上海中考数学二模题

合集下载

上海市2024年虹口区中考数学二模试卷

上海市2024年虹口区中考数学二模试卷

一、选择题1. 下列各数中,无理数是( 上海市2024年虹口区中考数学二模试卷)A . 112 B . 3.14159 C.D . 1.2·2. 如果关于x 的一元二次方程−+=x x m 202有实数根,那么实数m 的取值范围是( )A . m >1B . m <1C . ≥m 1D . ≤m 13. 已知二次函数=−−y x 42)(,如果函数值y 随自变量x 的增大而减小,那么x 的取值范围是( ) A . ≥x 4B . ≤x 4C . ≥−x 4D . ≤−x 44. 下列事件中,必然事件是( )A . 随机购买一张电影票,座位号恰好是偶数B . 抛掷一枚质地均匀的硬币,落地后反面朝上C . 在只装有2个黄球和3个白球的盒子中,摸出一个球是红球D . 在平面内画一个三角形,该三角形的内角和等于180°5. 如图1,在正方形ABCD 中,点E 、F 分别在边BC 和AD 上,BE =2,AF =6,如果AE //CF ,那么ABE 的面积为( ) A . 6B . 8C . 10D . 126. 在ABCD 中,BC =5,S ABCD =20,如果以顶点C 为圆心,BC 为半径作C ,那么C 与边AD所在直线的公共点的个数是( ) A . 3个B . 2个C . 1个D . 0个二、填空题7.=_____________ 8. 分解因式:−=a b 922_____________9. 不等式+≤+x x 5232)(的解集是____________ 10. 函数=y 的定义域是______________ 11. 将抛物线=−+y x 212)(先向右平移3个单位,再向下平移4个单位后,所得到的新抛物线的表达式为_____________12. 在一个不透明袋子中,袋有2个红球和一些白球,这些球除颜色外其他都一样,如果从袋中随机摸出一个球是红球的概率为0.25,那么白球的个数是______________13. 某校为了解该校1200名学生参加家务劳动的情况,随机抽取40名学生,调查了他们的周家务劳动时间并制作成频数分布直方图(图2),那么估计该校周家务劳动时间不少于2小时的学生大约有____________名14. 一根蜡烛长30厘米,点燃后匀速燃烧,经过50分钟其长度恰为原长的一半,在燃烧的过程中,如果设蜡烛的长为y (厘米),燃烧的时间为t (分钟),那么y 关于t 的函数解析式为______________(不写定义域)15. 如图3,已知正六边形螺帽的边长是4cm ,那么与该螺帽匹配的扳手的开口a 为____________cm 16. 如图4,在梯形ABCD 中,AD //BC ,BC =2AD ,点E 、F 分别是边AB 、CD 的中点,联结AC ,设,AB a AC b ==,那么用向量,a b 表示向量EF =______________17. 如图5,在ABCD 中,AB =7,BC =8,=B 5sin 4,点P 在边AB 上,AP =2,以点P 为圆心,AP 为半径作P ,点Q 在边BC 上,以点Q 为圆心,CQ 为半径作Q ,如果P 和Q 外切,那么CQ 的长为______________18. 如图6,在扇形AOB 中,∠AOB =105°,OA =8,点C 在半径OA 上,将BOC 沿着BC 翻折,点O 的对称点D 恰好落在弧AB 上,再将弧AD 沿着CD 翻折至弧A D 1(点A 1是点A 的对称点),那么OA 1的长为_______________三、解答题19. 先化简,再求值:⎝⎭++ ⎪÷−⎛⎫−+m m m m m 33121422,其中=m20. 解方程组:②①⎩−−=⎨⎧−=x xy y x y 20262221. 如图7,一次函数图像与反比例函数图像相交于点A (m ,2)和点−B 2,4)(,与y 轴交于点C ,点−D n 1,)(在反比例函数图像上,过点D 作x 轴的垂线交一次函数图像于点E . (1)求反比例函数和一次函数的解析式; (2)求CDE 的面积.22. 根据以下素材,完成探索任务23. 如图9,在Rt ABC 中,∠C =90°,延长CB 至点D ,使得DB =CB ,过点A 、D 分别作AE //BC ,DE //BA ,AE 与DE 相交于点E ,联结BE . (1)求证:⊥BE CD ;(2)联结AD 交BE 于点F ,联结CE 交AD 于点G .如果∠FBA =∠ADB ,求证:=AG AB .24. 新定义:已知抛物线=++y ax bx c 2(其中≠abc 0),我们把抛物线=++y cx bx c 2称为=++y ax bx c 2的“轮换抛物线”,例如:抛物线=++y x x 2312的“轮换抛物线”为=++y x x 232,分别交于点E 、F ,点E 在点F 的上方,抛物线C 2的顶点为P . (1)如果点E 的坐标为(0,1),求抛物线C 2的表达式;(2)设抛物线C 2的对称轴与直线=+y x 38相交于点Q ,如果四边形PQEF 为平行四边形,求点E 的坐标;(3)已知点−M n 4,)(在抛物线C 2上,点N 坐标为⎝⎭⎪−−⎛⎫22,71,当PMN PEF 时,求m 的值.25. 在梯形ABCD 中,AD //BC ,点E 在射线DA 上,点F 在射线AB 上,联结CE 、DF 相交于点P ,∠EPF =∠ABC .(1)如图10①,如果AB =CD ,点E 、F 分别在边AD 、AB 上,求证:=DE CEAF DF; (2)如图10②,如果⊥AD CD ,AB =5,BC =10,∠=ABC 5cos 3,在射线DA 的下方,以DE 为直径作半圆O ,半圆O 与CE 的另一个交点为点G ,设DF 与弧EG 的交点为Q . ①当DE =6时,求EG 和AF 的长; ②当点Q 为弧EG 的中点时,求AF 的长.。

2024年上海市徐汇区中考二模数学试题(解析版)

2024年上海市徐汇区中考二模数学试题(解析版)

