2019届杨浦区中考数学二模(含答案)

合集下载

2018~2019上海市杨浦区二模数学

2018~2019上海市杨浦区二模数学

2018~2019学年杨浦区九年级二模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1. 如图,已知数轴上的点A 、B 表示实数分别为a 、b ,那么下列等式成立的是( )(A )b a b a -=+; (B )b a b a --=+; (C )a b b a -=+;(D )b a b a +=+.2. 下列关于x 的方程一定有实数解的是( )(A )012=--mx x ;(B )3=ax ; (C )046=-⋅-x x ;(D )111-=-x xx . 3. 如果0<k ,0>b ,那么一次函数b kx y +=的图像经过( )(A )第一、二、三象限; (B )第二、三、四象限;(C )第一、三、四象限;(D )第一、二、四象限.4. 为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( ) (A )80;(B )被抽取的80名初三学生; (C )被抽取的80名的初三学生体重;(D )该校初三学生的体重.5. 如图,已知ADE △是ABC △绕点A 逆时针旋转所得,其中点D 在射线AC 上,设旋转角为α,直线BC与直线DE 交于点F ,那么下列结论不正确的是( ) (A )α=∠BAC ; (B )α=∠DAE ;(B )α=∠CFD ;(D )α=∠FDC .6. 在下列条件中,能够判定一个四边形是平行四边形的是( )(A )一组对边平行,另一组对边相等; (B )一组对边相等,一组对角相等;(C )一组对边平行,一条对角线平分另一条对角线; (D )一组对边相等,一组对角线平分另一条对角线.二、填空题(本大题共12题,每题4分,满分48分) 7. 计算:=+522)(y y .8. 分解因式:=-+-1222b ab a . 9. 方程x x -=-11的解为: .10. 如果正比例函数x k y )2(-=的函数值y 随x 的增大而减小,且它的图像与反比例函数xky =的图像没有公共点,那么k 的取值范围是 . 11. 从5-,310-,6-,1-,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为 .12.某校为了了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分.那么,其中喜欢足球的学生数占被调查总人数的百分比为 %.13.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为.14.如图,ABC△中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设aAB=,bAC=,用a,b表示GE,那么=GE.15.正八边形的中心角是度.16.如图,点M、N分别在AOB∠的边OA、OB上,将AOB∠沿直线MN翻折,设点O落在点P处,如果当4=OM,3=ON时,点O、P的距离为4,那么折痕MN的长为.17.如果当0≠a,0≠b,且ba≠时,将直线baxy+=和直线abxy+=称为一对“对偶直线”,把它们的公共点称为该“对偶直线”的“对偶点”,那么请写出“对偶点”为)4,1(的一对“对偶直线”:.18.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知5=AD,2=AE,4=AF.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是.第14题图第16题图第18题图三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:3630cos4)23()21()3(032+︒--+--.类别 A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10 4 6 220. (本题满分10分)已知关于x 、y 的二元一次方程组⎩⎨⎧+=-=+.3;122ab y b x a by ax 的解为⎩⎨⎧-==.1,1y x ,求a 、b 的值.21. (本题满分10分,第(1)小题4分,第(2)小题6分)已知在梯形ABCD 中,BC AD //,BC DC ⊥,且1=AD ,3=DC ,点P 为边AB 上一动点,以P 为圆心,BP 为半径的圆交边BC 于电脑Q .(1)求AB 的长; (2)当BQ 的长为940时,请通过计算说明圆P 与直线DC 的位置关系.22. (本题满分10分,第(1)小题4分,第(2)小题2分,第(3)小题3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发时间x (分)之间的关系如图中折线CD BC AB OA ---所示.(1)求线段AB 的表达式,并写出自变量x 的取值范围; (2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?23. (本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在AABC △中,BC AB =,︒=∠90ABC ,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC .求证:(1)四边形FBGH 是菱形;(2)四边形ABCH 是正方形.24. (本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知开口向上的抛物线222+-=ax ax y 与y 轴的交点为A ,顶点为B ,对称轴与x 轴的交点为C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N .(1)求点D 的坐标;(2)求点M 的坐标(用含a 的代数式表示);(3)当点N 在第一象限,且ONA OMB ∠=∠时,求a 的值.25. (本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦AO BC =,点D 为BC 的中点. (1)如图1,联结AC 、OD ,设OAC α∠=,请用α表示AOD ∠;(2)如图2,当点B 为»AC 的中点时,求点A 、D 之间的距离; (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.图1 图2 图3。

2019年初三二模杨浦区(答案)

2019年初三二模杨浦区(答案)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。

粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。

如果无误,请将条形码粘贴在答题卡的对应位置。

万一粘贴不理想,也不要撕下来重贴。

只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。

2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。

如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。

写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。

3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。

若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。

不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。

4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。

如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。

5 不要把文具带出考场考试结束,停止答题,把试卷整理好。

然后将答题卡放在最上面,接着是试卷、草稿纸。

不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。

请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。

6 外语听力有试听环外语考试14:40入场完毕,听力采用CD播放。

14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。

听力部分考试结束时,将会有“听力部分到此结束”的提示。

听力部分结束后,考生可以开始做其他部分试题。

杨浦区2018学年度第二学期初三质量调研语文试卷(满分150分,考试时间100分钟)一、文言文阅读(40分)(一)默写(15分)1.昨夜江边春水生,_________________。

