切于点G ,联结OG . (1分)∴∠OHC=90° ∵⊙O 与BC 边切于点G ∴OG =6,OG ⊥BC∴∠OGC=90°∵矩形ABCD ∴∠C =90°∴四边形OGCH 是矩形 ∴CH =OG∵OG =6 ∴CH =6 (1分)∵矩形ABCD ∴AB =CD 第25题图(1)∵AB =12 ∴CD =12∴DH =C D ﹣CH =6 ∴DH = CH∴O 是圆心且OH ⊥DC ∴EH =FH (2分) ∴DE =CF . (1分)(2)据题意,设DP =t ,P A =10-t ,AQ =3t ,QB =12-3t ,BR =1.5t (0 < t < 4). (1分)∵矩形ABCD ∴∠A =∠B =90° 若△P AQ 与△QBR 相似,则有 ①BR AQ QB AP =tt t t 5.133-12-10= 514=t (2分) ②QB AQ BR AP =t tt t 31235.1-10-= 146921-=t 或14692-2-=t (舍)(2分) (3)设⊙O 与AD 、AB 都相切点M 、N ,联结OM 、ON 、OA . ∴OM ⊥AD ON ⊥AB 且OM =ON =6 又∵矩形ABCD ∴∠A =90° ∴四边形OMAN 是矩形又∵ OM =ON ∴四边形OMAN 是正方形 (1分) ∴MN 垂直平分OA∵△P AQ 与△P A'Q 关于直线PQ 对称 ∴PQ 垂直平分OA∴MN 与PQ 重合 (1分)∴ MA = P A = 10-t = 6 ∴ t = 4 (1分) ∴AN = AQ = x t = 6 ∴x =23(1分) ∴当t = 4 和x =23时点A'与圆心O 恰好重合.第25题图(2)(P )。
2015年上海二模23题汇总

2015年二模23题几何证明汇总2015年宝山嘉定联合模拟考试数学试卷23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.2014学年第二学期奉贤区调研测试 23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD 中,AB//CD ,点E 是对角线AC 上一点,∠DEC=∠ABC ,且CA CE CD ⋅=2. (1)求证:四边形ABCD 是平行四边形;(2)分别过点E 、B 作AB 和AC 的平行线交于点F ,联结若∠FCE= ∠DCE ,求证:四边形EFCD 是菱形.静安、青浦区2014学年第二学期23.(本题满分12分,第小题满分6分)如图,在梯形ABCD 中,AB//CD ,AD =BC ,E 是CD 的中点,BE 交AC 于F ,过点F 作FG ∥AB ,交AE 于点G .(1) 求证:AG=BF ;(2) 当CF CA AD ⋅=2时,求证:AC AG AD AB ⋅=⋅.EDCGFAB(第23题图) B (第23题图) A图8上海闵行区2015年九年级二模数学试卷23. (本题满分12分,其中每小题各6分)如图,已知在梯形ABCD 中,AD ∥BC, ∠A=90º,AB=AD ,点E 在边AB 上,且DE ⊥CD,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF. (1)求证:DE=DC;(2)如果2BE BF BC =⋅,求证:∠BEF=∠CEF.杨浦区2014学年度第二学期初三质量调研数学试卷23. 已知,如图,Rt △ABC 和Rt △CDE 中,90ABC CDE ∠=∠=︒,且BC 与CD 共线,联结AE ,点M 为AE 中点,联结DM ,交AC 于点G ,联结MD ,交CE 于点H ;(1)求证:MB MD =;(2)当AB BC =,DC DE =时,求证:四边形MGCH 为矩形;黄浦区2015年九年级学业考试模拟卷23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE DG =;(1)求证:AE CG =; (2)求证:BE ∥DF ;2015年松江区初中毕业生学业模拟(二模)考试23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG.(1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF.徐汇区2015年初中毕业统一学业模拟考试23.(本题满分12分)如图7,在正方形ABCD 中,E 为对角线AC 上一点,联结EB 、ED ,延长BE 交AD 于点F. (1)求证:∠BEC =∠DEC ;(2)当CE=CD 时,求证:2DF EF BF =.ABCDEF 图7A(第23题图)EGDFCB2014学年金山第二学期期中质量检测23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D 点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. (1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形. [注:若要用1∠、2∠等,请不要标在此图,要标在答题纸的图形上]闸北区2015年初中毕业统一学业模拟考试23.