2023学年第二学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1. 下列实数中,有理数是( )A.B.C.D.【答案】B 【解析】【分析】本题主要考查实数的分类及算术平方根,熟练掌握实数的分类及算术平方根是解题的关键;根据实数的分类可进行排除选项.,是无理数;故选B .2. 下列单项式中,与单项式是同类项的是( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查了同类项的定义,根据字母相同,字母的指数也相同的项叫做同类项,进行判断即可.【详解】解:与单项式是同类项的是;故选C .3. 已知直线经过第一、二、四象限,则直线经过( )2=232a b 4ab -322a b 323b a 222a b c-232a b 323b a y kx b +=y bx k +=A. 第一、三、四象限B. 第一、二、四象限C. 第一、二、三象限D. 第二、三、四象限【答案】A 【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:已知直线经过第一、二、四象限,则得到,那么直线经过第一、三、四象限.故选:A .【点睛】此题考查一次函数图象与系数关系.解题关键在于注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm )185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )A. 甲 B. 乙 C. 丙 D. 丁【答案】A 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A .【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.的y kx b =+0,0k b <>y kx b =+x 甲x 丙x 乙x 丁2S 甲2S 乙2S 丙2S 丁5. 如图,的对角线、相交于点,如果添加一个条件使得是矩形,那么下列添加的条件中正确的是( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查了矩形的判定,菱形的判定,根据判定定理逐项判断即可.【详解】∵,∴,∴,∴平行四边形是菱形.则A 不符合题意;∵,∴,∴平行四边形菱形.则B 不符合题意;∵,∴.∵,∴,∴,∴平行四边形是菱形.则C 不符合题意;∵,∴.∵,∴,是 ABCD AC BD O ABCD 90DAO ADO ∠+∠=︒DAC ACD ∠=∠DAC BAC ∠=∠DAB ABC∠=∠90DAO ADO ∠+∠=︒90AOD ∠=︒AC BD ⊥ABCD DAC ACD ∠=∠AD CD =ABCD AB CD ACD BAC ∠=∠DAC BAC ∠=∠ACD DAC ∠=∠AD CD =ABCD AD BC ∥180BAD ABC ∠+∠=︒DAB ABC ∠=∠=90B A D ∠︒∴平行四边形是矩形.则D 正确.故选:D .6. 如图,一个半径为的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是( )A. cmB. cmC. cmD. cm【答案】B 【解析】【分析】本题考查了弧长公式.利用题意得到重物上升的高度为定滑轮中所对应的弧长,然后根据弧长公式计算即可.【详解】解:根据题意,重物上升的高度为.故选:B .二、填空题(本大题共12题,每题4分,满分48分)7.的解是________.【答案】【解析】【分析】根据一元二次方程和二次根式的性质求解即可;【详解】,∴,∴,∴,∵,ABCD 9cm 120︒5π6π7π8π120︒()12096cm 180ππ⨯⨯==x 1x ==x 221x x -=()210x -=121x x ==210x -≥∴,∴;故答案是.【点睛】本题主要考查了一元二次方程的求解和二次根式的性质,准确计算是解题的关键.8. 不等式组的解集是________.【答案】【解析】【分析】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.详解】解:,解①得:,解②得:,∴不等式组的解集是.9. 方程组的解是__________.【答案】或【解析】【分析】本题考查解二元二次方程组,一元二次方程,代入消元法,将方程组先转化为一元二次方程,再进行求解即可.【详解】解:由②得:③;把③代入①,得:,解得:,∴,∴方程组的解为:或;【12x ≥1x =1x =()2133231x x x ->⎧⎨-->⎩2x >()2133231x x x ->⎧⎪⎨-->⎪⎩①②2x >5x >-2x >22520x y x y ⎧+=⎨-=⎩21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩22520x y x y ⎧+=⎨-=⎩①②2x y =()2225y y +=1y =±22x y ==±21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩故答案为:或10. 关于的一元二次方程根的情况是:原方程______实数根.【答案】有两个不相等的【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根,据此求解即可.【详解】解:由题意得,,∴原方程有两个不相等的实数根,故答案为:有两个不相等的.11. 如果二次函数的图像的一部分是上升的,那么的取值范围是____________.【答案】【解析】【分析】本题主要考查二次函数的性质,掌握二次函数的性质是解题的关键.根据函数解析式可得抛物线开口向上,则当在对称轴右侧时,函数图像上升,所以求出函数的对称轴即可求解.【详解】解:,又抛物线开口向上,当时,随的增大而减小,图像下降;当时,随的增大而增大,图像上升;二次函数的图像的一部分是上升的,,故答案为:.12. 如果反比例函数的图像经过点,那么的值是______.【答案】【解析】【分析】本题考查反比例函数图像上的点,将点代入函数解析式,求解即可.【详解】解:由题意,得:,21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩x 210x mx --=()200ax bx c a ++=≠240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-()()2241140m m ∆=--⨯⨯-=+>2241y x x =-+x 1x ≥x ()22241211y x x x =-+=--∴1x <y x 1x ≥y x 2241yx x =-+∴1x ≥1x ≥4y x=-(,2)A t t -t (,2)A t t -()24t t ⋅-=-解得:;故答案为:.13. 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是_______.【答案】【解析】【分析】根据构成三角形的条件:两边之和大于第三边,两边之差小于第三边进行判断即可.【详解】∵从长度分别为2、4、6、7的四条线段中随机抽取三条线段∴可能有:2、4、6;2、6、7;4、6、7;2、4、7四种可能性又∵构成三角形的条件:两边之和大于第三边,两边之差小于第三边∴符合条件的有:2、6、7;4、6、7两种故概率为:故答案为:【点睛】本题考查构成三角形的条件以及概率的计算,掌握构成三角形的三边之间的关系是解题关键.14. 小杰沿着坡比的斜坡,从坡底向上步行了米,那么他上升的高度是______米.【答案】【解析】【分析】本题考查了解直角三角形的应用,解题的关键是掌握坡比的定义.设坡度的高为米,根据勾股定理列方程求解.【详解】解:设坡度的高为米,则水平距离为米,,解得:,故答案为:.15. 某校为了了解学生家长对孩子用手机的态度问题,随机抽取了名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这名家长的问卷真实有效),将这份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有名学生,那么可以估计该校对手机持“严格管理”态度的家长____人.t =1221=42121:2.4i =13050x x 2.4x ∴()2222.4130x x +=50x =501001*********【答案】【解析】【分析】本题考查了条形统计图,扇形统计图,用样本估计总体,解题的关键是数形结合.先根据条形统计图计算出稍加询问的百分比,进而结合扇形统计图求出严格管理的百分比,最后利用样本估计总体即可求解.【详解】解:稍加询问的百分比:,严格管理的百分比:,持“严格管理”态度家长人数:(人),故答案为:.16. 如图,梯形中, ,,平分,如果,,,那么是_______(用向量、表示). 【答案】【解析】【分析】本题主要考查了角平分线的定义,平行线的性质,向量的运算,解题的关键是熟练掌握这些知识.根据角平分线的定义,平行线的性质,推出,结合,可得,最后根据,即可求解.【详解】解:设,的400551000.5555%÷==155%25%20%--=200020%400⨯=400ABCD BC AD ∥AB CD =AC BAD ∠2=AD AB AB a = AD b = AC a b12a b +AB BC =2AD BC =12BC AD =12AC AB BC a AD =+=+BAC α∠=平分,,,,,,,,,,故答案为:.17. 如图,在中,,. 已知点是边的中点,将沿直线翻折,点落在点处,联结,那么的长是_______.【解析】【分析】本题考查勾股定理与折叠问题,平行线分线段成比例,如图,为点关于的对称点,过点作,过点作,则,联结,可知,得,进而根据勾股定理可得,,得结合,,可知,再根据勾股定理即可求解,根据折叠的性质得是解决问题的关键.【详解】解:如图,为点关于的对称点,过点作,过点作,则,联结,∴,AC BAD ∠∴BAC CAD α∠=∠= BC AD ∥∴BCA DAC α∠=∠=∴BCA BAC ∠=∠∴AB BC = 2=AD AB ∴2AD BC =∴12BC AD =∴1122AC AB BC a AD a b =+=+=+ 12a b +ABC 6AB AC ==4BC =D AC ABC BD C E AE AE E C BD A AM BC ⊥D DN BC ⊥AM DN ∥AE 1AD MNCD CN==1CN MN ==DN =BD =1122BCD S BC DN BD OC =⋅=⋅△2CE OC ==DE DC =AD CD =AE CE ⊥AE CE ⊥E C BD A AM BC ⊥D DN BC ⊥AM DN ∥AE 122BM CM BC ===∵点是边的中点,即,∴,则为的中点,即,∴,,∵为点关于的对称点,∴,且,,则,∴,则∵,,∴,,又∵,∴,即,∴.18. 如图,点是函数图象上一点,连接交函数图象于点,点是轴负半轴上一点,且,连接,那么的面积是_______.【答案】##【解析】D AC 132AD CD AC ===1ADMNCD CN==N CM 1CN MN==DN ==BD ==E C BD CE BD ⊥OC OE =DE DC =1122BCD S BC DN BD OC =⋅=⋅△DN BC OC BD ⋅===2CE OC ==DE DC =AD CD =DAE DEA ∠=∠DEC DCE ∠=∠180DAE DEA DEC DCE ∠+∠+∠+∠=︒90DEA DEC ∠+∠=︒AE CE ⊥AE ==A 8(0)y x x =-<OA 1(0)y x x=-<B C x AC AO =BC ABC 8-8-【分析】过点,分别作轴的垂线,垂足分别为,,反比例函数比例系数的几何意义得,,证得,由此得,证得 ,然后根据等腰三角形的性质得,则,由此得得,进而可得的面积.【详解】解:过点,分别作轴的垂线,垂足分别为,,如下图所示:点是函数图象上一点,点是反比例函数图象上的点,根据反比例函数比例系数的几何意义得:,,轴,轴,,,,,,,即,,,,轴,,,A B x D E 4OAD S = 0.5OBE S = OAD OBE ∽2()OAD OBE S OA SOB= OA =1)ABC OBC S S = 28AOC OAD S S == 8ABC OBC S S += OBC S = ABC A B x D E A 8(0)y x x =-<B 1(0)y x x=-<1842OAD S =⨯= 110.52OBE S =⨯= AD x ⊥ BE x ⊥AD BE ∴∥OAD OBE ∴ ∽∴2OAD OBE S OA S OB ⎛⎫= ⎪⎝⎭∴2480.5OA OB ⎛⎫== ⎪⎝⎭OA ∴=1)AB OA OB OB OB ∴=-=-=-1AB OB = 1ABC OBC S AB S OB==- ()1ABC OBC S S ∴= AC AO = AD x ⊥OD CD ∴=28AOC OAD S S ∴==,即,.故答案为:.【点睛】此题主要考查了反比例函数比例系数的几何意义,相似三角形的判定和性质,理解反比例函数比例系数的几何意义,熟练掌握相似三角形的判定和性质是解决问题的关键.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19..【答案】【解析】【分析】本题考查了实数的混合运算,解题的关键是掌握实数的混合运算法则.先计算零指数幂、化简二次根式、绝对值,再算加减即可.【详解】解:原式.20.解方程:【答案】【解析】【分析】本题考查了解分式方程和解一元二次方程,解题的关键是熟练掌握解分式方程和解一元二次方程的方法和步骤.先去分母,将分式方程化为整式方程,再进行求解即可.