上海市杨浦区2019年5月中考二模数学试卷含答案解析

上海市杨浦区2019年5月中考二模数学试卷含答案解析

2019年上海市杨浦区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(2019•杨浦区二模)点A是数轴上的任意一点,则下列说法正确的是()A.点A表示的数一定是整数B.点A表示的数一定是分数C.点A表示的数一定是有理数D.点A表示的数可能是无理数考点:实数与数轴.分析:根据数轴上的点与实数一一对应,可得答案.解答:解:数轴上的点与实数一一对性应,故A错误;数轴上的点与实数一一对应,故B错误;根据互为相反数的两个数的绝对值相等,故C错误;数轴上的点与实数一一对应,所以点A有可能是无理数,故D正确;故选:D.点评:本题考查了数轴,注意数轴上的点与实数一一对应.2.(2019•杨浦区二模)下列关于x的方程一定有实数解的是()+=0 B.=1﹣x C.x2﹣x﹣1=0 D.x2﹣x+1=0A.考点:根的判别式;无理方程;分式方程的解.分析:根据解分式方程、无理方程的步骤和方法以及根的判别式逐一判定即可.解答:解:A、去分母的2﹣1﹣x=0,解得x=1,x﹣1=0,此方程无解,此选项错误;B、两边平方的x﹣2=x2﹣2x+1,x2﹣3x+3=0,△=(﹣3)2﹣4×1×3<0,此方程无解,此选项错误;C、△=(﹣1)2﹣4×1×(﹣1)>0,此方程有两个不相等的实数根,此选项正确;D、△=(﹣1)2﹣4×1×1<0,此方程无解,此选项错误.故选:C.点评:此题考查一元二次方程根的判别式,以及解分式方程和无理方程的步骤.3.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1 B.0.17 C.0.33 D.0.4考点:频数(率)分布直方图.专题:应用题;图表型.分析:首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率.解答:解:∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,而仰卧起坐总次数为:3+10+12+5=30,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4.故选D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4.(2019•杨浦区二模)将抛物线y=x2﹣2平移到抛物线y=x2+2x﹣2的位置,以下描述正确的是()A.向左平移1个单位,向上平移1个单位B.向右平移1个单位,向上平移1个单位C.向左平移1个单位,向下平移1个单位D.向右平移1个单位,向下平移1个单位考点:二次函数图象与几何变换.分析:根据配方法,可化成顶点式,根据两顶点式函数图象的关系,左加右减,上加下减,可得答案.解答:解:y=x2+2x﹣2转化成y=(x+1)2﹣3,将抛物线y=x2﹣2平移到抛物线y=(x+1)2﹣3,图象向左平移了1个单位,向下平移了1个单位,故选:C.点评:本题考查了二次函数图象与几何变换,先化成顶点式,再根据左加右减,上加下减.5.(2019•杨浦区二模)下列图形既是中心对称又是轴对称的是()A.菱形B.梯形C.正三角形D.正五边形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(2019•杨浦区二模)下列条件一定能推得△ABC与△DEF全等的是()A.在△ABC和△DEF中,∠A=∠B,∠D=∠E,AB=DEB.在△ABC和△DEF中,AB=AC,∠A=∠F,FD=FEC.在△ABC和△DEF中,==1,∠B=∠ED.在△ABC和△DEF中,==1,∠B=∠E考点:全等三角形的判定.分析:根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.解答:解:A、两三角形没有一个相等的条件,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;B、两三角形只有一个相等的条件∠A=∠F,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;C、两三角形只有一个相等的条件∠B=∠E,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;D、能推出AB=DE,BC=EF,∠B=∠E,符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项正确;故选D.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(2019•杨浦区二模)计算:+=5.考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可.解答:解:原式=2+3=;故答案为:5.点评:本题考查了二次根式的加减,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.8.(2019•杨浦区二模)方程的根是x=2.考点:无理方程.专题:计算题.分析:先把方程两边平方,使原方程化为整式方程x+2=x2,解此一元二次方程得到x1=2,x2=﹣1,把它们分别代入原方程得到x2=﹣1是原方程的增根,由此得到原方程的根为x=2.解答:解:方程两边平方得,x+2=x2,解方程x2﹣x﹣2=0得x1=2,x2=﹣1,经检验x2=﹣1是原方程的增根,所以原方程的根为x=2.故答案为x=2.点评:本题考查了无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.9.(2019•杨浦区二模)如果反比例函数y=的图象在第二、四象限,那么k的取值范围是k>1.考点:反比例函数的性质.分析:由于反比例函数y=的图象在二、四象限内,则1﹣k<0,解得k的取值范围即可.解答:解:由题意得,反比例函数y=的图象在二、四象限内,则1﹣k<0,解得k>1.故答案为:k>1.点评:本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.10.(2019•杨浦区二模)函数y=kx+b的大致图象如图所示,则当x<0时,y的取值范围是y<1.考点:一次函数与一元一次不等式.分析:观察图象得到直线与y轴的交点坐标为(0,1),且图象从左往右逐渐上升,根据一次函数性质得到y随x的增大而增大,所以当x<0时,y<1.解答:解:∵一次函数y=kx+b(k≠0)与y轴的交点坐标为(0,1),且图象从左往右逐渐上升,∴y随x的增大而增大,∴当x<0时,y<1.故答案为y<1.点评:本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象从左往右逐渐上升,y随x的增大而增大;当k<0,图象从左往右逐渐下降,y随x的增大而减小;直线与y轴的交点坐标为(0,b).11.(2019•杨浦区二模)黄老师在数学课上给出了6道练习题,要求每位同学独立完成.现将答对的题目数与相应的人数列表如下:答对题目数 2 3 4 5 6相应的人数 1 2 6 8 3则这些同学平均答对 4.5道题.考点:加权平均数.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:该组数据的平均数===4.5(道).故答案为4.5.