(本题共2小题,第(1)小题5分,第(2)小题7分,满分12分)如图,在Rt △ABC 中,∠BAC = 90°,AD = CD ,点E 是边AC 的中点,联结DE ,DE 的延长线与边BC 相交于点F ,AG // BC ,交DE 于点G ,联结AF 、CG .(1)求证:AF = BF ;(2)如果AB = AC ,求证:四边形AFCG 是正方形.GFE D BAC第23题图 H ABCDEF(第23题图)G虹口普陀2015年长宁初三数学二模考试检测试卷23.(本题满分12分)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE=AF ,AC 和EF交于点O ,延长AC 至点G ,使得AO=OG ,联结EG 、FG. (1)求证: BE=DF ;(2)求证:四边形AEGF 是菱形.崇明县2014学年第二学期教学质量调研测试卷23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.A BD H G FE C(第23题图)。
2015年上海中考长宁区初三数学二模试卷及答案.doc

2015 年初三数学教学质量检测试卷(考试时间 100 分钟,满分 150 分)2015.4考生注意 :1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤 .一、单项选择题 :(本大题共 6 题,每题 4 分,满分 24 分)1.将抛物线 y x 2向右平移 3个单位得到的抛物线表达式是 ( )A.y x 3 2 ; B. y x 32; C.y x 23 ; D. y x 23 .2.下列各式中,与3 是同类二次根式的是 ()A.3 1 ; B.6 ;C.9 ;D. 12.3. 一组数据 : 5,7,4,9,7的中位数和众数分别是 ( )A. 4,7 ;B. 7,7 ;C. 4,4 ;D. 4,5 .4. 用换元法解方程 :yy 2 3 5y,那么原方程可化为 ( )3y2 时,如果设 xy 2y 2 3A. 2x25x 2 0 ;B. x25x 1 0 ;ADC. 2x 25x 2 0 ;D. 2x 25x 1 0 .OE5. 在下列图形中,①等边三角形,②正方形,③正五边形,④正六边形.其中既是轴对称图形又是中心对称的图形有 ()A. 1个;B. 2个;C. 3个;D. 4个.B C第6题图6. 如图,在四边形 ABCD 中,∠ ABC=9 0°,对角线 AC 、BD 交于点 O , AO=CO ,∠ AOD =∠ADO , E 是 DC 边的中点 .下列结论中,错误的是 ()1AD ; B. OE11 1 A. OEOB ; C.; OE2OC ; D. OEBC .2 22二、填空题 : (本大题共 12 题,每题 4 分,满分 48 分)17. 计算:9 2 = ▲.初三数学 共 4 页 第1页8. 计算 :m3 n 2=▲.9.方程 2x 3 1 的解是▲.10.若关于 x 的二次方程x2ax a 3 0 有两个相等的实数根,则实数 a =▲.11.从数字 1,2,3,4中,任意取两个数字组成一个两位数,这个数是素数的概率是▲.12. 2015年 1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成 : 青年组、中年组、老年组 .各组人数所占比例如图所示,已知青年组 120人,则中年组的人数是▲.青年老年60%20%中年?13.已知b ka ,如果a 2,b 6 ,那么实数 k =▲.第 12题图A 14.已知⊙O1和⊙O2的半径分别是5和 3,若O1O2 =2,则两圆的位置关系是▲.15.已知在离地面 30米的高楼窗台 A 处测得地面花坛中心标志物 C 的俯角为60°,那么这一标志物 C 离此栋楼房的地面距离BC 为▲米.16.已知线段 AB=10 ,P 是线段 AB 的黄金分割点 (AP﹥ PB),则 AP= ▲. C B17.请阅读下列内容 :第 15 题图2我们在平面直角坐标系中画出抛物线y x 2 1和双曲线,如图yyx所示,利用两图像的交点个数和位置来确定方程x2 1 2 有一个正x 实数根,这种方法称为利用函数图像判断方程根的情况.请用图像法判断方程x 3 2 4 2 的根的情况▲ (填写根的个数及正负).x18.如图,△ ABC≌△ DEF (点 A 、 B 分别与点 D、 E 对应), AB=AC=5 ,BC=6,△ ABC 固定不动,△ DEF 运动,并满足点E在BC边从B向 C 移动(点 E 不与 B、 C 重合), DE 始终经过点A,EF 与 AC 边交于点 M,当△ AEM 是等腰三角形时, BE= ▲.O x第17题图DAF三、解答题 : (本大题共7 题,满分78 分)M 19.(本题满分 10 分)BE C 2( m 1.5) 5, 第 18 题图解不等式组5 m m ,并将解集在数轴上表示出来.32初三数学共4页第2页20.(本题满分10 分)先化简,再求代数式的值a 2 2 a:a 2 a 1,其中 a 1 1 a21.(本题满分10 分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回甲地 .设汽车从甲地出发 x( h)时,汽车与甲地的距离为 y( km), y 与 x 的关系如图所示 . 根据图像回答下列问题 :( 1)汽车在乙地卸货停留(h);( 2)求汽车返回甲城时y 与 x 的函数解析式,并写出定义域;( 3)求这辆汽车从甲地出发 4 h 时与甲地的距离.3 1.y(km)120O2 2.5 5x( h )第 21题图22.