详解】解:,,,【8ABC OBC S S ∴+= 1)8OBC OBC S S -+= OBC S ∴= 8ABC AOC OBC S S S ∴=-=- 8-10212π---21)1=--+11=+2=22161242x x x x +-=--+5x =-22161242x x x x +-=--+()22162x x +-=-244162x x x ++-=-,,,,检验,当时,,∴是原方程的解,当时,,∴不是原方程的解.21. 如图,和⊙相交于点、,连接、、,已知,,.(1)求的半径长;(2)试判断以为直径的是否经过点,并说明理由.【答案】(1)(2)以为直径的经过点,见解析【解析】【分析】本题主要考查了圆的相关性质,相似三角形的判定与性质,线段垂直平分线的性质等知识,解题的关键是灵活运用这些知识.(1)连接,设与的交点为,根据题意可得,,在中,根据勾股定理求出,进而求出,在中,根据勾股定理求出,即可求解;(2)根据题意并结合(1)可得,可证明,得到23100x x +-=()()520x x +-=50,20x x +=-=115,2x x =-=5x =-240x -≠5x =-2x =240x -=2x =1O 2O A B AB 12O O 2AO 48AB =1250O O =230AO =1O 12O O P B 4012O O P B 1AO 12O O AB G 1242AG AB ==12O O AB ⊥2Rt AGO 2GO 1GO 1Rt AGO 1AO 22122AO GO O O AO =122O AO AGO ∽,取的中点,连接、,推出,结合垂直平分,即可求解.【小问1详解】解:连接,设与的交点为.和⊙相交于点、,,,,在中,,;,在中,,;即的半径长为;【小问2详解】以为直径的经过点.,,,又,,,取的中点,连接、,,12290O AO AGO ∠=∠=︒12O O P AP BP 1AP PO =12O O AB 1AO 12O O AB G 1O 2O A B 48AB =∴1242AG AB ==12O O AB ⊥2Rt AGO 290AGO ∠=︒∴218GO ===∴1122501832GO O O GO =-=-=1Rt AGO 190AGO ∠=︒∴140AO ===1O 4012O O P B 212303505AO O O ==22183305GO AO ==∴22122AO GO O O AO =212AO O O A G ∠=∠∴122O AO AGO ∽∴12290O AO AGO ∠=∠=︒12O O P AP BP ∴1AP PO =又垂直平分,,以为直径的经过点.22. A 市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送名学生到比赛场地参加运动会,每辆小汽车限坐人(不包括司机),其中一辆小汽车在距离比赛场地千米的地方出现故障,此时离截止进场的时刻还有分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时千米,人步行的平均速度是每小时千米(上、下车时间忽略不计).(1)如果该小汽车先送名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由.【答案】(1)不能,见解析(2)见解析【解析】【分析】本题主要考查一元一次方程的应用,解题的关键是理解题意;(1)根据题意分别求出单程送达比赛场地的时间和另外送4名学生的时间,进而问题可求解;(2)设汽车与另外名学生相遇所用时间为小时,根据题意可得,进而求解即可.【小问1详解】解:他们不能在截止进场的时刻前到达比赛场地.∵单程送达比赛场地的时间是:(小时)(分钟);∴送完另名学生的时间是:(分钟)(分钟);∴他们不能在截止进场的时刻前到达比赛场地.【小问2详解】解:先将名学生用车送达比赛场地,另外名学生同时步行前往比赛场地,汽车到比赛场地后返回到与另外名学生的相遇处再载他们到比赛场地.(用这种方案送这名学生到达比赛场地共需时间约为分钟).理由如下:先将名学生用车送达比赛场地的时间是:(小时)(分钟),12O O AB 1BP AP PO ==∴12O O P B 84154260544t 56015 1.25t t +=-15600.25÷=15=415345⨯=42>444840.4415600.25÷=15=此时另外名学生步行路程是:(千米);设汽车与另外名学生相遇所用时间为小时.则;解得(小时)(分钟);从相遇处返回比赛场地所需的时间也是(分钟);所以,送这名学生到达比赛场地共需时间为:(分钟);又;所以,用这种方案送这名学生能在截止进场的时刻前到达比赛场地.23. 如图,在菱形中,点、、、分别在边、、、上,,,.(1)求证:;(2)分别连接、,求证:四边形是等腰梯形.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查了菱形的性质,等腰梯形的判定(1)连结,可得,,进而即可得到结论;(2)欲证明四边形是等腰梯形,只需推知,,即可.【小问1详解】证明:连结.450.25 1.25⨯=4t 56015 1.25t t +=-1152t =16513=16513816515240.413+⨯≈40.442<8ABCD E G H F AB BC CD DA AE AF =CG CH =CG AE ≠EF GH ∥EG FH EGHF BD AE AF AB AD =CG CH CB CD=EGHF EF GH ≠EF GH ∥EG FH =BD∵四边形是菱形,∴;又,,∴,;∴,;∴.【小问2详解】证明:连接∵,∴;∵,∴;又,∴;又,∴四边形是梯形;∵,即;又∵,即;∵四边形是菱形,ABCD AB AD BC CD ===AE AF =CG CH =AE AF AB AD=CG CH CB CD =EF BD ∥GH BD ∥EF GH ∥,EG FHEF BD ∥EF AE BD AB=GH BD ∥GH CG BD BC =CG AE ≠EF GH ≠EF GH ∥EGHF AB AE AD AF -=-BE DF =BC CG CD CH -=-BG DH =ABCD∴;∴;∴;∴梯形是等腰梯形.24. 如图,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点.(1)求该抛物线的表达式及点的坐标;(2)已知点,联结,过点作,垂足为,点是轴上的动点,分别联结、,以、为边作平行四边形.① 当时,且的顶点正好落在轴上,求点的坐标;② 当时,且点在运动过程中存在唯一的位置,使得是矩形,求的值.【答案】(1);点 (2)①;②的值为或【解析】【分析】(1)把点A 的坐标代入表达式求出a 的值即可得到函数表达式,进而根据对称性求出点B 的坐标;(2)①在中,,则;得到;过点作,垂足为.在中,,;证明四边形是矩形,则;即可得到答案;②根据m 的取值分三种情况分别进行解答即可.【小问1详解】解:把代入,得,B D ∠=∠()SAS BGE DHF ≅ EG FH =EGHF xOy 244(0)y ax ax a =-+>x (1,0)A B yC B (0,)M m BC M MG BC ⊥GD x GD MD GD MD GDMN 32m =GDMN N y D 0m ≥D GDMN m 2416433y x x =-+(3,0)B 6(,0)5D m 037Rt CGM △90CGM ∠=︒cos CG MCG CM ∠=54cos 225CG CM MCG =⋅∠=⨯=G GH OC ⊥H Rt CGH △90CHG ∠=︒36sin 255GH CG HCG =⋅∠=⨯=GDOH 65OD GH ==(1,0)A 244(0)y ax ax a =-+>440a a -+=解得;∴抛物线的表达式为;∵抛物线的对称轴是直线,抛物线与轴交于点和点,∴点.【小问2详解】①由题意,得,,∴;∵四边形是平行四边形,∴;又点在轴上,∴,∴,在中,,∴,∴,;在中,,∴;∴;过点作,垂足为.43a =2416433y x x =-+1632423x -=-=⨯244(0)y ax ax a =-+>x (1,0)A B (3,0)B (0,4)C 3(0,)2M 52CM =GDMN GD NM ∥N y NM OD ⊥GD OD ⊥Rt BOC 90BOC ∠=︒5BC ==4cos 5OC OCB BC ∠==3sin 5OB OCB BC ∠==Rt CGM △90CGM ∠=︒cos CG MCG CM∠=54cos 225CG CM MCG =⋅∠=⨯=G GH OC ⊥H在中,,;∵,∴四边形是矩形,∴;∴.②当时,根据不同取值分三种情况讨论: 当时,即点与点重合时,符合题意;当时,如图情况符合题意,取的中点P ,以为直径作圆P ,则在圆上,此时圆P 和x 轴有唯一切点D ,符合题设条件,则,∵,由①知, ,则,则,∵,,∴,解得;当时,可得,所以符合题意的不存在;综合、、,符合题意的的值为或.【点睛】此题考查了二次函数的综合题,考查了解直角三角形,切线的性质、勾股定理、矩形的判定和性质、平行四边形的性质等知识,分类讨论是解题的关键.25. 如图,在扇形中,,,点、是弧上的动点(点在点的上方,点不与点重合,点不与点重合),且.Rt CGH △90CHG ∠=︒36sin 255GH CG HCG =⋅∠=⨯=90GDO DOH GHO ∠=∠=∠=︒GDOH 65OD GH ==6(,0)5D 0m ≥m i 0m =M O ii 04m <<MG MG ,N D OH PD PM ==()3sin 425MG MC OCB m PM =⋅∠=-=CMG OCB ∠=∠sin sin CMG OCB ∠=∠()9sin 450MH PM OCB m =∠=-OH MH OM MH m =+=+PM OH =93(4)(4)5010m m m -+=-37m =iii 4m ≥OH PM >m i ii iii m 037OAB OA OB ==90AOB ∠=︒C D AB C D C A D B 45COD ∠=︒(1)①请直接写出弧、弧和弧之间的数量关系;②分别连接、和,试比较和的大小关系,并证明你的结论;(2)分别交、于点、.①当点在弧上运动过程中,的值是否变化,若变化请说明理由;若不变,请求的值;②当时,求圆心角的正切值.【答案】(1)①;②,证明见解析;(2)①的值不变,;②或.【解析】【分析】(1)①根据“同圆或等圆中,相等的圆心角所对的弧相等”即可得到答案;②在弧上取点连接,使得,可得,根据角的和差关系可得,则,即可得到答案;(2)①证明,即可得到答案;②过点在下方作,截取,连接、,证得,可得,进一步证得,则可得,由勾股定理和线段的和差关系可得,联立解得,过点N 作于点F ,则,利用勾股定理求得,,根据正切的概念计算即可.【小问1详解】解:①,,,;②.证明如下:AC CD BD AC CD BD AC BD +CD AB OC OD M N C AB AN BM ⋅AN BM ⋅5MN =DOB ∠ AC C BD D +=AC BD CD +>AN BM ⋅72AN BM ⋅=1tan 3DOB =∠1tan 2DOB ∠=CD E OE COE AOC ∠=∠AC CE =DOE BOD ∠=∠BD DE =BMO AON ∽△△O OB BOM AOM ∠=∠'OM OM '=BM 'NM '()SAS OBM OAM ' ≌90NBM OBA OBM '∠=∠+∠='︒()SAS ONM OMN ' ≌22225MN AM BN ==+7AM BN +=BN NF OB ⊥NF BF =NF OF 90AOB ∠=︒Q 45COD ∠=︒904545AOC BOD AOB COD ∴∠+∠=∠-∠=︒-︒=︒ D B AC C D +∴=AC BD CD +>在弧上取点连接,使得,;、可得;,,;;.【小问2详解】解:①的值不变,.,,;,,;;;.②如图,CD E OE COE AOC ∠=∠∴AC CE =CE DE CE DE CD +> 45COE DOE ∠+∠=︒∴904545AOC BOD ∠+∠=︒-︒=︒∴DOE BOD ∠=∠∴BD DE =∴AC BD CD +>AN BM ⋅72AN BM ⋅= OA OB =90AOB ∠=︒∴45OAB OBA ∠=∠=︒ 45OMB OAB AOM AOM ∠=∠+∠=︒+∠45AON COD AOM AOM ∠=∠+∠=︒+∠∴OMB AON ∠=∠∴BMO AON ∽△△∴BM BO AO AN=∴72AN BM AO BO ⋅=⋅==过点在下方作,截取,连接、,,,,,;又,,,,;,;解得或;过点N 作于点F ,则,,,,设,则,当时,在中,,即,解得:O OB BOM AOM ∠=∠'OM OM '=BM 'NM ' AO BO =∴()SAS OBM OAM ' ≌∴BM AM '=45OBM OAB ∠=∠='︒∴90NBM OBA OBM '∠=∠+∠='︒45M ON COD ∠=︒=∠'ON ON =∴()SAS ONM OMN ' ≌∴M N MN '=∴222222MN M N BM BN AM BN =='+=+' 551257AM BN AB MN +=-=-==-=2225AM BN +=3BN =4BN =NF OB ⊥90NFB ∠=︒45ABO ∠=︒ 45BNF ∴∠=︒NF BF ∴=BF x =OF x =3BN =Rt NFB △222BF NF BN +=229x x +=x =OF ∴==;当时,在中,,即,解得:,.【点睛】本题考查了弧、弦、圆心角的关系,全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形,熟练掌握知识点并灵活运用是解题的关键.1tan 3NF O O F D B ∴==∠=4BN =Rt NFB △222BF NF BN +=2216x x +=x=OF ∴==1tan 2NF O O D F B ===∠∴。