点评:本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5,6这五个数的平均数,对平均数的理解不正确.12.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是.考点:列表法与树状图法.分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是.点评:考查概率的概念和求法,用到的知识点为:概率=所求情况数与总情况数之比.13.(2019•杨浦区二模)在Rt△ABC中,∠C=90°,点D为AB边上的中点,如果=,=,那么=﹣(用,表示).考点:*平面向量.分析:根据线段中点的定义表示出,再根据向量的三角形法则解答即可.解答:解:∵点D为AB边上的中点,∴==,由三角形法则得,=﹣=﹣.故答案为:﹣.点评:本题考查了平面向量,向量的问题熟练掌握平行四边形法则和三角形法则是解题的关键.14.(2019•杨浦区二模)如果人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,那么该斜坡的坡度是1:3.考点:解直角三角形的应用-坡度坡角问题.分析:先求出这个人走的水平距离,再根据坡度的定义即可求解.解答:解:由题意得:人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,则这个人走的水平距离==30,∴坡度i=10:30=1:3.故答案为:1:3.点评:此题主要考查学生对坡度的理解.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.15.(2019•杨浦区二模)如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为14.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.解答:解:∵BC的垂直平分线交AB于点D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周长为:AD+DC+AC=2+6+6=14.故答案为:14.点评:此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.16.(2019•杨浦区二模)如图,在Rt△ABC中,∠A=90°,∠B=30°,BC=10,以A为圆心画圆,如果⊙A与直线BC相切,那么⊙A的半径长为.考点:切线的性质.分析:此题可以转化为求斜边BC上的高的问题;在Rt△ABC中,∠B=30°,可知∠C=60°;进而在Rt△ADC中,由AC及∠C的正弦值可求得AD的长,即⊙A的半径.解答:解:过点A作AD⊥BC,∵∠A=90°,∠B=30°,∴∠C=60°∵BC=10,∴AC=BC=5,∴AD=AC•sin60°=,故答案为:.点评:此题考查了切线的性质,将由切线求半径的问题转化为解直角三角形的问题是解题的关键.17.(2019•杨浦区二模)如果将点(﹣b,﹣a)称为点(a,b)的“反称点”,那么点(a,b)也是点(﹣b,﹣a)的“反称点”,此时,称点(a,b)和点(﹣b,﹣a)是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:(3,﹣3).考点:关于原点对称的点的坐标.专题:新定义.分析:首先正确理解题意,然后再找出符合条件的点的坐标即可.解答:解:根据题意可得这样的点是(3,﹣3),故答案为:(3,﹣3);点评:此题主要考查了点的坐标,关键是正确理解题意.18.(2019•杨浦区二模)如图,在菱形ABCD中,AB=a,∠ABC=α.将菱形ABCD绕点B顺时针旋转(旋转角小于90°),点A、C、D分别落在A′、C′、D′处,当A′C′⊥BC时A′D=2acos﹣a (用含有a和α的代数式表示).考点:菱形的性质;旋转的性质.分析:当A′C′⊥BC时,D'在BC的延长线上,据此作出图形,利用三角函数求解.解答:解:∵四边形ABCD是菱形,∴对角线AC⊥BD,又∵A'C'⊥BC,∴D'在BC的延长线上.∵∠ABC=α,∴BD=2a•cos,而A'D=BD﹣BA'=2a•cos﹣a.故答案是:2a•cos﹣a.点评:本题考查了菱形的性质,根据菱形的性质,注意到D'和A'的位置,D'在BC的延长线上是关键.三、解答题:(本大题共7题,满分78分)19.(10分)先化简,再求值:,其中.考点:二次根式的化简求值;分式的化简求值.专题:压轴题.分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.解答:解:原式=×+=,当x=+1时,原式==.点评:分式先化简再求值的问题,难度不大.20.(10分)(2019•杨浦区二模)解不等式组:,且写出使不等式组成立的所有整数.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.分析:分别求出不等式组两不等式的解集,找出解集的公共部分确定出不等式组的解集,找出解集中的所有整数解即可.解答:解:,由①得:x≤3;由②得:x>﹣2,∴不等式组的解集是﹣2<x≤3,则使不等式组成立的所有整数是﹣1、0、1、2、3.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(10分)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<x<15的时段内,速度较快的人是;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.考点:一次函数的应用.专题:压轴题;图表型.分析:根据图象信息可知,甲运动员图象经过(0,5000)(20,0)所以可用待定系数法求解.距离可根据图象求出,时间可求:20﹣15=5.速度=也就迎刃而解了.解答:解:(1)根据图象信息可知他们在进行5000米的长跑训练,(1分)直线倾斜程度越大表明变化大;甲.(2)设所求直线的解析式为:y=kx+b(0≤x≤20),(1分)由图象可知:b=5000,当x=20时,y=0,∴0=20k+5000,解得k=﹣250.(1分)即y=﹣250x+5000(0≤x≤20)(1分)(3)当x=15时,y=﹣250x+5000=﹣250×15+5000=5000﹣3750=1250.(1分)两人相距:(5000﹣1250)﹣(5000﹣2000)=750(米).(1分)两人速度之差:=150(米/分).(1分)点评:找准本题突破点是甲运动员的图象很关键.22.(10分)(2019•杨浦区二模)如图,已知⊙0是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC是中点,AB=AC,BC=6.求∠OED的正切值.考点:垂径定理;三角形中位线定理;圆周角定理;解直角三角形.分析:连接AO并延长交BC于点H,连接OC,先根据AB=AC得出=,根据垂径定理得出OH及AH的长,由锐角三角函数的定义得出tan∠HAC=tan∠OAE=,再根据D、E分别是边AB和边AC的中点,得出DE∥BC,根据直角三角形的性质得出∠OAE+∠AED=90°,∠AED+∠OED=90°,故可得出∠OAE=∠OED,进而得出结论.