(本题满分10 分)如图, AD 是等腰△ ABC 底边上的高,且AD=4,sin B4. 若 E 是 AC 边上的点,且满5足 AE:EC=2:3,联结 DE ,求cot ADE 的值. AEB D C第22题图23.(本题满分12 分)如图,正方形 ABCD 中,点 E、F 分别在边BC、CD 上, AE=AF,AC 和 EF 交于点 O,延长 AC 至点 G,使得 AO=OG,联结 EG、 FG . A D( 1)求证 : BE =DF ;( 2)求证 :四边形 AEGF 是菱形 . FOBE CG第23题图初三数学共4页第3页24.(本题满分 12 分)如图,已知抛物线y x2 2tx t 2 2 的顶点A在第四象限,过点 A 作 AB⊥ y 轴于点 B,C 是线段 AB 上一点 (不与 A、B 重合 ),过点 C 作 CD ⊥ x 轴于点 D,并交抛物线于点P.( 1)若点 C 的横坐标为1,且是线段AB 的中点,求点P 的坐标;( 2)若直线 AP 交 y 轴负半轴于点 E,且 AC=CP,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;( 3)在( 2)的条件下,当△ADE 的面积等于2S 时,求 t 的值 .yDOEPBC Ax第24题图25.(本题满分14 分)如图,已知矩形ABCD ,AB =12 cm,AD =10 cm ,⊙ O 与 AD、AB、BC 三边都相切,与DC 交于点 E、 F 。
2015年中考二模名校考试数学试题及答案

2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
上海市长宁区2015年中考一模(即期末)数学试题人教版

长宁区2015届第一学期初三数学教学质量检测试卷(考试时间100分钟,满分150分) 2015.1考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分) 1、如果两个相似三角形的面积比是1:6,则它们的相似比( ) A .1:36 ; B .1:6 ; C .1:3 ; D .1:6.2、在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( ) A .53; B .54 ; C .43 ; D .34. 3、如图,点A B C D E F G H K ,,,,,,,,都是7×8方格纸 中的格点,为使DEM ABC △∽△(点D 和A 对应, 点E 和B 对应),则点M 应是F G H K ,,,四点中的( ) A. F ;B. G ; C. K ; D. H .4、已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( ) A . 1或7; B. 1; C . 7; D . 2.5、抛物线y =2x 2,y =﹣2x 2,221x y共有的性质是( ) A .开口向下; B .对称轴是y 轴;C .都有最低点; D. y 的值随x 的值的增大而减小.6、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A . ;B . ;C . ;D . .第3题图第6题图二、填空题:(本大题共12题,每题4分,满分48分)7、已知线段a =2 cm ,c=8 cm ,则线段a 、c 的比例中项是 ▲ cm . 8、计算: 3(→a -→b )-3→a = ▲ .9、已知⊙P 在直角坐标平面内,它的半径是5, 圆心P (-3,4),则坐标原点O 与⊙P 的位置关系是 ▲ .10、如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有 ▲ 个. 11、抛物线()2132+--=x y 的顶点坐标是 ▲ .12、将抛物线322-=x y 向左移动3个单位后所得抛物线的解析式是 ▲ . 13.已知二次函数722-+=x x y 的一个函数值是8,那么对应的自变量x 的值是 ▲ . 14、已知二次函数2)1(2-+-=x a ax y ,当x >1时,y 的值随x 的值的增大而增大,当x <1时,y 的值随x 的值的增大而减小,则实数a 的值为 ▲ .15、某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新产品的研发资金y (万元)关于x 的函数关系式为 y = ▲ .16、如图所示,铁路的路基横断面是等腰梯形,斜坡AB的坡度为AB 的水平宽度BE =33m ,则斜坡AB = ▲ m .17、如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE .则GED ABC S S ∆∆:的值为 ▲ .18、如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''D C AB .当两正方形重叠部分的 面积是原正方形面积的41时,AD B '21sin ∠= ▲ . 三、解答题:(本大题共7题,满分78分)第18题图 B D C A G第17题图 E 第16题图E DC B A第21题图19.