上海市2024年静安区中考数学二模试卷

上海市2024年静安区中考数学二模试卷

1一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂上海市2024年静安区中考数学二模试卷].下列各数中,是无理数的为( ) ABC π0D .712.下列运算正确的是( ) A .÷=−a a a 231B=aC .=aa 253)( D .+=a a a 3363.下列图形中,对称轴条数最多的是( ) A .等腰直角三角形B .等腰梯形C .正方形D .正三角形4.一次函数=+y kx b 中,如果<≥k b 0,0,那么该函数的图像一定不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断菱形ABCD 是正方形的为( )第5题图A .∠=∠AOB AOD B .∠=∠ABO ADOC .∠=∠BAO DAOD .∠=∠ABC BCD6.对于命题:①如果两条弧相等,那么它们所对的圆心角相等; ②如果两个圆心角相等,那么它们所对的弧相等. 下列判断正确的是( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①、②都是真命题D .①、②都是假命题二、填空题:(本大题共12题,每题4分,满分48分) [在答题纸相应题号后的空格内直接填写答案]7.计算:−=1______. 8.函数+=x f x 11)(的定义域是______.9.方程−=x 10(的根为______.10.如果一个正多边形的内角和是720°,那么它的中心角是______度.11.如果关于x 的一元二次方程++=ax x 2102有实数根,那么a 的取值范围是______.12.反比例函数=+xy m 12(其中m 为任意实数)的图像在第______象限.13.将一枚硬币连续抛两次,两次都是正面朝上的概率是______.14.一位短跑选手10次100米赛跑的成绩如下:2次12"3,1次12"1,3次12"7,4次12"5,那么这10个数据的中位数是______.15.在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 的中点,设,DE a DF b ==,那么向量AB 用向量a b 、表示为______.16.如图,在平面直角坐标系中,已知直线l 1与直线l 2交于点C 0,1)(,它们的夹角为90°.直线l 1交x 负半轴于点A ,直线l 2与x 正半轴交于点B 2,0)(,那么点A 的坐标是______.第16题图17.如果半径分别为r 和2的两个圆内含,圆心距=d 3,那么r 的取值范围是______.18.如图,矩形ABCD 中,==AB BC 8,17,将该矩形绕着点A 旋转,得到四边形AB C D 111,使点D 在直线B C 11上,那么线段BB 1的长度是______.第18题图19.(本题满分10分)先化简,再求值:÷−x x x x x x x44122−++−2−4+2,其中20.(本题满分10x =.分)解不等式组⎩⎪+>−⎨⎪⎧−≥x x x 3264330,并写出它的整数解.21.(本题满分10分)已知:如图,CD 是⊙O 的直径,AC 、AB 、BD 是⊙O 的弦,∥AB CD .第21题图(1)求证:=AC BD ;(2)如果弦AB 长为8,它与劣弧AB 组成的弓形高为2,求CD 的长.三、解答题:(本大题共7题,满分78分)某区连续几年的GDP (国民生产总值)情况,如下表所示:我们将这些数据,在平面直角坐标系内,用坐标形式表示出来,它们分别为点:A (1,10.0)、B (2,11.0)、C (3,12.4)、D (4,13.5).如果运用函数与统计等知识预测该区下一年的GDP ,可以尝试选择直线AB 、直线AC 等函数模型来进行分析.(1)根据点A 、B 的坐标,可得直线AB 的表达式为=+y x 9.请根据点A 、C 坐标,求出直线AC 的表达式;(2)假设经济发展环境和条件不变,要预测该区第五年的GDP 情况,可以参考方差等相关知识,分析选用哪一函数模型进行预测较为合适.(说明:在计算与绘图时,当实际数据绘制的点与模型上对应的点位置越接近时,模型越适宜.我们可通过计算一组GDP 所有实际值偏离图像上对应点纵坐标值的程度,即偏离方差,来进行模型分析,一般偏离方差越小越适宜.)请依据以上方式,求出关于直线AC 的偏离方差值:=S AC 2______;问题:你认为在选用直线AB 与直线AC 进行预测的两个方案中,相对哪个较为合适? 请写出所选直线的表达式:______;根据此函数模型,预估该区第五年的GDP 约为______百亿元.23.(本题满分12分)己知:如图,直线EF 经过矩形ABCD 顶点D ,分别过顶点A 、C 作EF 的垂线,垂足分别为点E 和点F ,且=DE DF ,联结AC .(1)求证:=⋅AD AE AC 2;(2)联结BE 和BF ,求证:=BE BF .如图,在平面直角坐标系xOy 中,已知抛物线关于直线=x 25对称,且经过点A (0,3)和点B (3,0),横坐标为4的点C 在此抛物线上.(1)求该抛物线的表达式;(2)联结AB 、BC 、AC ,求∠BAC tan 的值;(3)如果点P 在对称轴右方的抛物线上,且∠=︒PAC 45,过点P 作⊥PQ y 轴,垂足为Q ,请说明∠=∠APQ BAC ,并求点P 的坐标.25.(本题满分14分)如图1,△ABC 中,已知==∠AB BC B 6,9,为锐角,∠=ABC 3cos 1. (1)求C sin 的值;(2)如图2,点P 在边AB 上,点Q 是边BC 的中点,P 经过点A ,P 与Q 外切,且Q 的直径不大于BC ,设P 的半径为x ,Q 的半径为y ,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题条件下,联结PQ ,如果△BPQ 是等腰三角形,求AP 的长.一、选择题1.B 2. A 3.C 4. C 5.D 6. 参考答案A二、填空题7.18. x ≠−19. x =210. 60 11. a ≤1且a ≠012. 一、三13.4114. 12"515. 2b 2a − 16.⎝⎭⎪−⎛⎫2,0117. r >518.1717三、解答题19. 化简为x −21,代入后值为20. x −1<≤3,整数解x =0,1,2,321.(1)证明略(2)1022.(1)y =1.2x +8.8(2)0.0125;应选y =1.2x +8.8;14.823.(1)证明略(2)证明略24.(1)y =x −x +223152(2)31(3)⎝⎭⎪⎛⎫P 39,174425.(1)9(2)⎝⎭ ⎪=−≤<⎛⎫y x x 24117(3)23或3。