解答:解:连接AO并延长交BC于点H,连接OC,∵AB=AC,∴=,∵O为圆心,∴AH⊥BC,BH=HC,∴HC=3,∵半径OC=5,∴OH=4,AH=9,∴在Rt△AHC中,tan∠HAC===,即tan∠OAE=,∵D、E分别是边AB和边AC的中点,∴DE∥BC,∴AH⊥DE,∴∠OAE+∠AED=90°,∵E是边AC的中点,O为圆心,∴OE⊥AC,∴∠AED+∠OED=90°,∴∠OAE=∠OED,∴tan∠OED=tan∠OAE=.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2019•杨浦区二模)梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF.(1)求证:AE•CF=BE•DF;(2)若点E为AB中点,求证:AD•BC=2EC2﹣BC2.考点:相似三角形的判定与性质.专题:证明题.分析:(1)求出∠B=∠DCE,证△BCE∽△CEF,推出∠BCE=∠CEF,推出EF∥BC,根据平行线分线段成比例定理得出即可.(2)求出EF=(AD+BC),根据相似三角形的性质得出CE2=BC•EF,代入求出即可.解答:证明:(1)∵CE⊥AB,∴∠B+∠BCE=90°,∵DC⊥BC,∴∠DCE+∠BCE=90°,∴∠B=∠DCE,∵BE×CE=BC×CF,∴=,∴△BCE∽△CEF,∴∠BCE=∠CEF,∴EF∥BC,∴=,即AE•CF=BE•DF.(2)∵在梯形ABCD中,EF∥BC∥AD,E为AB中点,∴F为DC的中点,∴EF=(AD+BC),∵△BCE∽△CEF,∴,即CE2=BC•EF,∴CE2=(AD+BC)•BC,整理得:AD•BC=2EC2﹣BC2.点评:本题考查了相似三角形的性质和判定,平行线分线段成比例定理,三角形的中位线的应用,主要考查了学生的推理能力,题目比较典型,难度适中.24.(12分)(2019•杨浦区二模)直线y=kx﹣6过点A(1,﹣4),与x轴交于点B,与y轴交于点D,以点A为顶点的抛物线经过点B,且交y轴于点C.(1)求抛物线的表达式;(2)如果点P在x轴上,且△ACD与△PBC相似,求点P的坐标;(3)如果直线l与直线y=kx﹣6关于直线BC对称,求直线l的表达式.考点:二次函数综合题.专题:综合题.分析:(1)将A坐标代入一次函数解析式求出k的值,进而求出B坐标,根据A为抛物线的顶点,设出抛物线顶点形式,将B坐标代入求出a的值,确定出抛物线解析式;(2)由k的值确定出一次函数解析式,求出D的坐标,由抛物线解析式求出C坐标,由A的坐标得到∠DCA=45°,且AC=,CD=3,根据B与C坐标得到∠OCB=45°,可得出∠DCA=∠OCB,由△ACD与△PBC相似,且点P在x轴上,得到点P在B点的左侧,分两种情况考虑:当△BPC∽△ACD时;当△BCP∽△CAD时,分别求出BP的长,即可确定出P的坐标;(3)过点D作DH⊥BC并延长DH到点M,使HM=HD,连接CM、BM,可得直线BM即为直线l,且CM=CD,∠MCH=∠DCH,根据C与D坐标得到CM=CD,根据B与C坐标得到三角形BOC为等腰直角三角形,利用等腰三角形的性质得到∠OCB=45°,进而得到∠MCH=45°,∠MCD=90°,得出MC⊥y轴,确定出M坐标,设直线l的解析式为y=kx+b,将B与M坐标代入求出k与b的值,即可确定出直线l解析式.解答:解:(1)∵y=kx﹣6过点A(1,﹣4),∴﹣4=k﹣6,∴k=2,即y=2x﹣6,令y=0,得到x=3,即B(3,0),∵以点A为顶点的抛物线经过点B,∴设解析式为y=a(x﹣1)2﹣4,将x=3,y=0代入得:0=a(3﹣1)2﹣4,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)∵k=2,∴y=kx﹣6,即y=2x﹣6,∴D(0,﹣6),∵抛物线与y轴交于点C,∴C(0,﹣3),∵A(1,﹣4),∴∠DCA=45°,且AC=,CD=3,∵B(3,0),C(0,﹣3),∴∠OCB=45°,∴∠DCA=∠OCB,∵△ACD与△PBC相似,且点P在x轴上,∴点P在B点的左侧,当△BPC∽△ACD时,=,即=,解得:BP=2;当△BCP∽△CAD时,=,即=,解得:BP=9,∴BP=2或9,∴点P坐标为(1,0)或(﹣6,0);(3)过点D作DH⊥BC并延长DH到点M,使HM=HD,连接CM、BM,∴直线BM即为直线l,且CM=CD,∠MCH=∠DCH,∵C(0,﹣3),D(0,﹣6),∴CM=CD=3,∵B(3,0),C(0,﹣3),∴∠OCB=45°,∴∠DCH=∠OCB=45°,∴∠MCH=45°,∴∠MCD=90°,即MC⊥y轴,∵MC=CD=3,∴M(﹣3,﹣3),设直线l的解析式为y=kx+b,则,解得:,∴直线l的解析式为y=x﹣.点评:此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,相似三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握待定系数法是解本题的关键.25.(14分)(2019•杨浦区二模)已知梯形ABCD中,AD∥BC,AD=1,BC=2,sinB=,过点C 在∠BCD的内部作射线交射线BA于点E,使得∠DCE=∠B.(1)如图1,当ABCD为等腰梯形时,求AB的长;(2)当点E与点A重合时(如图2),求AB的长;(3)当△BCE为直角三角形时,求AB的长.考点:相似形综合题.分析:(1)作AM∥DC交BC于点M,AH⊥BC于点H,AD=1,BC=2,sinB=,得到AM=AB,BH=HM=,结合三角函数的定义可以求得AB的长.(2))由AD∥BC得到∠DAC=∠ACB,又∵∠DCE=∠B,∴△ADC∽△CAB,得到AC2=AD•BC,求得AC的长度,结合勾股定理,即可构造出关于AB的方程,解方程即可求得相应的AB的长度.(3)分两种情况来讨论:如图3﹣1,当BE⊥CE时,∵∠DCE=∠B,∠B+∠BCE=90°,∴∠DCE+∠BCE=90°,作AH⊥BC,则HC=AD=1,∴BH=BC﹣HC=2﹣1=1,由sinB即可求得cosB的值,继而求得AB的长度;如图3﹣2,当BC⊥CE时,延长DA交CE的延长线于点F,由△FDC∽△CEB,可以得到AE的长度,继而求得AB的长度.解答:解:(1)如图1,作AM∥DC交BC于点M,作AH⊥BC于点H,∵AD∥BC,∴AMCD为平行四边形,∴AM=DC,MC=AD=1,∴BM=BC﹣MC=2﹣1=1,∵四边形ABCD为等腰梯形,∴AB=DC,∴AB=AM,∴BH=HM=在直角三角形ABH中,∵sinB==,∴cosB=,∵,∴.(2)如图2,∵AD∥BC,∴∠DAC=∠ACB,又∵∠DCE=∠B,∴△ADC∽△CAB,∴,∴AC2=AD•BC=2,作AF⊥BC于点F,设AB=x,∵sinB=,∴AF=,BF=,∴,在直角三角形AFC中,AF2+CF2=AC2,即:,∴,即当点A与点E重合时,AB=,或者AB=.(3)∵△BCE为直角三角形,∴BE⊥CE或BC⊥CE,情况一,当BE⊥CE时,如图3﹣1,∵∠DCE=∠B,∠B+∠BCE=90°,∴∠DCE+∠BCE=90°,作AH⊥BC,则HC=AD=1,∴BH=BC﹣HC=2﹣1=1,又由sinB=可得,cosB=,解得:.情况二,当BC⊥CE时,如图3﹣2,延长DA交CE的延长线于点F,设AE=a,则,在直角三角形BCE中,∵BC=2,sinB=,∴BE=,EC=,∵AD∥BC,BC⊥CE,∴AD⊥EC,又∵∠DCE=∠B,∴△FDC∽△CEB,∴,∴,∴.∴∴当△BCE为直角三角形时,.点评:本题主要考查了相似三角形的判定与性质的综合应用,解答本题的关键在于学会用分类讨论和类比的思想解决问题.。