(本题满分10分) 计算:()()245tan 201530sin 60cos 60sin 1︒-︒︒-+︒--20.(本题满分10分)如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且31=DB AD ,41=AC AE .设=,=,试用,表示. 21.(本题满分10分)如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD . 求证:△OCD 是等腰三角形.22.(本题满分10分)如图,在△ABC 中,AD 是BC 边上的高,点G 在AD 上,过G 作BC 的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F .设AD =80,BC =120,当四边形PEFQ 为正方形时,试求此正方形的边长.23.(本题满分12分)如图, A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A-C-B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)第20题图第22题图F EQGPCDA第23题图24.(本题满分12分)如图,已知直角坐标平面上的△ABC ,AC=CB ,∠ACB =90°,且A (-1,0),B (m ,n ),C (3,0)。
2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
2015届中考二模数学试题含答案

第二学期第二次模拟题九 年 级 数 学说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数为( ▲ ) A .21-B .21C .2D .12.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( ▲ )A .0. 000124B .0.0124C .一0.00124D .0.00124 3.如图是一个几何体的三视图,则这个几何体的形状是( ▲ ).A .圆柱B .圆锥C .圆台D .长方体4.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ▲ )A .等边三角形B .矩形C .菱形D .正方形5.直线2y x =-不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 6.下列计算正确的是( ▲ )A .532a a a =+ B .1234)(a a =C .632a a a =⋅D .326a a a =÷7.不等式421->+x x 的解集是( ▲ ) A .5<x B .5>x C .1<xD .1>x8.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC交CD 于D ,∠BEC=100°,则∠D 的度数是( ▲ ) A .100° B .80° C .60° D .50°9.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ▲ )第8题图A . AD⌒ =BD ⌒ B .AF=BF C .OF=CF D .∠DBC=90° 10.若x y ,为实数,且30x +=,则2014⎪⎭⎫ ⎝⎛x y 的值为( ▲ )A .1B . 1-C . 2D . 2-二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.若一个多边形外角和与内角和相等,则这个多边形是 ▲ . 12.分式方程312=+x x的解是 ▲ . 13.如图,DE 是△ABC 的中位线,若BC 的长是10cm ,则DE 的长是 ▲ .14.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 ▲ .15.若关于x 的一元二次方程022=-+k x x 没有实数根,则k 的取值范围是 ▲.16.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点. 若四边形EFDC 与矩形ABCD 相似,则AD = ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:011134-⎛⎫⎛⎫︒+ ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a19.如图,在Rt △ABC 中,∠C =90°.(1)根据要求用尺规作图:过点C 作斜边AB 边上的高CD ,垂足为D(不写作法,只保留作图痕迹); (2)证明:△CAD ∽△BCD第16题图第9题图E ABCD 第13题图四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,求旗杆的高度?21.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是31. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).22.