上海市2024年普陀区中考数学二模试卷

上海市2024年普陀区中考数学二模试卷

一、选择题1. 上海市2024年普陀区中考数学二模试卷是同类二次根式的是( )A.B.C.D.2. 下列运算正确的是( ) A . +=a a a 342B . −=a a 32C . ⋅=a a a 332D . ÷=a a a 323. 下列方程中,有两个不相等的实数根的是( ) A . =x 02B . −=x 102C . −+=x x 2202D . −+=x x 21024. 已知正比例函数=y kx (k 是常数,≠k 0)的图像经过点A (2,6),那么下列坐标所表示的点在这个正比例函数图像上的是( ) A . −−1,3)(B . −1,3)(C .(6,2)D . −6,2)(5. 已知ABC 中,AH 为边BC 上的高,在添加下列条件中的一个后,仍不能判断ABC 是等腰三角形的是( ) A . BH =HCB . ∠BAH =∠CAHC . ∠B =∠HACD . ABHAHCSS=6. 如图1,在ABC 中,∠ACB =90°,G 是ABC 的重心,点D 在边BC 上,⊥DG GC ,如果BD =5,CD =3,那么BCCG的值是( ) A.B.C.D.二、填空题7. 计算:=a332)(________________9. 不等式组⎩−>⎨⎧+>x x 120360的解集是______________10. 已知反比例函数=−xy k 1的图像位于第二、四象限,那么k 的取值范围是_______________ 11. 已知一个角的余角是这个角的两倍,那么这个角的补角是_______________度12. 现有四张分别是等边三角形、菱形、直角梯形、等腰梯形的纸片,从这四张纸片中任意抽取一张恰好是轴对称图形的概率是_______________13. 已知直线=+y x 24与直线y =1相交于点A ,那么点A 的横坐标是________________14. 在直角坐标平面内,将点A 先向右平移4个单位,再向上平移6个单位得到点B ,如果点A 和点B 恰好关于原点对称,那么点B 的坐标是_______________15. 学校为了解本校九年级学生阅读课外书籍的情况,对九年级全体学生进行“最喜欢阅读的课外书籍类型”的问卷调查(每人只选一个类型),如图2是收集数据后绘制的扇形图,如果喜欢阅读漫画类书籍所在扇形的圆心角是72°,喜欢阅读小说类书籍的学生有72人,那么该校九年级喜欢阅读科技类书籍的学生有__________________人16. 如图3,梯形ABCD 中,AD //BC ,过点A 作AE //DC 分别交BD 、BC 于点F 、E ,=BC BE 32,设 ,AD a AB b ==,那么向量FE 用向量,a b 表示为______________17. 已知正方形ABCD 的边长为4,点E 、F 在直线BC 上(点E 在点F 的左侧),∠EAF =45°,如果BE =1,那么CF 的长是______________18. 如图4,在ABC 中,AB =AC =5,=B 5cos 4,分别以点B 、C 为圆心,1为半径长作,B C ,D 为边BC 上一点,将ABD 和B 沿着AD 翻折得到'AB D 和'B ,点B 的对应点为点B ',AB '与边BC 相交,如果'B 与C 外切,那么BD =________________三、解答题19. 计算:⎝⎭⎪−++⎛⎫−4281221220. 解方程:−++=x x x x9326221. 如图5,在ABC 中,∠B =2∠C ,点D 在边BC 上,AB =AD =13,BC =23. (1)求BD 的长; (2)求tanC 的值.22. 甲外卖平台的外卖员小张看到乙外卖平台外卖员小王的月工资收入比自己高,于是想跳槽去乙外卖平台工作,如果不考虑其他因素,仅根据以下信息,请你帮助小张来决策是否需要跳槽到乙外卖平台,并说明理由.信息一:甲、乙两个外卖平台的税前月工资收入计算方式相同,如下:税前月工资收入=(每日底薪+每单提成⨯日均送单数)⨯月送单天数—当月违规扣款 (其中这两个外卖平台每个月的月送单天数均相同) 信息二:乙外卖平台外卖员小王的月工资单如下表:信息三:如图6-1,随机抽取了小张在甲外卖平台若干天的日均送单数绘制成条形图;如图6-2,根据小张在一年中每月的违规送单数绘制成条形图23. 已知:如图7,四边形ABCD 中,AB //CD ,点E 在边AD 上,CE 与BA 的延长线交于点F ,=AB EDFA AE. (1)求证:四边形ABCD 为平行四边形;(2)联结FD ,分别延长FD 、BC 交于点G ,如果=⋅FC FD FG 2,求证:⋅=⋅AD CG BF CD .24. 在平面直角坐标系xOy 中(如图8),已知抛物线=−+≠y a x m n a 02)()(与x 轴交于点A 、B ,抛物线的顶点P 在第一象限,且∠APB =90°.(1)当点P 的坐标为(4,3)时,求这个抛物线的表达式;(2)抛物线=−+≠y a x m n a 02)()(表达式中有三个待定系数,求待定系数a 与n 之间的数量关系; (3)以点P 为圆心,P A 为半径作P ,P 与直线=+y x n 2相交于点M 、N ,当点P 在直线=y x 21上时,用含a 的代数式表示MN 的长.25. 如图9,在梯形ABCD 中,AD //BC (AD <BC ),∠A =90°,BC =CD =6,将梯形ABCD 绕点C 按顺时针方向旋转,使点B 与点D 重合,此时点A 、D 的对应点分别是点E 、F . (1)当点F 正好落在AD 的延长线上时,求∠BCD 的度数; (2)联结AE ,设==AD x AE y ,. ①求y 关于x 的函数解析式;②定义:同中心同边数的两个正多边形称为双同正多边形,设∠BCF 是一个正多边形的中心角,联结BD ,请说明以线段BD 、AE 为边的正多边形是双同正多边形的理由,当这两个正多边形的面积比是4:5时,求双同正多边形的边数.一、选择题1. D2. C3. B4. A5. C6. 参考答案D二、填空题7. a 968. =x 3 9. −<<x 221 10. k <1 11. 150 12. 43 13. −2314.(2,3) 15. 27 16. 42a b +33 17. 38或5818. −44三、解答题 19.1020. =x 6 21.(1)10 (2)3222. 不需要 23.(1)证明略 (2)证明略 24.(1)=−−+y x 34312)( (2)+=an 10(3)=−aMN 2 25.(1)60°(2)①=y②十二条边。

2024年中考数学二模试卷(上海卷)(全解全析)

2024年中考数学二模试卷(上海卷)(全解全析)

2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在下列图形中,为中心对称图形的是()A .等腰梯形B .平行四边形C .正五边形D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合;是中心对称图形的只有B .故选B .2.下列方程有实数根的是A .4x 20+=B 2x 21-=-C .2x +2x −1=0D .x 1x 1x 1=【答案】C【详解】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B .∵22x -≥0,∴22x -=−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆=8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA += ()A .AB ;B .BA ;C .0 ;D .0.【答案】C【分析】根据零向量的定义即可判断.【详解】AB BA += 0 .故选C .4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7B .5<OB <7C .4<OB <9D .2<OB <7【答案】A 【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D ,∴AD OP ⊥,∵∠POQ =30°,⊙A 半径长为2,即2AD =,∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+-=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<.故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分)7.分解因式:2218m -=.【答案】()()233m m +-/()()233m m -+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m -=2(m 2-9)=2(m +3)(m -3).故答案为:2(m +3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.2x x +=-的解是.【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x =﹣1是原方程的解.故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.9.函数2x y x =-中自变量x 的取值范围是.【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨-≠⎩,解得:0x ≥且2x ≠,故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b == ,那么BG =(用a b 、表示).【答案】23a b -+ .【详解】试题分析:∵在△ABC 中,点G 是重心,AD b = ,∴23AG b =,又∵BG AG AB =- ,AB a = ,∴2233BG b a a b =-=-+ ;故答案为23a b -+ .考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【答案】13【详解】解:列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程224404x x x x +-+=中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是.【答案】2430y y ++=【分析】先把方程整理出含有x 2-4x 的形式,然后换成y 再去分母即可得解.【详解】方程2234404x x x x +-+=-可变形为x 2-4x+214x x -+4=0,因为24y x x =-,所以340y y++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是.【答案】7r >/7r<【分析】由题意,⊙O 1与⊙O 2内含,则可知两圆圆心距d r r <-小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r ->,解得7r >.故答案为:7r >.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是.【答案】100(1+x )2=200【分析】根据题意,设平均每月的增长率为x ,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x 的一元二次方程.故答案为:100(1+x )2=200【详解】设平均每月的增长率为x ,根据题意可得:100(1+x )2=200.故答案为:100(1+x )2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD 中,已知AB =4,∠B :∠C =1:2,那么BD 的长是.【答案】43【分析】根据题意画出示意图(见详解),由菱形的性质可得BO =12BD ,BD ⊥AC ,在Rt △ABO 中,由cos ∠ABO 即可求得BO ,继而得到BD 的长.【详解】解:如图,∵四边形ABCD 为菱形,∴AB CD ∥,∴∠ABC +∠BCD =180°,∵∠ABC :∠BCD =1:2,∴∠ABC =60°,∴∠ABD =12∠ABC =30°,BO =12BD ,BD ⊥AC .在Rt △ABO 中,cos ∠ABO =BO AB =32,∴BO=AB⋅cos∠ABO=4×32=23.∴BD=2BO=43.故答案为:43.【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC=.【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD中,10AB=,12BC=,5CD=,3tan4B=,那么边AD的长为.【答案】9【分析】连接AC,作AE BC⊥交BC于E点,由3tan4B=,10AB=,可得AE=6,BE=8,并求出AC的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB +=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8,又 12BC =,∴CE=BC-BE=4,∴22213AC AE CE =+=,作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又 5CD =,∴同理可得DF=3,CF=4,∴226AF AC CF =-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt ∆ABC 中,∠ACB =90°,BC =4,AC =3,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相切,那么⊙A 的半径长为.【答案】132±【分析】分两种情况:①如图,A 与O 内切,连接AO 并延长交A 于E ,根据AE AO OE =+可得结论;②如图,A 与O 外切时,连接AO 交A 于E ,同理根据AE OA OE =-可得结论.【详解】解:有两种情况,分类讨论如下:①如图1,A 与O 内切时,连接AO 并延长交O 于E ,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒ ,根据勾股定理得:22222313OA OC AC =+=+=,132AE OA OE ∴=+=+;即A 的半径为132+;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得132AE AO OE =-=-,即A 的半径为132-,综上,A 的半径为132+或132-.故答案为:132±.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()20220118cot 45233sin 30π--︒+-+--︒.【答案】223+【分析】先化简各式,然后再进行计算即可解答.【详解】解:20220118(cot 45)|23|(3)(sin 30)π-+-︒+-+--︒20221132(1)321()2-=+-+-+-3213212=++-+-223=+.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =3,AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE .【答案】解:(1)85;(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积;(2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB =AC =6,cos B =23,AH 是△ABC 的高,∴BH =4,∴BC =2BH =8,AH =226425-=,∴△ABC 的面积是;2BC AH ⋅=8252⨯=85;(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CH AB HB DE HF ==,.∵AD :DB =1:2,BH =CH ,∴AD :AB =1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE =3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =x的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =k x的图象于点B (点B 与点A 不是同一点).(1)求k的值;(2)求点B的坐标.【答案】(1)2 (2)(4,12)【分析】(1)根据题意得到22kk=,解方程求得k=2;(2)先求得A的坐标,根据正比例函数的解析式设直线AB的解析式为y12=-x+b,把A的坐标代入解得b52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B的坐标.【详解】(1)解:∵点A是反比例函数ykx=的图象与正比例函数y=kx的图象在第一象限内的交点,点A的纵坐标为2,∴22k k=,∴2k=4,解得k=±2,∵k>0,∴k=2;(2)∵k=2,∴反比例函数为y2x=,正比例函数为y=2x,把y=2代入y=2x得,x=1,∴A(1,2),∵AB⊥OA,∴设直线AB的解析式为y12=-x+b,把A 的坐标代入得2112=-⨯+b ,解得b 52=,解21522y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩,∴点B 的坐标为(4,12).【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数、反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP 上,且不能影响到古树的圆形保护区.已知点N 距离地面的高度为0.9m ,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度坡度1:201:161:121:101:8最大高度(m )1.200.900.750.600.30水平长度(m )24.0014.409.00 6.002.40【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即BEAE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB=22AE BE+=229.64+=10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B''的坡度为1:4,即B EA E''=1:4,∴A'E=5×4=20(m),∴A A'=20﹣9.6=11.4(m),A'G=4NG=4×0.9=3.6(m),∴AG=11.4﹣3.6=7.8(m),点M到点G的最多距离MG=25﹣7.8﹣3=14.2(m),∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F.(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE =CE .即可以利用“AAS ”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE AD CB AC=.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠.又∵E 是AC 中点,∴AE =CE ,∴在AED △和CEF △中ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌,∴AD CF =,∴四边形AFCD 是平行四边形.(2)∵//AD BC ,∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅,∴AE AD CB AC=,∴ADE CAB ∽△△,∴90AED ABC ∠=∠=︒,即DF AC ⊥.∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式;(2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标.【答案】(1)2312355y x x =-++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2-.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,32DF =,过点E 作EK DF ⊥于K ,根据等腰直角三角形的性质可得2KF KE ==,则22DK DF KF =-=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c =-++,得:15503b c c -++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =-++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒ ,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE = ,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==,(4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =-++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒ ,45DFH ∴∠=︒,32DF =,过点E 作EK DF ⊥于K ,312EF =-= ,2KF KE ∴==,22DK DF KF ∴=-=,在Rt DKE ∆中,22cot 22DK EDF KE ∠===;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒ ,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF ED ED EP=,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =-,又2EF = ,223110ED =+=,102(1)y ∴=-,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒ ,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DP PD FP=,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =-,3FP y =-,223DP y =+,29(1)(3)y y y ∴+=--,解得32y =-,∴点P 的坐标为3(4,)2-;综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2-.【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质.25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时,①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;②74(2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA AB AP OA=,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH =2﹣x ,利用勾股定理列方程求出OH的长,从而得出AH,即可求得面积;(2)联结OC,AC,利用圆心角与圆周角的关系得∠ACB=12∠AOB=12β,∠ACO=12∠APO=12β,再利用SSS说明△OAP≌△OCP,得∠OAP=∠OCP,从而解决问题.【详解】(1)①证明:∵OA=OB,∴∠OAB=∠OBA,∵PA=PO,∴∠BAO=∠POA,∴∠OAB=∠OBA=∠AOP,∴∠AOB=∠APO;②解:∵∠AOB=∠APO,∠OAB=∠PAO,∴△AOB∽△APO,∴OA AB AP OA=,∴OA2=AB•AP=1,∵点B是线段AP的中点,∴AP=2,作AH⊥PO于点H,设OH=x,则PH=2﹣x,由勾股定理得,12﹣x2=(2)2﹣(2x-)2,解得x=2 4,∴OH=2 4,21由勾股定理得,AH =2221()4-=144,∴△AOP 的面积为11142224OP AH ⨯⨯=⨯⨯=74;(2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP =β+α,∵OA =OC ,AP =PC ,OP =OP ,∴△OAP ≌△OCP (SSS ),∴∠OAP =∠OCP =β+α,在△OAP 中,2(α+β)+β=180°,∴β=60°﹣23β.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。