【2019年中考数学】上海市杨浦区2019届中考二模数学试卷及答案

【2019年中考数学】上海市杨浦区2019届中考二模数学试卷及答案

杨浦区2019学年度第二学期初三质量调研 数学试卷 2019.4(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列各数是无理数的是( )(A)︒60cos (B)1.3 (C)半径为1cm 的圆周长 (D )38 2.下列运算正确的是( )(A )m n m 2=⋅ (B )632)(m m = (C )33)(mn mn = (D )326m m m =÷3.若y x 33->,则下列等式一定成立的是( )(A) 0>+y x (B )0>-y x (C )0<+y x (D )0<-y x 4.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是9-10小时的组频数和组频率分别是( ) (A)15和0.125 (B )15和0.25 (C)30和0.125 (D )30和0.255.下列图形是中心对称图形的是( )(A) (B) (C) (D)6.如图2,半径为1的圆1O 与半径为3的圆2O 内切,如果半径为2的圆与圆1O 和圆2O 都相切,那么这样的圆的个数是( ) (A )1 (B) 2 (C) 3 (D)4二、填空题:(本大题共12题,每题4分,满分49分) 0.1500.1250.1000.0750.0500.025小时数(个)频率组距图112108642O 2O 19.当0,0,a b <>时,化简=b a 2 9. 函数211++-=x xy 中,自变量x 取值范围是 10. 如果反比例函数xky =的图像经过点),2(1y A 与),3(2y B ,那么21y y 的值等于11. 三人中至少两人性别相同的概率是12. 25位同学10秒钟跳绳的成绩汇总如下表; 人数 1 2 3 4 5 10 次数15925101920那么跳绳的中位数是13.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟。