某种仪器由1种A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图, 抛物线c bx x y ++=221与x 轴交于A (-4,0) 和B(1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q 点,当P 点运动到什么位置时,线段PQ 的长最大,并求此时P 点的坐标.24.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC . (1)求证:AB =AC ;(2)若AD =4, cos ∠ABF =54,求DE 的长.25.如图,在平面直角坐标系xoy 中,抛物线c bx ax y ++=2交y 轴于点C (0,4), 对称轴2=x 与x 轴交于点D ,顶点M 的纵坐标为6. (1)求该抛物线的解析式;(2)设点P (x ,y )是第一象限内该抛物线上的一个动点,△PCD 的面积为S ,求S 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,若经过点P 的直线PE 与y 轴交于点E ,是否存在以O 、P 、E 为顶点的三角形与△OPD 全等?若存在,请求出直线PE 的解析式;若不存在,请说明理由.九年级数学第二次模拟题参考答案和评分标准一、ADBDC BADCA二、11、四边形 12、3-=x 13、5 cm 14、2 15、1-<k 16 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解:原式=11242+⨯+ ······················· 4分 =6 ·························· 6分18.解:原式=22144a a a -+++ ···················· 3分=54+a ························· 4分当43-=a 时,原式=54+a =5)43(4+-⨯=2 ············ 6分 19.(1)正确尺规作图. ························ 3分(2)证明:∵Rt △ABC 中,CD 是斜边AB 边上的高,∴∠ADC =∠BDC =90°, ················· 4分 ∴∠ACD +∠A =∠ACD +∠BCD =90°,∴∠A =∠BCD , ····················· 5分 ∴△CAD ∽△BCD , ····················· 6分 四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:在Rt △BDC 中, ∵∠BDC=45°, ∴DC=BC=3米, ························· 3分 在Rt △ADC 中, ∵∠ADC=60°,∴AC=DCtan60° ························· 5分=3× (米). ························ 6分 答:旗杆的高度为3米 ························ 7分 21.解:(1)设红球有x 个,根据题意得,31111=++x ······················ 2分解得1=x ····················· 3分(2)根据题意画出树状图如下:一共有9种情况, ························· 5分 两次摸到的球颜色不同的有6种情况, ·················· 6分 所以,P (两次摸到的球颜色不同)3296==··············· 7分 22.解:设安排x 人生产A 部件,安排y 人生产B 部件,由题意,得 ······· 1分⎩⎨⎧==+y x y x 600100016··························· 4分 解得:⎩⎨⎧==106y x ···························· 6分答:设安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B部件配套. ···························· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数c bx x y ++=221与x 轴交于(4,0)A -、(1,0)B 两点可得:⎪⎩⎪⎨⎧=++⨯=+--⨯012104)4(2122c b c b ················· 2分解得: ⎪⎩⎪⎨⎧-==223c b 故所求二次函数的解析式为223212-+=x x y . ·· 3分 (2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). ····· 4分若设直线AC 的解析式为b kx y +=,则有⎩⎨⎧+-=+=-b k b 4002 解得:⎪⎩⎪⎨⎧-=-=221b k故直线AC 的解析式为221--=x y . ·············· 5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, ············· 6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点, 则Q 点的坐标为(1,2)2a a --.