2024年上海市松江区中考数学二模试卷及答案解析

2024年上海市松江区中考数学二模试卷及答案解析

2024年上海市松江区中考数学二模试卷一、选择题(本大题共6题)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列代数式中,单项式是()A.B.C.x+2D.2.(4分)当a>0时,下列运算结果正确的是()A.a0=0B.a﹣2=﹣a2C.(﹣a)3=﹣a3D.3.(4分)如果a>b,c为任意实数,那么下列不等式一定成立的是()A.ac>bc B.ac<bc C.c﹣a>c﹣b D.c﹣a<c﹣b 4.(4分)在一次演讲比赛中,小明对7位评委老师打出的分数进行了分析,如果去掉一个最高分和一个最低分后再次进行分析,那么这两组数据的下列统计量一定相等的是()A.中位数B.众数C.平均数D.方差5.(4分)下列命题中假命题是()A.对角线相等的平行四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线相等的菱形是正方形D.对角线互相垂直的四边形是菱形6.(4分)已知矩形ABCD中,AB=12,AD=5,分别以A,C为圆心的两圆外切,且点D 在⊙A内,点B在⊙C内,那么⊙C半径r的取值范围是()A.5<r<6B.5<r<6.5C.5<r<8D.5<r<12二、填空题(本大题共12题)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:﹣=.8.(4分)因式分解:a2﹣a=.9.(4分)不等式组的解集是.10.(4分)如果关于x的一元二次方程kx2﹣x=1有两个相等的实数根,那么k=.11.(4分)已知反比例函数的图象经过点(﹣1,2),那么在每个象限内,y随x的增大而.(填“增大”或“减小”)12.(4分)我国新能源汽车发展迅速,某品牌电动车第一季度销量达10万辆,预计第二季度的销量比第一季度增长10%,第三季度的销量比第二季度增长20%,那么预计第三季度的销量为万辆.13.(4分)一个公园有东、南、西三个入口,小明和小红分别随机从一个入口进入该公园游玩,那么他们从同一入口进入该公园游玩的概率是.14.(4分)平移抛物线y=x2+2x+1,使得平移后的抛物线经过原点,且顶点在第四象限,那么平移后的抛物线的表达式可以是.(只需写出一个符合条件的表达式)15.(4分)如图,已知梯形ABCD中,AB∥CD,AB=2CD,AC、BD交于点O.设=,=,那么向量可用表示为.16.(4分)某学习小组就本校学生的上学交通方式进行了一次随机抽样调查,并绘制了两幅不完整的统计图,如图1和图2所示.已知该校有1200名学生,估计该校步行上学的学生约为人.17.(4分)一种弹簧秤称重不超过8千克的物体时,弹簧的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.又已知挂2千克重物时弹簧的长度为11厘米,挂4千克重物时弹簧的长度为12厘米,那么挂5千克重物时弹簧的长度为厘米.18.(4分)如图,已知△ABC中,∠C=90°,BC=6,AC=8.D是边BC的中点,E是边AC上一点,将△CDE沿着DE翻折,点C落在点F处,如果DF与△ABC的一边平行,那么AE=.三、解答题(本大题共7题)19.(10分)计算:.20.(10分)解方程组:.21.(10分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=8.点O在边BC上,以O为圆心,OB为半径的弧经过点A.(1)求⊙O的半径长;(2)P是上一点,PO⊥BC,交AB于点D,联结AP.求∠PAB的正切值.22.(10分)一个凸四边形的四条边及两条对角线共6条线段中,如果只有两种大小不同的长度,那么称这个四边形为“精致四边形”.如正方形的四条边都相等,两条对角线相等,且边长与对角线长度不等,所以正方形是一个“精致四边形”.(1)如图所示的四边形ABCD是一个“精致四边形”,其中AB=AC=BC=AD,BD=CD.试写出该“精致四边形”的两条性质(AB=AC=BC=AD,BD=CD除外);(2)如果一个菱形(除正方形外)是“精致四边形”,试画出它的大致图形,并求出该“精致四边形”的6条线段中较长线段与较短线段长度的比值;(3)如果一个梯形是“精致四边形”,试画出它的大致图形,指出两种长度的线段各是哪几条,并求出它的各内角度数.23.(12分)如图,已知AB是⊙O1与⊙O2的公共弦,O1O2与AB交于点C,O1O2的延长线与⊙O2交于点P,联结PA并延长,交⊙O1于点D.(1)联结O1A、O2A,如果AB=AD=AP.求证:O1A⊥O2A;(2)如果PO1=3PO2,求证:PA=AD.24.(12分)如图,在平面直角坐标系xOy中,已知点A(2,0)、点B(0,2),抛物线y =﹣x2+bx+c经过点A,且顶点C在线段AB上(与点A、B不重合).(1)求b、c的值;(2)将抛物线向右平移m(m>0)个单位,顶点落在点P处,新抛物线与原抛物线的对称轴交于点D,联结PD,交x轴于点E.①如果m=2,求△ODP的面积;②如果EC=EP,求m的值.25.(14分)如图,已知矩形ABCD中,AB=1,BC=2,点P是边AD上一动点,过点P 作PE⊥AC,垂足为点E,联结BE,过点E作EF⊥BE,交边AD于点F(点F与点A 不重合).(1)当F是AP的中点时,求证:BA=BE;(2)当AP的长度取不同值时,在△PEF中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)延长PE交边BC于点G,联结FG,△EFG与△AEF能否相似,若能相似,求出此时AP的长;若不能相似,请说明理由.2024年上海市松江区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.【分析】根据单项式的定义,逐一判断即可解答.【解答】解:A、是单项式,故A符合题意;B、是分式,故B不符合题意;C、x+2是多项式,故C不符合题意;D、2不是单项式,故D不符合题意;故选:A.【点评】本题考查了单项式,熟练掌握单项式的定义是解题的关键.2.【分析】根据分数指数幂的运算方法,有理数的乘方的运算方法,以及零指数幂、负整数指数幂的运算方法,逐项判断即可.【解答】解:∵a0=1(a≠0),∴选项A不符合题意;∵a﹣2=,∴选项B不符合题意;∵(﹣a)3=﹣a3,∴选项C符合题意;∵=,∴选项D不符合题意.故选:C.【点评】此题主要考查了分数指数幂的运算方法,有理数的乘方的运算方法,以及零指数幂、负整数指数幂的运算方法,解答此题的关键是要明确:(1)①a0=1(a≠0);②00≠1.(2)a﹣p=(a≠0,p为正整数).3.【分析】根据不等式的性质分析判断.【解答】解:∵a>b,∴当c<0时,ac<bc,故选项A不符合题意;当c>0时,ac>bc,故选项B不符合题意;∵a>b,c是任意实数,∴﹣a<﹣b,∴c﹣a<c﹣b,故选项C不符合题意,选项D符合题意.故选:D.【点评】此题考查了不等式的性质,注意解此题的关键是掌握不等式的性质.4.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分,5个有效评分与7个原始评分相比,不变的是中位数.故选:A.【点评】本题考查了平均数、中位数、众数、方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);极差是指一组数据中最大数据与最小数据的差;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.平均数、极差、方差与每一个数据都有关系,都会受极端值的影响,而中位数仅与数据的排列位置有关,代表了这组数据值大小的“中点”,不易受极端值影响.5.【分析】由对角线互相垂直的平行四边形才是菱形,得D是假命题,而A,B,C是真命题,故选:D.【解答】解:由对角线互相垂直的平行四边形才是菱形,得D是假命题,而A,B,C是真命题,故选:D.【点评】本题主要考查了真命题,解题关键是正确判断命题的真假.6.【分析】根据勾股定理求出AC的长,再根据以A,C为圆心的两圆外切得出⊙A的半径,最后根据点和圆的位置关系,求出r的取值范围即可.【解答】解:连接AC,∵四边形ABCD为矩形,∴AC==13,∵以A,C为圆心的两圆外切,∴⊙A的半径为AC﹣r=13﹣r,∵点D在⊙A内,∴AD<13﹣r,∴r<8,∵B在⊙C内,∴BC<r,∴r>5,∴5<r<8.故选:C.【点评】本题主要考查了相切两圆的性质以及点和圆的位置关系,求出⊙A的半径是本题解题的关键.二、填空题(本大题共12题)【请将结果直接填入答题纸的相应位置上】7.【分析】根据二次根式的减法法则进行计算即可.【解答】解:﹣=×﹣=2﹣=,故答案为:.【点评】本题考查二次根式的运算,此为基础且重要知识点,必须熟练掌握.8.【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.【分析】求出各个不等式的解集,然后再根据判断不等式组解集的口诀“大小小大中间找”求出不等式组的解集即可.【解答】解:,解不等式①,得x≥1,解不等式②,得x<2,故不等式组的解集为1≤x<2.故答案为:1≤x<2.【点评】本题主要考查了解一元一次不等式组,解题关键是熟练掌握解一元一次不等式组的一般步骤.10.【分析】因为关于x的一元二次方程kx2﹣x﹣1=0有两个相等的实数根,所以k≠0且Δ=b2﹣4ac=0,建立关于k的方程,解方程即可求出k的值.【解答】解:∵关于x的一元二次方程kx2﹣x﹣1=0有两个相等的实数根,∴k≠0且Δ=(﹣1)2﹣4×k×(﹣1)=1+4k=0,解得:k=﹣.故答案为:﹣.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.11.【分析】根据题意,先确定k<0,再依据反比例函数性质解答本题即可.【解答】解:∵反比例函数的图象经过点(﹣1,2),∴k<0,反比例函数图象分布在第二四象限,在每个象限内,y随x的增大而增大,故答案为:增大.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数性质是解答本题的关键.12.【分析】把第一季度电动车的销量看成单位“1”,列式计算即可.【解答】解:10×(1+10%)×(1+20%)=10×1.1×1.2=13.2(万辆),∴预计第三季度的销量为13.2万辆.故答案为:13.2.【点评】本题考查百分数的应用,关键是把第一季度电动车的销量看成单位“1”.13.【分析】画树状图,共有9种等可能的结果,其中小明和小红从同一入口进入该公园游玩的结果有3种,再由概率公式求解即可.【解答】解:把公园的东、南、西三个入口分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中小明和小红从同一入口进入该公园游玩的结果有3种,∴他们从同一入口进入该公园游玩的概率是=,故答案为:.【点评】本题考查的是用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件,解答本题的关键是掌握:概率=所求情况数与总情况数之比.14.【分析】由平移抛物线y=x2+2x+1,使得平移后的抛物线经过原点,且顶点在第四象限,设平移后抛物线为y=(x﹣1)2+k,由平移后的抛物线经过原点,得0=(0﹣1)2+k,即k=﹣1,符合顶点在第四象限,故所求为y=(x﹣1)2﹣1(答案不唯一).【解答】解:由平移抛物线y=x2+2x+1,使得平移后的抛物线经过原点,且顶点在第四象限,设平移后抛物线为y=(x﹣1)2+k,由平移后的抛物线经过原点,得0=(0﹣1)2+k,即k=﹣1,符合顶点在第四象限,故所求为y=(x﹣1)2﹣1(答案不唯一).故答案为:y=(x﹣1)2﹣1(答案不唯一).【点评】本题主要考查了抛物线,解题关键是待定系数法的应用.15.【分析】根据平行线分线段成比例求出AO和AC的关系,过C作AD平行线,构造平行四边形,根据向量加法的平行四边形法则求出,从而可以求得.【解答】解:∵CD∥AB,∴AO:OC=AB:DC=2,∴AO=AC,过C作CE∥AD交AB于E,如图:∴四边形ADCE为平行四边形,∴AE=CD=AB,=+,∴==+=+.故答案为:+.【点评】本题主要考查了平面向量,根据平行四边形法则来求解是本题解题的关键.16.【分析】根据全校的总人数×步行的百分比得出结果即可.【解答】解:由题意得,样本容量为:25÷50%=50,故该校步行上学的学生约为:1200×=240(人),故答案为:240.【点评】本题主要考查了条形统计图与扇形统计图的综合,解题的关键是数形结合,数据条形统计图和扇形统计图的特点.17.【分析】利用待定系数法求出y与x之间的函数关系式,并标明x的取值范围,将x=5代入求出对应y的值即可.【解答】解:设y与x之间的函数关系式为y=kx+b(k、b为常数,且k≠0).将x=2,y=11和x=4,y=12代入y=kx+b,得,解得,∴y与x之间的函数关系式为y=x+10(0≤x≤8).当x=5时,y=×5+10=12.5,∴挂5千克重物时弹簧的长度为12.5厘米.故答案为:12.5.【点评】本题考查一次函数的应用,利用待定系数法求出y与x之间的函数关系式是本题的关键.18.【分析】根据DF与△ABC三边分类讨论,由翻折的性质以及勾股定理求出CE的长,从而求得AE的长即可.【解答】解:①当DF∥BC时,DF与BC重合,∴C,D,E不构成三角形,不符合题意;②当DF∥AC,如图:∴DF⊥BC,∴∠CDF=90°,由翻折的性质可知,CD=DF,CE=CF,∴四边形CDFE为正方形,∴CE=CD=3,∴AE=AC﹣CE=5;③当DF∥AB,延长DF交AC于G,如图:∴CG=AC=4,DG==5,∴FG=DG﹣DF=DG﹣CD=2,设CE=EF=x,则EG=4﹣x,在Rt△EFG中,(4﹣x)2=x2+4,解得:x=,∴AE=AC﹣CE=6.5,综上所述,AE=5或6.5.故答案为:5或6.5.【点评】本题主要考查了翻折变换,合理运用正方形的判定与性质以及中位线定理和勾股定理是本题解题的关键.三、解答题(本大题共7题)19.【分析】根据分数指数幂、负整数指数幂的运算法则及分母有理化、去绝对值计算即可.【解答】解:原式=+2﹣+2(+1)﹣=.【点评】本题考查分母有理化、负整数指数幂,熟练掌握分数指数幂、负整数指数幂的运算法则及分母有理化、去绝对值的方法是本题的关键.20.【分析】将x2﹣3xy+2y2=0分解因式求出x2﹣3xy+2y2=(x﹣y)(x﹣2y),进而重新组合方程组求出即可.【解答】解:由①得x﹣y=0,x﹣2y=0.原方程组化为,,分别解这两个方程组,得原方程组的解是:,,,.【点评】此题主要考查了二元二次方程组的解法,根据已知分解因式x2﹣3xy+2y2=(x ﹣y)(x﹣2y)是解题关键.21.【分析】(1)根据圆的性质以及勾股定理列方程求解即可;(2)根据垂直的定义以及圆周角定理求出∠PAB=45°,再根据特殊锐角三角函数值进行计算即可.【解答】(1)解:如图,连接OA,则OA=OB=r,OC=8﹣r,在Rt△AOC中,由勾股定理得,AC2+OC2=OA2,即42+(8﹣r)2=r2,解得r=5,即⊙O的半径长为5;(2)解:∵PO⊥BC,∴∠BOP=90°,∴∠PAB=∠PAB=45°,∴∠PAB的正切值为tan45°=1.【点评】本题考查圆周角定理,解直角三角形,掌握直角三角形的边角关系,圆周角定理以及特殊锐角三角函数值是正确解答的关键.22.【分析】(1)由等腰三角形的性质即可得到答案;(2)由菱形的性质得到AB=AD,AC⊥BD,AC=2AO,BD=2OD,判定△ABD是等边三角形,得到∠ADO=60°,因此AO=OD,即可求出=,得到较长线段与较短线段长度的比值是;(3)由等腰三角形的性质得到∠ABD=∠ADB,由平行线的性质推出∠CBD=∠ADB,得到∠ABD=∠CBD=∠ABC,同理:∠BCA=∠DCA=∠BCD,由等腰梯形的性质推出∠ABC=∠BCD,得到∠ACB=∠CBD,由AC=BC,得到∠CAB=∠CBA=2∠CBD,由三角形内角和定理得到2∠CBD+2∠CBD+∠CBD=180°,求出∠CBD=36°,得到∠ABC=2∠CBD=72°,由平行线的性质得到∠BAD+∠ABC=180°,求出∠BAD=108°,由等腰梯形的性质得到∠ADC=∠BAD=108°,∠BCD=∠ABC=72°.【解答】解:(1)∠ABC=∠ACB,∠DBC=∠DCB(答案不唯一),理由如下:∵AB=AC,∴∠ABC=∠ACB,∵DB=DC,∴∠DBC=∠DCB;(2)如图,菱形ABCD中,BD=AD,∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AC=2AO,BD=2OD,∵BD=AD,∴△ABD是等边三角形,∴∠ADO=60°,∴AO=OD,∴AC=BD,∴=,∴较长线段与较短线段长度的比值;(3)如图,梯形ABCD中,AD∥BC,AD=CD=AB,AC=BD=BC,∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠CBD=∠ADB,∴∠ABD=∠CBD=∠ABC,同理:∠BCA=∠DCA=∠BCD,∵四边形ABCD是等腰梯形,∴∠ABC=∠BCD,∴∠ACB=∠CBD,∵AC=BC,∴∠CAB=∠CBA=2∠CBD,∠ABC+∠CAB+∠BCA=180°,∴2∠CBD+2∠CBD+∠CBD=180°,∴∠CBD=36°,∴∠ABC=2∠CBD=72°,∵AD∥BC,∴∠BAD+∠ABC=180°,∴∠BAD=108°,∵四边形ABCD是等腰梯形,∴∠ADC=∠BAD=108°,∠BCD=∠ABC=72°,∴两种长度的线段是AD=CD=AB,AC=BD=BC,梯形的各内角度数分别是72°、72°,108°、108°.【点评】本题考查梯形的性质,菱形的性质,等边三角形的性质,关键是由“精致四边形”的定义画出符合要求的菱形和梯形.23.【分析】(1)连接O1B,O2B,BD,BP,由直角三角形的判定可知△DPB为直角三角形,然后根据圆周角定理求出∠AO1O2+∠AO2O1的度数即可证明;(2)过O1作O1E⊥DP于E,过O2作O2F⊥DP于F,根据垂径定理和平行线分线段成比例来证明即可.【解答】证明:(1)连接O1B,O2B,BD,BP,如图:∵AD=AB=AP,∴△DBP为直角三角形,∠D+∠APB=90°,由圆周角定理可知,∠AO1B=2∠D,∠AO2B=2∠APB,∵AB是⊙O1与⊙O2的公共弦,∴O1O2垂直平分AB,∴∠AO1C=∠AO1B,∠AO2C=∠AO2B,∴∠AO1C+∠AO2C=∠D+∠APB=90°,∴AO1⊥AO2;(2)过O1作O1E⊥DP于E,过O2作O2F⊥DP于F,如图:∴O1E∥O2F,∴==,∴PE=3PF,由垂径定理可知,AE=DE,PF=AF,∴AE=PE﹣PA=3PF﹣2PF=PF,∴AD=2AE=2PF=AP.【点评】本题主要考查了相交圆的性质,综合运用垂径定理、直角三角形的判定以及平行线分线段成比例是本题解题的关键.24.【分析】(1)先求出AB所在直线的表达式,然后将抛物线解析式化为顶点式,根据A 和C都在线段AB上,求解即可;(2)①根据抛物线平移的性质求出P点坐标以及平移后的抛物线解析式,然后求出D 点坐标,进而求出PD的直线表达式,最后求出E点坐标,然后根据三角形面积公式求解即可;②根据EC=EP,可知E在CP的垂直平分线上,从而求出E点坐标,进而求出PD所在直线表达式,从而求得D点坐标,最后根据D在平移后的抛物线上求出m的值即可.【解答】解:(1)设AB所在直线的表达式为:y=kx+m,将点A和点B的坐标代入表达式可得:,解得:k=﹣1,m=2,∴AB的表达式为:y=﹣x+2,将点A的坐标代入抛物线解析式得:0=﹣4+2b+c,∴c=4﹣2b,将抛物线解析式改写成顶点式:y=﹣x2+bx+4﹣2b=﹣(x﹣)2+4﹣2b+,∴点C(,4﹣2b+)在直线AB上,∴4﹣2b+=﹣+2,解得:b=2或4,当b=4时,顶点C和A重合,不符合题意;∴b=2,c=0;(2)①由(1)知,C(1,1),抛物线解析式为:y=﹣x2+2x,∴P(3,1),对称轴直线为:x=1,∴平移后的抛物线解析式为:y=﹣(x﹣2)2+2(x﹣2)=﹣x2+6x﹣8,当x=1时,y=﹣1+6﹣8=﹣3,∴D(1,﹣3),设PD所在直线的表达式为:y=tx+s,将点P和点D的坐标代入表达式得:解得:t=2,s=﹣5,∴PD的表达式为:y=2x﹣5,∴E(,0),=××1+××3=5;∴S△ODP②由平移的性质可知,P(m+2,1),∵EC=EP,∴E在CP的垂直平分线上,∴E(+2,0),设PD所在直线的表达式为:y=tx+s,代入P,E的坐标得:,解得:t=,s=﹣1﹣,∴PD的表达式为:y=x﹣1﹣,∴D(1,﹣1﹣),由顶点坐标可得平移后抛物线的表达式为:y=﹣(x﹣m﹣2)2+1,将D点代入平移后的抛物线得:﹣1﹣=﹣(m+1)2+1,解得:m=1或﹣1或﹣2,∵m>0,∴m=1.【点评】本题主要考查了二次函数的综合,掌握平移变换后点以及抛物线变化的规律是本题解题的关键.25.【分析】(1)根据直角三角形斜边上中线的性质可知AF=FE,再根据角之间的互余关系得到∠BAE=∠BEA,从而证明AB=BE;(2)根据平行线的性质以及互余关系证明△EPF和△EAB相似,从而可以证明PF是个定值;(3)因为∠AFE和∠FEG为钝角,所以当△EFG与△AEF相似时,这两个角相等,根据三角函数的定义求出PE的值,从而求得AP的值.【解答】(1)证明:∵PE⊥AC,F是AP中点,∴AF=EF,∴∠FAE=∠FEA,∵AD∥BC,∴∠ACB=∠DAE=∠AEF,又∵∠AEF+∠AEB=90°,∠BAC+∠ACB=90°,∴∠BAC=∠AEB,∴BA=BE;(2)解:存在PF长度不变.∵AD⊥CD,PE⊥AE,∴tan∠CAD===,∵∠AEP=∠FEB=90°,∴∠AEB=∠PEF,又∵∠BAE+∠CAD=90°,∠CAD+∠APE=90°,∴∠BAE=∠APE,∴△ABE∽△PFE,∴==,∴PF=;(3)解:能相似.连接FG,过P作PH⊥BC于H,如图:∴PH=AB=1,∵PG⊥AC,∴∠GPH=∠ACB,∴GH=PH•tan∠ACB=,由(2)知,PF=,∴GH=PF,又∵PF∥GH,∴四边形GHPF为矩形,∴∠PAE=∠PGF,∴当∠AFE=∠FEG时,△AEF∽△GFE,∴∠PFE=∠PEF,∴PE=PF=,∴AE=2PE=2,∴AP=.【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,等腰三角形的判定与性质,掌握特殊几何图形的性质是解题的关键。