杨浦区中考数学二模试卷及答案

杨浦区中考数学二模试卷及答案

杨浦区2014学年度第二学期初三质量调研数 学 试 卷 2015.4(完卷时间 100分钟 满分 150分)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题每小题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果x =2是方程121-=+a x 的根,那么a 的值是 ( ▲ ) (A )0; (B )2; (C )-2; (D )-6.2.在同一直角坐标系中,若正比例函数1y k x =的图像与反比例函数2k y x=的图像没有公 共点,则 ( ▲ )(A )k 1k 2<0; (B )k 1k 2>0; (C )k 1+k 2<0; (D )k 1+k 2>0.3.名队员的年龄如下表则这12名队员年龄的众数和中位数分别是 ( ▲ )(A )2, 19; (B )18, 19; (C )2, 19.5; (D )18, 19.5.4.下列命题中,真命题是 ( ▲ )(A )周长相等的锐角三角形都全等; (B )周长相等的直角三角形都全等;(C )周长相等的钝角三角形都全等; (D )周长相等的等腰直角三角形都全等.5.下列图形中,是中心对称图形但不是轴对称图形的是 ( ▲ )(A ); (B ); (C ); (D ).6.设边长为3的正方形的对角线长为a .下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的一个平方根.其中,所有正确说法的序号是 ( ▲ )(A ) ①④; (B )②③; (C )①②④; (D )①③④.二、 填空题(本大题每小题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.分解因式:24xy x -= ▲ .8.不等式5x x -<的解集是 ▲ .9.x 的解为 ▲ .10.如果关于x 的方程23mx =有两个实数根,那么m 的取值范围是 ▲ .11.如果将抛物线24y x =-平移到抛物线24y x x =-的位置,那么平移的方向和距离分别是 ▲ .12.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ▲ .13.如图,△ABC 中,如果AB =AC ,AD ⊥BC 于点D ,M 为AC 中点,AD 与BM 交于点G ,那么:GDM GAB S S ∆∆的值为 ▲ .14.如图,在ABC ∆中,记b AC a AB ==,,点P 为BC 边的中点,则AP = ▲ (用向量、来表示).15.如图,Rt △ABC 中,∠ACB =90︒,BC =4cm ,AC =3cm ,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相内切,那么⊙A 的半径长为 ▲ cm.16.本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ . 17.对于平面直角坐标系 x Oy 中的点P (a ,b ),若点P '的坐标为(b a ka b k ++,)(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”.例如:P (1,4)的“2属派生 点”为P '(41+21+42⨯,),即P '(3,6).若点P 的“k 属派生点”P '的坐标为(3,3),请写出一个符合条件的点P 的坐标: ▲ .18.如图,钝角△ABC 中,tan ∠BAC =34,BC =4,将三角形绕着点 A 旋转,点C 落在直线AB 上的点C ,处,点B 落在点B ,处,若C 、B 、B ,恰好在一直线上,则AB 的长为 ▲ .三、 解答题(第19~22题每题10分,第23~24题每题12分,第25题14分,满分78分)19.(本题满分10分) 计算:0111)2cos30()12--︒+.20.(本题满分10分) 解方程组:223240.xy x xy y =⎧⎨-+-=⎩ 21. (本题满分10分)如图,在一笔直的海岸线上有A 、B 两个观察站,A 在B 的正东方向,A 与B 相距2千米。