则有: )22321()221(2-+---=a a a PQ =a a 2212-- ····················· 7分=2)2(212++-a ················· 8分当2-=a 时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3) ·· 9分24.(1)证明:连接BD , ························· 1分 由AD ⊥AB 可知BD 必过点O ···················· 2分∵BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB ········· 3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB ················· 4分 又∠ACB =∠ADB ,∴∠ABC =∠ACB ,∴AB =AC ············ 5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BD AD ,∴BD =ADB AD ∠cos =ABFAD∠cos =544=5 ···· 6分∴AB =3 ·························· 7分 在Rt △ABE 中,∠BAE=90º Cos ∠ABE =BE AB ,∴BE =ABE AB∠cos =543=415∴AE =223)415(-=49················· 8分∴DE =AD -AE =4-49=47·················· 9分25.解:(1)由题意得:顶点M 坐标为(2,6). ············ 1分设抛物线解析式为:6)2(2+-=x a y ∵点C (0,4)在抛物线上,∴644+=a 解得21-=a ···················· 2分 ∴抛物线的解析式为:6)2(212+--=x y =42212++-x x ····· 3分(2)如答图1,过点P 作PE ⊥x 轴于点E∵ P (x ,y ),且点P 在第一象限, ∴PE=y ,OE=x ,∴DE=OE﹣OD=2-x ·························· 4分 S=S 梯形PEOC ﹣S △COD ﹣S △PDE=y x x y ⋅--⨯⨯-⋅+)2(214221)4(21 42-+=x y将42212++-=x x y 代入上式得:S=x x 4212+- ············ 5分 在抛物线解析式42212++-=x x y 中,令0=y ,即422102++-=x x ,解得322±=x设抛物线与x 轴交于点A 、B ,则B (322+,0), ∴3220+<<x∴S 关于x 的函数关系式为:S=x x 4212+-(3220+<<x ). ····· 6分 (3)存在.若以O 、P 、E 为顶点的三角形与△OPD 全等,可能有以下情形: (I )OD=OP .由图象可知,OP 最小值为4,即OP≠OD,故此种情形不存在. ······· 7分 (II )OD=OE .若点E 在y 轴正半轴上,如答图2所示: 此时△OPD ≌△OPE , ∴∠OPD=∠OPE ,即点P 在第一象限的角平分线上, ∴直线PE 的解析式为:221+=x y 若点E 在y 轴负半轴上,易知此种情形下,两个三角形不可能全等, 故不存在. ······························ 8分(III )OD=PE . ∵OD=2, ∴第一象限内对称轴右侧的点到y 轴的距离均大于2,则点P 只能位于对称轴左侧或与顶点M 重合. 若点P 位于第一象限内抛物线对称轴的左侧,易知△OPE 为钝角三角形, 而△OPD 为锐角三角形,则不可能全等; 若点P 与点M 重合,如答图3所示,此时△OPD ≌OPE ,四边形PDOE 为矩形, ∴直线PE 的解析式为:6=y综上所述,存在以O 、P 、E 为顶点的三角形与△OPD 全等, 直线PE 的解析式为221+=x y 或6=y . ················ 9分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCDEO第6题图2015年初三数学教学质量检测试卷(考试时间100分钟,满分150分) 2015.4考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计 算的主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分) 1.将抛物线2x y =向右平移3个单位得到的抛物线表达式是( )A. ()23-=x y ; B. ()23+=x y ; C. 32-=x y ; D. 32+=x y .2.下列各式中,与3是同类二次根式的是( )A. 13- ;B. 6 ;C. 9 ;D. 12 . 3. 一组数据: 5,7,4,9,7的中位数和众数分别是( )A. 4,7 ;B. 7,7 ;C. 4,4 ;D. 4,5 .4. 用换元法解方程:253322=-+-y y y y 时,如果设32-=y y x ,那么原方程可化为( ) A. 02522=+-x x ; B. 0152=+-x x ; C. 02522=++x x ; D. 01522=+-x x .5. 