2024年上海市徐汇区中考数学二模试卷及答案解析

2024年上海市徐汇区中考数学二模试卷及答案解析

2024年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列实数中,有理数是()A.B.C.D.2.(4分)下列单项式中,与单项式2a2b3是同类项的是()A.﹣ab4B.2a3b2C.3b3a2D.﹣2a2b2c 3.(4分)已知一次函数y=kx+b的图象经过第一、二、四象限,那么直线y=bx+k经过()A.第二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第一、三、四象限4.(4分)如表,记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差.甲乙丙丁平均数(cm)185180180185方差 3.6 3.68.17.4根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.(4分)如图,▱ABCD的对角线AC、BD相交于点O,如果添加一个条件使得▱ABCD 是矩形,那么下列添加的条件中正确的是()A.∠DAO+∠ADO=90°B.∠DAC=∠ACDC.∠DAC=∠BAC D.∠DAB=∠ABC6.(4分)如图,一个半径为9cm的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了120°,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是()A.5πcm B.6πcm C.7πcm D.8πcm二、填空题(本大题共12题,每题4分,满分48分)7.(4分)方程﹣x=0的根是.8.(4分)不等式组的解集是.9.(4分)方程组的解是.10.(4分)关于x的一元二次方程x2﹣mx﹣1=0根的情况是:原方程实数根.11.(4分)如果二次函数y=2x2﹣4x+1的图象的一部分是上升的,那么x的取值范围是.12.(4分)如果反比例函数y=的图象经过点A(t,﹣2t),那么t的值是.13.(4分)如果从长度分别为2、4、6、7的四条线段中任意取出三条,那么取出的三条线段能构成三角形的概率是.14.(4分)小杰沿着坡比i=1:2.4的斜坡,从坡底向上步行了130米,那么他上升的高度是米.15.(4分)某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有2000名学生,那么可以估计该校对手机持“严格管理”态度的家长有人.16.(4分)如图,梯形ABCD中,BC∥AD,AB=CD,AC平分∠BAD,如果AD=2AB,=,=,那么是(用向量、表示).17.(4分)如图,在△ABC中,AB=AC=6,BC=4.已知点D是边AC的中点,将△ABC 沿直线BD翻折,点C落在点E处,联结AE,那么AE的长是.18.(4分)如图,点A是函数y=(x<0)图象上一点,联结OA交函数y=﹣(x<0)图象于点B,点C是x轴负半轴上一点,且AC=AO,联结BC,那么△ABC的面积是.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(10分)计算:﹣|1﹣|+π0﹣.20.(10分)解方程:.21.(10分)如图,⊙O1和⊙O2相交于点A、B,联结AB、O1O2、AO2,已知AB=48,O1O2=50,AO2=30.(1)求⊙O1的半径长;(2)试判断以O1O2为直径的⊙P是否经过点B,并说明理由.22.(10分)A市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送8名学生到比赛场地参加运动会,每辆小汽车限坐4人(不包括司机),其中一辆小汽车在距离比赛场地15千米的地方出现故障,此时离截止进场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时60千米,人步行的平均速度是每小时5千米(上、下车时间忽略不计).(1)如果该小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由.23.(12分)如图,在菱形ABCD中,点E、G、H、F分别在边AB、BC、CD、DA上,AE =AF,CG=CH,CG≠AE.(1)求证:EF∥GH;(2)分别联结EG、FH,求证:四边形EGHF是等腰梯形.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a>0)与x轴交于点A(1,0)和点B,与y轴交于点C.(1)求该抛物线的表达式及点B的坐标;(2)已知点M(0,m),联结BC,过点M作MG⊥BC,垂足为G,点D是x轴上的动点,分别联结GD、MD,以GD、MD为边作平行四边形GDMN.①当m=时,且▱GDMN的顶点N正好落在y轴上,求点D的坐标;②当m≥0时,且点D在运动过程中存在唯一的位置,使得▱GDMN是矩形,求m的值.25.(14分)如图,在扇形OAB中,OA=OB=6,∠AOB=90°,点C、D是弧AB上的动点(点C在点D的上方,点C不与点A重合,点D不与点B重合),且∠COD=45°.(1)①请直接写出弧AC、弧CD和弧BD之间的数量关系;②分别联结AC、CD和BD,试比较AC+BD和CD的大小关系,并证明你的结论;(2)联结AB分别交OC、OD于点M、N.①当点C在弧AB上运动过程中,AN•BM的值是否变化,若变化请说明理由;若不变,请求AN•BM的值;②当MN=5时,求圆心角∠DOB的正切值.2024年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.【分析】整数和分数统称为有理数,据此进行判断即可.【解答】解:、、是无理数,=2,是有理数.故选:B.【点评】本题考查有理数的识别,熟练掌握其定义是解题的关键.2.【分析】所含字母相同,并且相同字母的指数也相同的项叫做同类项,由此判断即可.【解答】解:与单项式2a2b3是同类项的是3b3a2,故选:C.【点评】本题考查了同类项,熟知同类项的定义是解题的关键,注意同类项与系数无关,与字母的顺序无关.3.【分析】先根据题意判断出k,b的符号,进而可得出结论.【解答】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴y=bx+k经过一、三、四象限.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解题的关键.4.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员甲和乙的方差最小,但队员乙平均数小,所以甲的成绩好,所以队员甲成绩好又发挥稳定.故选:A.【点评】本题考查方差与算术平方根,解答本题的关键是掌握它们的定义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠DAO+∠ADO=90°,∴∠AOD=90°,∴AC⊥BD,∴▱ABCD是菱形,故选项A不符合题意;B、∵∠DAC=∠ACD,∴AD=CD,∴▱ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DCA=∠DAC,∴AD=CD,∴▱ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴AD∥CB,∴∠DAB+∠ABC=180°,∵∠DAB=∠ABC,∴∠DAB=∠ABC=90°,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定,平行四边形的性质,掌握矩形的判定是解题的关键.6.【分析】根据弧长的计算方法计算半径为9cm,圆心角为120°的弧长即可.【解答】解:由题意得,重物上升的距离是半径为9cm,圆心角为120°所对应的弧长,即=6π(cm).故选:B.【点评】本题考查弧长的计算,掌握弧长的计算方法是正确解答的前提.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】移项后方程两边平方得出2x﹣1=x2,求出方程的解,再进行检验即可.【解答】解:﹣x=0,移项,得=x,方程两边平方,得2x﹣1=x2,x2﹣2x+1=0,(x﹣1)2=0,x﹣1=0,x=1,经检验:x=1是原方程的解.故答案为:x=1.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.8.【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:,解不等式①得:x>2,解不等式②得:x>﹣5,∴原不等式组的解集为:x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.9.【分析】方程组化为一元二次方程可解得答案.【解答】解:由x﹣2y=0得x=2y,代入x2+y2=5得:5y2=5,解得y=1或y=﹣1,∴原方程组的解为或.故答案为:或.【点评】本题考查解高次方程,解题的关键是把方程组化为一元二次方程.10.【分析】先计算出Δ的值得到Δ>0,然后根据根的判别式的意义判断方程根的情况即可.【解答】解:∵Δ=(﹣m)2﹣4×(﹣1)=m2+4>0,∴方程有两个不相等的实数根.故答案为:有两个不相等的实数根.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.11.【分析】依据题意,由y=2x2﹣4x+1=2(x﹣1)2﹣1,又抛物线开口向上,从而当x<1时,y随x的增大而减小,图象逐渐下降,当x≥1时,y随x的增大而增大,图象逐渐上升,再结合二次函数y=2x2﹣4x+1的图象的一部分是上升的,进而可以判断得解.【解答】解:由题意,∵y=2x2﹣4x+1=2(x2﹣2x+1)﹣1=2(x﹣1)2﹣1,又抛物线开口向上,∴当x<1时,y随x的增大而减小,图象逐渐下降,当x≥1时,y随x的增大而增大,图象逐渐上升.∵二次函数y=2x2﹣4x+1的图象的一部分是上升的,∴x≥1.故答案为:x≥1.【点评】本题主要考查了二次函数的性质,解题时要熟练掌握并能灵活运用是关键.12.【分析】根据反比例函数图象上点的坐标特征解答本题即可.【解答】解:∵反比例函数y=的图象经过点A(t,﹣2t),∴t×(﹣2t)=﹣4,解得t=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握这一特征是关键.13.【分析】利用列举法展示所有4种等可能的结果,根据三角形三边的关系可判断三条线段能构成三角形的结果数,然后根据概率求解.【解答】解:从长度分别为2、4、6、7的四条线段中随机抽取三条线段,它们为2、4、6;2、4、7;2,6,7;4,6,7,共有4种等可能的结果,其中三条线段能构成三角形的结果数为2,所以三条线段能构成三角形的概率==,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.14.【分析】设上升的高度为x米,根据坡比和勾股定理列方程即可求解.【解答】解:设上升的高度为x米,坡比i=1:2.4,根据题意得x2+(2.4x)2=1302,解得x=50,故答案为:50.【点评】本题考查解直角三角形的应用,解题的关键是理解坡比的定义.15.【分析】先用总人数乘以从来不管对应的百分比求出其人数,再根据三个类别人数之和等于总人数求出严格管理的人数,最后用总人数乘以样本中严格管理人数所占比例即可.【解答】解:由题意知,从来不管的人数为100×25%=25(人),则严格管理的人数为100﹣25﹣55=20(人),所以估计该校对手机持“严格管理”态度的家长有2000×=400(人),故答案为:400.【点评】本题考查了条形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了利用样本估计总体.16.【分析】首先判定△ABC是等腰三角形;如图,过点C作CE∥AB交AD于E,构造平行四边形ABCE,则BC=AE.所以在△ABC中,利用三角形法则求解即可.【解答】解:∵BC∥AD,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD.∴∠BAC=∠BCA.∴AB=BC.如图,过点C作CE∥AB交AD于E,则四边形ABCE是平行四边形.∴BC=AE.∵AD=2AB,∴AD=2BC.∵=,∴==.∵=,=+.∴=.故答案为:.【点评】本题主要考查了平面向量,等腰三角形的判定与性质,梯形.解题的巧妙之处在于作出辅助线,构造平行四边形.将所求的向量置于△ABC中,利用三角形法则作答.17.【分析】过A作AM⊥BC,过D作DN⊥BC,连接AE,连接CE交BD于O,根据等腰三角形的性质以及平行线分线段成比例可以求出CN,BN的长,然后根据勾股定理求出DN和BD的长,根据轴对称的性质可得,CE⊥BD,OC=OE,DE=DC,根据等积变换可以求出OC,从而求得CE,再根据AD=CD=DE可以判断△ACE为直角三角形,最后根据勾股定理求出AE的长即可.【解答】解:如图,过A作AM⊥BC,过D作DN⊥BC,连接AE,连接CE交BD于O,∴AM∥DN,∵D为AC中点,AB=AC,∴AD=CD=3,BM=CM=2,∴CN=MN=1,∴DN==2,∴BD==,∵E和C关于BD对称,∴CE⊥BD,OC=OE,DE=DC,=BC•DN=BD•OC,∵S△BCD∴OC=,∴CE=,∵AD=CD=DE,∴△ACE为直角三角形,∴AE==.故答案为:.【点评】本题主要考查了翻折问题,合理运用平行线分线段成比例、勾股定理以及直角三角形的判定是本题解题的关键.18.【分析】过点A,B分别作x轴的垂线,垂足分别为D,E,反比例函数比例系数的几何=4,S△OBE=0.5,证△OAD∽△OBE得,由此得OA=意义得S△OADOB,则AB=(OB,再由得S△ABC=(S,然后根据等腰三角形的性质得S△AOC=2S△OAD=8,则S△ABC+S△OBC=8,由此得△OBC=,进而可得△ABC的面积.得S△OBC【解答】解:过点A,B分别作x轴的垂线,垂足分别为D,E,如下图所示:∵点A是函数(x<0)图象上一点,点B是反比例函数(x<0)图象上的点,=×8=4,S△OBE=×1=0.5,根据反比例函数比例系数的几何意义得:S△OAD∵AD⊥x轴,BE⊥x轴,∴AD∥BE,∴△OAD∽△OBE,∴,∴=8,∴OA=OB,∴AB=OA﹣OB=OB﹣OB=()OB,即,∵,=()S△OBC,∴S△ABC∵AC=AO,AD⊥x轴,∴OD=CD,=2S△OAD=8,∴S△AOC+S△OBC=8,∴S△ABC+S△OBC=8,即()S△OBC=,∴S△OBC=S△AOC﹣S△OBC=.∴S△ABC故答案为:.【点评】此题主要考查了反比例函数比例系数的几何意义,相似三角形的判定和性质,理解反比例函数比例系数的几何意义,熟练掌握相似三角形的判定和性质是解决问题的关键.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.【分析】利用二次根式的性质、绝对值的性质以及零指数幂分别化简得出答案.【解答】解:﹣|1﹣|+π0﹣=2﹣+1+1﹣=2.【点评】本题考查了实数的运算,掌握正确化简各数是关键.20.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+2)2﹣16=x﹣2,整理得:x2+4x+4﹣16=x﹣2,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,检验:当x=2时,(x+2)(x﹣2)=0,当x=﹣5时,(x+2)(x﹣2)≠0,∴x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】(1)连接AO1,由勾股定理求出CO2,再求出CO1,再由勾股定理求出AO1即可;(2)由勾股定理逆定理判断∠O1BO2是否为直角即可.【解答】解:(1)连接AO1,AB和O1O2交于点C,如图:∵AB是⊙O1和⊙O2的公共弦,∴AB⊥O1O2,AC=BC=24,∴CO2==18,∴CO1=O1O2﹣CO2=32,∴AO1==40.(2)经过.证明:∵BO1=AO1=40,BO2=AO2=30,O1O2=50,∴+=O1,∴∠O1BO2=90°,∴B在以O1O2为直径的圆上.【点评】本题主要考查了相交圆的性质,合理运用勾股定理及其逆定理是本题解题的关键.22.【分析】(1)根据题意,若小汽车送4人到达考场,然后再回到出故障处接其他人,则根据故障地点距考场的距离即可求出小汽车运动的总路程,又已知小汽车的平均速度,即可求得小汽车运动的总时间,随后与距截止进考场的时间进行比较,即可判断能否在截止进考场的时刻前到达考场;(2)由(1)知,若停留在原地等待则无法在截止进考场的时刻前到达考场,所以让在小汽车运送4人去考场的同时,留下的4人需步行前往考场,可节省一些时间,根据路程与速度的关系可分别求出小汽车运送第一批4人到达考场的时间、小汽车接到步行的4人的时间、小汽车从接到第二批4人到运送至考场的时间,三个时间相加后与距截止进考场的时间进行比较,即可判断方案的可行性.【解答】解:(1)他们不能在截止进场的时刻前到达比赛场地,小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,总路程为:15×3=45(千米),第二次到达考场所需时间为:45÷60=0.75(小时),0.75小时=45分钟,∵45>42,∴他们不能在截止进场的时刻前到达比赛场地;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回接到步行的4人的后再载他们前往考场,先将4人用车送到考场所需时间为15÷60=0.25(h)=15(分钟),5×0.25=1.25(km),∴此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与步行的4人相遇,则:5t十60t=13.75,解得t=,此时汽车与考场的距离为13.75﹣5×==(km),∴汽车由相遇点再去考场所需时间为(h),用这一方案送这8人到考场共需15≈40.4(分钟).∴40.4<42,∴采取此方案能使8个人在截止进考场的时刻前到达考场.【点评】本题考查了由实际问题抽象出一元一次方程,解题的关键是找准等量关系,正确列出一元一次方程.23.【分析】(1)连接BD.根据菱形的性质得到AB=AD=BC=CD,根据平行线分线段成比例定理即可得到结论;(2)根据相似三角形的性质得到=,同理=,又CG≠AE,得到EF≠GH,根据梯形的判定定理得到四边形EGHF是梯形;根据全等三角形的性质得到EG=FH,于是得到梯形EGHF是等腰梯形.【解答】证明:(1)连接BD.∵四边形ABCD是菱形,∴AB=AD=BC=CD,∵AE=AF,CG=CH,∴=,=,∴EF∥BD,GH∥BD,∴EF∥GH;(2)∵EF∥BD,∴△AEF∽△ABD,∴=,同理=,又CG≠AE,∴EF≠GH,∵EF∥GH,∴四边形EGHF是梯形;∵AB﹣AE=AD﹣AF,即BE=DF,∴BC﹣CG=CD﹣CH,即BG=DH,∵四边形ABCD是菱形,∴∠ABC=∠ADC,∴△BGE≌△DHF(SAS),∴EG=FH,∴梯形EGHF是等腰梯形.【点评】本题考查了等腰梯形的判定,菱形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.24.【分析】(1)由待定系数法求出函数表达式,进而求解;(2)①在Rt△CGM中,cos∠MCG=,则CG=CM•cos∠MCG=×=2,在Rt △CGH中,GH=CG•sin∠HCG=2×=,即可求解;②当m=0时,即点M与点O重合时,符合题意;当0<m<4时,如图所示,取MG的中点P,以MG为直径作圆P,则点N、D在圆上,由PM=OH,即可求解;当m≥4时,可得:OH>PM,所以符合题意的m不存在.【解答】解:(1)由题意,得:a﹣4a+4=0,解得:a=,∴抛物线的表达式为y=x2﹣x+4;则抛物线的对称轴是直线x=2,∴点B(3,0);(2)①由题意,得C(0,4)、M(0,),则CM=,∵四边形GDMN是平行四边形,∴DG∥MN,又点N在y轴上,∴NM⊥OD,∴GD⊥OD,在Rt△OBC中,BC==5,则cos∠OCB==,则sin∠OCB=,在Rt△CGM中,cos∠MCG=,则CG=CM•cos∠MCG=×=2,过点G作GH⊥CO,垂足为H,在Rt△CGH中,GH=CG•sin∠HCG=2×=,则OD=GH=,故点D(,0);②当m≥0时,根据m不同取值分三种情况讨论:当m=0时,即点M与点O重合时,符合题意;当0<m<4时,如图所示,取MG的中点P,以MG为直径作圆P,则点N、D在圆上,此时圆P和x轴有唯一切点D,符合题设条件,则OH=PD=PM,∵MG=MC•sin∠OCB=(4﹣m)=2PM,由①知,∠CMG=∠OCB,则sin∠CMG=sin∠OCB,则MH=PM•sin∠OCB=(4﹣m),而OH=MH+OM=MH+m,由PM=OH得:(4﹣m)+m=(4﹣m),解得:m=;当m≥4时,可得:OH>PM,所以符合题意的m不存在,综上,符合题意的m的值为0或.【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、圆的切线的性质等知识,分类求解是解题的关键.25.【分析】(1)①根据弧长与圆心角之间的关系求解即可;②在弧CD上取点E,使得∠COE=∠AOC,然后根据圆心角、弧长、弦长之间的关系以及三角形的三边关系证明即可;(2)①利用相似三角形的判定与性质,先证明△OMB∽△AON,即可得出AN•BM的值;②过点O在OB下方作∠BOM′=∠AOM,截取OM′=OM,利用全等三角形的判定与性质,以及勾股定理可以求出BN的长,过N作OB垂线,根据三角函数的定义求解tan∠BOD即可.【解答】解:(1)①设∠AOC=α,∴∠BOD=90°﹣45°﹣α=45°﹣α,∵=•2πOA,=•2πOA,=•2πOA,∴=+;②AC+BD>CD.证明:在上取点E,连接OE,使得∠COE=∠AOC,连接CE,DE,如图:∴AC=CE,在△CDE中,CE+DE>CD,∵∠COE+∠DOE=45°,∠AOC+∠BOD=45°,∴∠DOE=∠BOD,∴BD=DE,∴AC+BD>CD.(2)①AN•BM的值不变,AN•BM=72.∵OA=OB,∴∠OAB=∠OBA,∵∠AOB=90°,∴∠OAB=∠OBA=45°,∵∠OMB=∠OAB+∠AOM=45°+∠AOM,又∵∠AON=∠COD+∠AOM=45°+∠AOM,∴∠OMB=∠AON,∴△OMB∽△AON,∴=,∴AN•BM=AO•BO=72;②过点O在OB下方作∠BOM′=∠AOM,截取OM′=OM,连接BM′,NM′,如图:∵AO=BO,∴△OBM′≌△OAM(SAS),∴BM′=AM,∠OBM′=∠OAB=45°,∴∠NBM′=90°,又∵∠M′ON=45°=∠COD,ON=ON,∴△ONM′≌△OMN(SAS),∴M′N=MN,∴MN2=M′N=BM′2+BN2=AM2+BN2,又∵AM+BN=12﹣5=7,∴BN=3或4,过N作NG⊥OB于G,当BN=3时,NG=BG=,∴OG=,∴tan∠BOD==,当BN=4时,NG=BG=2,∴OG=4,∴tan∠BOD==,∴tan∠BOD=或.【点评】本题主要考查了圆的综合题,综合运用全等三角形的判定与性质、相似三角形的判定与性质、勾股定理、圆心角与弦和弧的关系以及锐角三角函数的定义是本题解题的关键。