上海市杨浦区2019-2020学年中考数学模拟试题(2)含解析

上海市杨浦区2019-2020学年中考数学模拟试题(2)含解析

上海市杨浦区2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣73.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1084.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.5.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.6.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-17.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a68.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.129.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为()A.19°B.29°C.38°D.52°10.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.11.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-12.下列二次根式,最简二次根式是()A8B.12C13D0.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.14.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.15.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.16.计算:(32+1)(32﹣1)=.17.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,A B的长是_____.以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则¼2019201818.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.20.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若5CE=2,求线段AE的长.21.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生; (2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.22.(8分)如图,以△ABC 的一边AB 为直径作⊙O , ⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1) 求证:DE ⊥AC ;(2) 连结OC 交DE 于点F ,若3sin 4ABC ∠=,求OFFC 的值.23.(8分)已知四边形ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径,DE ⊥AB ,垂足为E (1)延长DE 交⊙O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC=PB ;(2)过点B 作BG ⊥AD ,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若3 ,DH=1,∠OHD=80°,求∠BDE 的大小.24.(10分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18) 1.901.00阶梯二18~25(含25) 2.85阶梯三25以上 5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议25.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)26.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.27.(12分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表x ﹣1 1 1 3y ﹣1 3 5 3下列结论:①ac<1;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=1的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>1.其中正确的结论是.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.2.C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.考点:科学记数法.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.5×1.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.5.C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.6.A【解析】【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a =()2=.故选A . 7.B 【解析】 【分析】根据整式的运算法则分别计算可得出结论. 【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确; 选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确; 选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确; 选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确. 故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式. 8.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等. 9.C 【解析】 【分析】由AO ∥BC ,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°. 【详解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故选:C.【点睛】本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.10.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.11.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.12.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A=B2=,不是最简二次根式,故本选项不符合题意;CD10=,不是最简二次根式,故本选项不符合题意.故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 0.0007=7×10-1. 故答案为:7×10-1. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.1. 【解析】 【分析】根据平方差公式计算即可. 【详解】原式=()2-12 =18-1 =1故答案为1. 【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.17.201923π【解析】【分析】先根据一次函数方程式求出B 1点的坐标,再根据B 1点的坐标求出A 2点的坐标,得出B 2的坐标,以此类推总结规律便可求出点A 2019的坐标,再根据弧长公式计算即可求解,.【详解】直线,点A 1坐标为(2,0),过点A 1作x 轴的垂线交直线于点B 1可知B 1点的坐标为(2,,以原O 为圆心,OB 1长为半径画弧x 轴于点A 2,OA 2=OB 1,OA 2,点A 2的坐标为(4,0),这种方法可求得B 2的坐标为(4,,故点A 3的坐标为(8,0),B 3(8, 以此类推便可求出点A 2019的坐标为(22019,0),则¼20192018A B 的长是2019201960221803ππ⨯⨯=,故答案为:201923π.【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.18.235-【解析】【分析】由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【详解】设MN与OP交于点E,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,2223OM OE-=在Rt△ONE中,225ON OE-∴35故答案为35【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF 即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD .在△ABC 与△EFD 中,∴△ABC ≌△EFD (AAS ), ∴AB=EF .20.(1)证明见解析;(2)证明见解析;(3)42. 【解析】试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论; (3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得EH=DH=CH=2,Rt △ACH 中,AH=32,即可得到AE=AH+EH=42.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.21.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.22.(1)证明见解析(2)8 7【解析】【分析】(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90° .∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC .∴∠DEC=∠ODE= 90° .∴DE⊥AC .(2)连接AD . ∵OD∥AC,∴OF OD FC EC=.∵AB为⊙O的直径,∴∠ADB= ∠ADC =90° . 又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB=34,设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE⊥AC,∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD,∴△ADC∽△AED.∴AD AC AE AD=.∴2AD AE AC=⋅.∴94=AE x. ∴74=EC x.∴87== OF ODFC EC.23.(1)详见解析;(2)∠BDE=20°.【解析】【分析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC 是平行四边形, ∴BC=DH=1,在Rt △ABC 中,tan ∠ACB=ABBC= ∴∠ACB=60°, ∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°, ∴∠ODH=20°, 设DE 交AC 于N , ∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°, ∴∠DOC=∠DOH ﹣∠NOH=40°, ∵OA=OD , ∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°, ∵BC ∥DE ,∴∠BDE=∠CBD=20°. 【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.24.(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%. 【解析】 试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x 立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x ≤24,即小明家每月的用水量不要超过24立方米. 试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x≤24,∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.25.(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答26.(1)y=﹣x2﹣2x+1;(2)(﹣32,154)【解析】【分析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE最大,△PDE的周长也最大.将x=-32代入-x2-2x+1,进而得到P点的坐标.【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),∴9a-3b+c=0 {c=3a+b+c=0,解得a=-1 {b=-2 c=3,∴抛物线的解析式为y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.27.①③④.【解析】试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴a-b1 {35cca b c+=-=++=,解得a1{33ca=-==,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;对称轴为直线332(1)2x=-=⨯-,所以,当x>32时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;综上所述,结论正确的是①③④.故答案为①③④.【考点】二次函数的性质.。

详解及答案:2019年上海市杨浦区高三下学期模拟质量调研(二模)数学试题

详解及答案:2019年上海市杨浦区高三下学期模拟质量调研(二模)数学试题

7.函数
的值域是________
【答案】
【解析】
【分析】
先展开二阶行列式,再由反正弦弦数与指数函数的性质能求出函数的值域.
【详解】∵函数
arcsinx+2x,
∵x∈[﹣1,1],∴ ∴函数
arcsinx+2x 在[﹣1,1]上单调递增,
的值域为

故答案为:

【点睛】本题考查函数的值域的求法,考查二阶行列式展开式、反正弦弦数的性质等基础知识,考查运算求解能力,









.∴

又∵a2=b2+c2﹣2bccosA 且

又∵


.∴

故选:D.
【点睛】本题考查了向量的线性运算,基本不等式求最值,注意整体代换的运用.
三. 解答题(本大题共 5 题,共 14+14+14+16+18=76 分)
17.已知函数
.
(1)求 的定义域;
(2)求函数
在区间
内的零点.
5.若复
________
【答案】5
【解析】
【分析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得 a,b 的值,则答案可求.
【详解】解:由(a+bi)2=a2﹣b2+2abi=3+4i,

,解得


∴a2+b2=5. 故答案为:5. 【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,考查计算能力,是基础题.
A.
B.
C.
D.