在下列图形中,①等边三角形,②正方形,③正五边形,④正六边形. 其中既是轴对称图形又是中心对称的图形有( )A. 1个;B. 2个;C. 3个;D. 4个. 6. 如图,在四边形ABCD 中,∠ABC =90°,对角线AC 、BD 交于点O ,AO =CO ,∠AOD=∠ADO ,E 是DC 边的中点.下列结论中,错误的是( ) A. AD OE 21=; B. OB OE 21=; C.;OC OE 21=; D. BC OE 21=.二、填空题:(本大题共12题,每题4分,满分48分) 7. 计算:219- = ▲ .第18题图8. 计算:()23n m -= ▲ . 9. 方程132=+x 的解是 ▲ .10.若关于x 的二次方程032=+++a ax x 有两个相等的实数根,则实数a = ▲ . 11.从数字1,2,3,4率是 ▲ .12. 2015年1月份,某区体委组织 “迎新春长跑活动”,现将报名的男选手分成: 青年组、中年组、老年组.各组人数所占比例如图所示,已知青年组120人,则中年组的人数是 ▲ .13.已知k =2=6=,那么实数k = ▲ .14.已知⊙1O 和⊙2O 的半径分别是5和3,若21O O =2,则两圆的位置关系 是 ▲ .15.已知在离地面30米的高楼窗台A 处测得地面花坛中心标志物C 的俯角为 60°,那么这一标志物C 离此栋楼房的地面距离BC 为 ▲ 米. 16.已知线段AB =10,P 是线段AB 的黄金分割点(AP ﹥PB ),则AP = ▲ . 17.请阅读下列内容:我们在平面直角坐标系中画出抛物线12+=x y 和双曲线xy 2=,如图 所示,利用两图像的交点个数和位置来确定方程xx 212=+有一个正 实数根,这种方法称为利用函数图像判断方程根的情况.请用图像法判 断方程()xx 2432=+--的根的情况 ▲ (填写根的个数及正负). 18.如图,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC =5,BC =6,△ABC 固定不动,△DEF 运动,并满足点E 在BC 边从B 向C 移动(点E 不与B 、C 重合),DE 始终经过点A ,EF 与AC 边交于点M ,当△AEM 是等腰三角形时,BE = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解不等式组⎪⎩⎪⎨⎧+<≥+325,5)5.1(2m m m ,并将解集在数轴上表示出来 .BC第15题图第17题图20.(本题满分10分)先化简,再求代数式的值:a a a a a -÷⎪⎭⎫⎝⎛+--+112122,其中13-=a .21.(本题满分10分)到达乙地卸货后返回甲地.设汽车从甲地出发x (h 甲地的距离为y (km ),y 与x 的关系如图所示. 根据图像回答下列问题:(1)汽车在乙地卸货停留 (h );(2)求汽车返回甲城时y 与x (3)求这辆汽车从甲地出发4 h 时与甲地的距离.22.(本题满分10分)如图,AD 是等腰△ABC 底边上的高,且AD =4,54sin =B . 若E 是AC 边上的点,且满足AE :EC =2:3,联结DE ,求ADE ∠cot 的值.23.(本题满分12分)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE =AF ,AC 和EF 交于点O ,延长AC至点G ,使得AO =OG ,联结EG 、FG .(1)求证: BE =DF ;(2)求证:四边形AEGF 是菱形.第22题图EDCBAh )24.(本题满分12分)如图,已知抛物线2222-+-=t tx x y 的顶点A 在第四象限,过点A 作AB ⊥y 轴于点B ,C 是线段AB 上一点(不与A 、B 重合),过点C 作CD ⊥x 轴于点D ,并交抛物线于点P . (1)若点C 的横坐标为1,且是线段AB 的中点,求点P 的坐标;(2)若直线AP 交y 轴负半轴于点E ,且AC =CP ,求四边形OEPD 的面积S 关于t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于2S 时 ,求t 的值.25.(本题满分14分)如图,已知矩形ABCD ,AB =12 cm ,AD =10 cm ,⊙O 与AD 、AB 、BC 三边都相切,与DC 交于点E 、F 。
已知点P 、Q 、R 分别从D 、A 、B 三点同时出发,沿矩形ABCD 的边逆时针方向匀速运动,点P 、Q 、R 的运动速度分别是1 cm/s 、x cm/s 、1.5 cm/s ,当点Q 到达点B 时停止运动,P 、R 两点同时停止运动.设运动时间为t (单位:s ). (1)求证: DE =CF ;(2)设x = 3,当△PAQ 与△QBR 相似时,求出t 的值;(3)设△PAQ 关于直线PQ 对称的图形是△PA'Q ,当t 和x 分别为何值时,点A'与圆心O 恰好重合,求出符合条件的t 、x 的值.第24题图第25题图2015年初三数学教学质量检测试卷参考答案一、单项选择题:(本大题共6题,每题4分,满分24分) 1. A ;2. D ;3. B ;4. A ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分)7.31; 8. 26n m ; 9. -1; 10. 