上海中考二模数学试题及答案

上海中考二模数学试题及答案

上海中考二模数学试题及答案一、选择题1. 若集合A = {1, 2, 3, 4, 5, 6, 7},B = {2, 4, 6, 8,10},则A ∩ B = ()A. {2, 4, 6}B. {1, 2, 3}C. {8, 10}D. {1, 3, 5, 7}2. 已知直线l与x轴交于点A,直线l与y轴交于点B,则下列说法中正确的是()A. 点(0, 0)在l上B. 点(0, 1)在l上C. A与B的横坐标之积小于0D. A、B的横坐标之积大于03. 方程(x-2)²-4 = 0的根是()A. 0B. 2C. 4D. 64. a1, a2, a3, ...是等差数列,若a1+a9=28,a5+a11=24,则该数列首项为()A. 1B. 2C. 3D. 45. 在Rt△ABC中,AB=12,AC=16,则BC的长度为()A. 4B. 8C. 12D. 16答案:1. A 2. D 3. B 4. C 5. B二、填空题1. 若a:b=2:3,且a:b:c=3:5:7,求c。

2. 设二次函数f(x)=-2x²+3x+4,若f(x)的图像与x轴交于点A、B,且AB=4,则A、B的横坐标分别为___。

3. 已知平行四边形ABCD中,AB=2a,AD=a+3,AC=4a-3,则BD 等于___。

4. 已知函数y=f(x)的图像关于原点对称,则f(-x)=___。

5. 若函数y=f(x)=ax²+x-1在区间[0, 1]上是增函数,则a的取值范围是___。

答案:1. 7 2. (-1, 3) 3. 2a-3 4. f(x) 5. a>0三、解答题1. 已知等差数列S的首项为a,公差为d,且S1 + S2 + S3 = 15,求S6的值。

解答:设等差数列的第n项是Sn,则有Sn = a + (n-1)d。

根据等差数列和公式,可以得到:S1 = aS2 = a + dS3 = a + 2dS6 = a + 5d给出条件S1 + S2 + S3 = 15,代入上面的式子可以得到:a + (a + d) + (a + 2d) = 153a + 3d = 15再考虑到S6 = a + 5d,将3a + 3d = 15带入可以得到:3a + 3d = 153(a + d) = 15a + d = 5将a + d = 5带入S6 = a + 5d:S6 = 5 + 5dS6 = 5(d + 1)所以S6的值为5(d + 1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y O 动点之角度 (2015 二模 崇明)24.(本题满分12分,每小题各6分)
如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .
(1)求这个抛物线的解析式,并写出顶点坐标;
(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.
(2015 二模 奉贤)24.(本题满分12分,第(1)小题4分,第(2)小题8分) 已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线
x ,顶点为A .
(1)求抛物线的表达式及顶点A 的坐标;
(2)点P 为抛物线对称轴上一点,联结OA 、OP .
①当OA ⊥OP 时,求OP 的长;
②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.
(2015 二模 杨浦)24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分,)
已知:在直角坐标系中,直线y =x +1与x 轴交与点A ,与y 轴交与点B ,抛物线
21()2
y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。

(1)若点C (非顶点)与点B 重合,求抛物线的表达式;
(2)若抛物线的对称轴在y 轴的右侧,且CD ⊥AB ,求∠CAD 的正切值; (第24题图) B A
C O x y (备用图) B A C O x y
O y
A x
(3)在第(2)的条件下,在∠ACD 的内部作射线CP 交抛物线的对称
轴于点P ,使得∠DCP =∠CAD ,求点P 的坐标。

动点之相似
(2015 二模 宝山嘉定) 24.(本题满分12分,每小题满分各4分)
已知平面直角坐标系xOy (图9),双曲线)0(≠=k x
k y 与直线2+=x y 都经过点),2(m A . (1)求k 与m 的值;
(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;
(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E
似比不为1,求点E 的坐标. (2015 二模 金山)24.(本题满分12分)
已知抛物线)0(82≠-+=a bx ax y 经过,2(-A 于点C . (1) 求抛物线)0(82≠-+=a bx ax y (2)求APB ∠的正弦值;
(3)直线2+=kx y 与y 轴交于点N ,与直线AC 的交点为M ,当MNC ∆与AOC ∆相似时,求点M 的坐标.
动点之面积
(2015 二模 黄浦)24. (本题满
分12分,第(1)小题满分3分,
第(2)小题满分4分,第(3)O x y
(第24题图) 图9
小题满分5分)
如图7,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反比例函数12y x
=的图像交于点P ,点B 、C 分别在函数12y x
=的图像上,且AB //x 轴,AC //y 轴. (1)当点P 横坐标为6,求直线AO 的表达式;
C ,且∠OBC =∠OAB ,AC =3.
(1) 求此抛物线的表达式;
(2) 如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,
且2:3:=∆∆AFG ADG S S (2015 二模 长宁)24.如图,已知抛物线22+-=tx x y 作AB ⊥y 轴于点B ,C 是线段AB CD ⊥x 轴于点D ,并交抛物线于点P . (第24题
(1)若点C 的横坐标为1,且是线段AB 的中点,求点P 的坐标;
(2)若直线AP 交y 轴负半轴于点E ,且AC =CP ,求四边形OEPD 的面积S 关于t 的函数解析式,并写出定义域;
(3)在(2)的条件下,当△ADE 的面积等于2S 时 ,求t 的值.
动点之直角、等腰三角形存在性
(2015 二模 普陀) 如图10图像经过点()1,0A -,()4,0B ,()0,2C .点联结BD ,点E 是x 的坐标为(m , 0),过点作x 轴的垂线l 交抛物线于点P .
(1)求这个二次函数的解析式;
(2)当点E 在线段OB 上运动时,直线l 交BD 于点Q .当四边形CDQP 是平行四边形时,求m 的值;
(3)是否存在点P ,使△BDP 是不以BD 为斜边的直角三角形,如果存在,请直接写出点P 的坐标;如果不存在,请说明理由. 12bx +A (4,0),过点H D ,
其对称轴与直线AB 及x 轴分别交于点E 和点F .
(1)求这个二次函数的解析式; 图10图第24题图
(2)如果CE =3BC ,求点B 的坐标;
(3)如果△DHE 是以DH 为底边的等腰三角形,求点E 的坐标.
动点之梯形
(2015 二模 徐汇)24. 如图,在平面直角坐
标系中,O 为坐标原点,开口向上的抛物线与x 轴交于点A (-1,0)和点B (3,0),D 为
抛物线的顶点, 直线AC 与抛物线交于点C
(5,6).
(1)求抛物线的解析式; (2)点E 在x 轴上,且AEC ∆和AED ∆相似,求点E 的坐标;
(3)若直角坐标平面中的点F 和点A 、C 、D 构成直角梯形,且面积为16,试求点F 的坐标.
其他
(2015 二模 闵行)24.(本题满分12题各4分)
如图,已知在平面直角坐标系xOy 抛物线224y ax ax =--与x 轴相交于A 、B 点C ,其中点A 的坐标为(-3,0).点D
(1)求这条抛物线的关系式,并求出抛物线的对称轴;
(2)如果以DB 为半径的圆D 与圆C 外切,求圆C 的半径;
(3)设点M 在线段AB 上,点N 在线段BC 上.如果线段MN 被直线CD 垂直平分,求BN CN 的值. (2015 二模 浦东)24.(本题满分12分,其中第(1)
小题3分,第(2)小题4分,第(3)小题5分) 已
(第24题图) (第24题图)
x
知:如图,直线y=kx+2与x轴的正半轴相交于点A(t,0)、与y轴相交于点B,抛物线c
-
+
=2经过点A和点B,点C在第三象限内,
y+
bx
x
1.
且AC⊥AB,tan∠ACB=
2
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求Array
t的值.
(第24题图)。

相关文档
最新文档