2019-2020上海杨浦初级中学中考数学模拟试卷(含答案)

2019-2020上海杨浦初级中学中考数学模拟试卷(含答案)

【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D 【解析】
分析:设点 A 的坐标为(m, k ),则根据矩形的面积与性质得出矩形中心的纵坐标为 k ,
m
2m
求出中心的横坐标为 m+ 6m ,根据中心在反比例函数 y= k 上,可得出结果.
k
x
详解:设点 A 的坐标为(m, k ), m
根据测量数据,计算出风筝的高度 CE 约为_____米.(精确到 0.1 米, 3 ≈1.73).
17.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所 示,则矩形 MNPQ 的面积是________.
D. x x 1 36
8.如图,AB∥CD,AE 平分∠CAB 交 CD 于点 E,若∠C=70°,则∠AED 度数为( )
A.110°
B.125°
C.135°
D.140°
9.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A.
B.
C.
D.
10.矩形 ABCD 与 CEFG,如图放置,点 B,C,E 共线,点 C,D,G 共线,连接 AF,取 AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
MC 、 CN 、 NA,添加一个条件,使四边形 AMCN 是矩形,这个条件是( )
A. OM 1 AC 2
B. MB MO
C. BD AC
二、填空题
13.如图,直线 a、b 被直线 l 所截,a∥b,∠1=70°,则∠2=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杨浦区2018学年度第二学期初三质量调研
数学试卷 2019.4
一、选择题
1. 如图,已知数轴上的点A 、B 表示的示数分别为a 、b ,那么下列等式成立的是( ) A. a b a b +=- B. a b a b +=-- C. a b b a +=-
D. a b a b +=+
2. 下列关于x 的方程一定有实数解的是( ) A. 210x mx --= B. 3ax = C.
640x x -⋅-=
D.
111
x
x x =
-- 3. 如果0,0k b <>,那么一次函数y kx b =+的图像经过( )
A. 第一、二、三象限
B. 第二、三、四象限
C. 第一、三、四象限
D. 第一、二、四象限
4. 为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( ) A. 80 B. 被抽取的80名初三学生 C. 被抽取的80名初三学生的体重 D. 该校初三学生的体重
5. 如图,已知ADE V 是ABC V 绕点A 逆时针旋转所得,其中点D 在射线AC 上,设旋转角为α,直线BC 与直线DE 交于点F ,那么下列结论不正确的是( ) A. BAC α∠= B. DAE α∠= C. CFD α∠= D. FDC α∠=
6. 在下列条件中,能够判定一个四边形是平行四边形的是( ) A. 一组对边平行,另一组对边相等 B. 一组对边相等,一组对角相等
C. 一组对边平行,一条对角线平分另一条对角线
D. 一组对边相等,一条对角线平分另一条对角线
二、填空题
7. 计算:()
2
35y
y ÷=____________
8. 分解因式:22
21a ab b -+-=____________
9. 方程11x x -=-的解为:____________
10. 如果正比例函数()2y k x =-的函数值y 随x 的增大而减小,且它的图像与反比例函数k
y x
=的图像 没有公共点,那么k 的取值范围是____________ 11. 从10
5,,6,1,0,2,3
π--
--这七个数中随机抽取一个数,恰好为负整数的概率为____________
12. 某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最
喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%
13. 甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟
比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:____________ 14. 如图,ABC
V中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设AB a
=
u u u r r
,AC b
=
u u u r r
,用a
r
、b
r
表示GE
uuu r
,那么GE=
u u u r
____________
15. 正八边形的中心角是____________度
16. 如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如
果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为____________
17. 如果当0
a≠,0
b≠,且a b
≠,将直线y ax b
=+和直线y bx a
=+称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:____________ 18. 如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=4,
如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是____________
第14题图第16题图第18题图
三、解答题
19. 计算:()()
3
21
3324cos30
23
-
⎛⎫
-+--︒+

⎝⎭
20. 已知关于,x y的二元一次方程组
22
1
3
ax by
a x
b y ab
+=


-=+

的解为
1
1
x
y
=


=-

,求a、b的值类别 A B C D E F
类型足球羽毛球乒乓球篮球排球其他
人数10 4 6 2
21. 已知在梯形ABCD中,AD//BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P
为圆心,BP为半径的圆交边BC于点Q.
(1)求AB的长;
(2)当BQ的长为40
9
时,请通过计算说明圆P与直线DC的位置关系.
22. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,
已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
(1)求线段AB的表达式,并写出自变量x的取值范围;
(2)求乙的步行速度;
(3)求乙比甲早几分钟到达终点?
23. 已知:在ABC V 中,AB=BC ,∠ABC =90°,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的
三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC . 求证:(1)四边形FBGH 是菱形;
(2)四边形ABCH 是正方形.
24. 已知开口向下的抛物线2
22y ax ax =-+与y 轴的交点为A ,顶点为B ,对称轴与x 轴的交点为C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N . (1)求点D 的坐标;
(2)求点M 的坐标(用含a 的代数式表示);
(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
25. 已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点.
∠=,请用α表示∠AOD;
(1)如图1,联结AC、OD,设OACα
»AC的中点时,求点A、D之间的距离;
(2)如图2,当点B为
(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.
(图1)(图2)(备用图)
参考答案
一、选择题
1. B
2. A
3. D
4. C
5. D
6. C
二、填空题
7. y 8. ()()11a b a b -+-- 9. 1x = 10. 02k << 11.
2
7
12. 24%
13. 13518020x x =
+ 14. 1133
a b -+r r 15. 45 16. 17. 3,31y x y x =+=+
18.
r <<
三、解答题 19. 原式=10 20. 12a b =-⎧⎨
=-⎩或2
1
a b =⎧⎨=⎩
21.(1)AB 长为5
(2)圆P 与直线DC 相切,说明略 22.(1)()20320416y x x =-+≤≤ (2)80米/分 (3)6分钟 23.(1)证明略 (2)证明略
24.(1)D (2,2) (2)22,0M a ⎛⎫
-
⎪⎝⎭
(3)1
25.(1)1502AOD α∠=︒-(2)1AD =(3)
1
2。

相关文档
最新文档