6或-2; 11. 125; 12. 40; 13. ±3; 14. 内切;15. 310;16. 555-; 17. 2正根,1负根; 18. 1或611.二、填空题:(本大题共12题,每题4分,满分48分) 19.(本题满分(10分)解: ⎪⎩⎪⎨⎧<≥+323532m m (3分)(2分)化简得 ⎩⎨⎧<≥21m m(3分)∴不等式组的解集是21<≤m .(2分)20.(本题满分10分) 解:原式=()()()a aa a a a a -÷⎪⎪⎭⎫⎝⎛-+-+11112--122(2分) =aaa a a a -⨯⎪⎭⎫⎝⎛--+1122--1222(2分) =a aa a -⨯1-132(2分) =a+13(2分) =33=3(2分)21.(本题满分10分) 解:(1)0.5;(2分)(2)设)0(≠+=k b kx y (1分) 把(2.5,120)和(5,0)分别代入h )得⎩⎨⎧+=+=b k bk 505.2120,解得⎩⎨⎧=-=24048b k (3分)∴解析式为()55.224048≤≤+-=x x y .(1分) (3)当 x = 4时,48240448=+⨯-=y (2分)∴这辆汽车从甲地出发4 h 时与甲地的距离48 km. (1分)22.(本题满分10分)解: 作EF ⊥AD 于点F . (1分) ∵AD ⊥BC ∴∠ADB =90° 在Rt △ABD 中,AD =4, 54sin ==AB AD B ∴AB =5 ∴3-22==AD AB BD∵等腰△ABC ∴AB =AC ∴AC =5∵AD ⊥BC ∴DB =DC ∴DC =3 (4分) ∵EF ⊥AD AD ⊥BC ∴EF //BC∴AD AFDC EF AC AE == ∵32EC AE = AC =5 DC =3∴EF =56 AF =58 DF =512(4分)∴在Rt △EFD 中,2cot ==∠EF DFADE .(1分)23.(本题满分12分)证:(1)∵正方形ABCD ∴AB =AD ∠B =∠D =90°在Rt △ABD 和Rt △ACD 中⎩⎨⎧==AF AE ADABFABCD E第22题图∴△ABE ≌△ADF ∴BE =DF . (5分) (2)∵正方形ABCD ∴BC =CD∵ BE =DF ∴CE =CF ∴△ECF 是等腰三角形∵正方形ABCD ∴AC 平分∠BCD ∴AC ⊥EF 且EO =OF ∵AO =OG∴四边形AEGF 是平行四边形(5分) ∵AC ⊥EF∴四边形AEGF 是菱形. (2分) 24.(本题满分12分)解:(1)()2--22222t x t tx x y =-+-= ∴A (t ,-2)(2分)∵点C 的横坐标为1,且是线段AB 的中点 ∴t =2 (1分) ∴()2-2-x 2=y∴P (1,-1).(1分)(2)据题意,设C (x ,-2)(0< x < t ),P (x ,(x AC = t -x ,PC =2)(t x - (1分) ∵AC =PC ∴t-x =2)(t x -∵x < t ∴ t - x =1 即x = t - 1 ∴AC =PC =1 (2分) ∵DC //y 轴 ∴ABACEB PC =∴EB = t ∴OE =2-t∴23221)1)(3(21)(212-+-=--=⨯+=t t t t OD DP OE S (1< t <2). (2分) (3)t t AB DP S ADE 2112121=⨯⨯=⨯=∆(1分)∵ S S ADE 2=∆ ∴)23221(2212-+-=t t t解得231=t ,22=t (不合题意)∴ 23=t .(2分)第24题图25.(本题满分14分)(1)证:作OH ⊥DC 于点H ,设⊙O 与BC 边切于点G ,联结OG . (1分)∴∠OHC=90° ∵⊙O 与BC 边切于点G ∴OG =6,OG ⊥BC∴∠OGC=90°∵矩形ABCD ∴∠C =90°∴四边形OGCH 是矩形∴CH =OG∵OG =6 ∴CH =6 (1分)∵矩形ABCD ∴AB =CD ∵AB =12 ∴CD =12 ∴DH =CD ﹣CH =6 ∴DH = CH∴O 是圆心且OH ⊥DC ∴EH =FH (2分) ∴DE =CF . (1分)(2)据题意,设DP =t ,PA =10-t ,AQ =3t ,QB =12-3t ,BR =1.5t (0 < t < 4). (1分)∵矩形ABCD ∴∠A =∠B =90° 若△PAQ 与△QBR 相似,则有 ①BR AQ QB AP = t t t t 5.133-12-10= 514=t (2分) ②QB AQ BR AP = ttt t 31235.1-10-= 146921-=t 或14692-2-=t (舍)(2分) (3)设⊙O 与AD 、AB 都相切点M 、N ,联结OM 、ON 、OA . ∴OM ⊥AD ON ⊥AB 且OM =ON =6 又∵矩形ABCD ∴∠A =90° ∴四边形OMAN 是矩形又∵ OM =ON ∴四边形OMAN 是正方形 (1分) ∴MN 垂直平分OA∵△PAQ 与△PA'Q 关于直线PQ 对称 ∴PQ 垂直平分OA∴MN 与PQ 重合 (1分)∴ MA = PA = 10-t = 6 ∴ t = 4 (1分) ∴AN = AQ = x t = 6 ∴x =23(1分) ∴当t = 4 和x =23时点A'与圆心O 恰好重合.第25题图(1)第25题图(2)(P )。