张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题答案(含考研真题)详解[第⑤册]
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](差异量数)
](https://img.taocdn.com/s3/m/446b814cb7360b4c2e3f64f4.png)
第4章差异量数1.度量离中趋势的差异量数有哪些?为什么要度量离中趋势?答:(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。
这些特殊性常表现为数据的变异性。
因此,只用集中量数不可能真实地反映出它们的分布情形。
为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
2.各种差异量数各有什么特点?答:(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。
缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。
因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。
当组距不确定,其他差异量数都无法计算时,可以计算四分位差。
但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
现代心理与教育统计学(张厚粲)课后习题答案

现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](线性回归)
](https://img.taocdn.com/s3/m/3625fe45ad51f01dc281f1e5.png)
dfR 1
MSR
SSR dfR
=118.95
dfE N 2 =8
MSE
SSE dfE
8.08
F MSR =14.72 MSE
查 F 表, F0.01(1,8) 5.32 , F F0.05(1,8)
5.某研究所 10 名学生研习某教授的高级统计课程,期中与期末考试成绩见下表。请 问该教授是否可以利用期中考试成绩来预测期末考试成绩?
4/6
圣才电子书 十万种考研考证电子书、题库视频学习平台
解:(1)建立回归方程
经计算 X 79.2, Y 84.2, sX 8.75, sY =4.52
dfE N 2 =8
MSE
SSE dfE
230.5
F MSR =9.15 MSE
查 F 表, F0.05(1,8) 5.32 , F F0.05(1,8)
3/6
圣才电子书
方差分析表如下
十万种考研考证电子书、题库视频学习平台
变异来源
自由度
平方和
均方
F
F0.05(1,8)
bYX
Y Y
2
=0.57
X X
a Y bX 23.13
则回归方程为 Yˆ 23.13 0.57X 。
(2)对回归方程进行检验
SST
Y2
Y 2
N
=3952.5
SSR
b2
X
2
X
N
2
=2108.6
SSE SST SSR =1843.9
dfR 1
MSR
SSR dfR
=2108.6
SST SSR N 2
MSE =15.18
2
张厚粲《现代心理与教育统计学》第3版笔记和课后习题含考研真题详解(5-7章)【圣才出品】

(三)散点图 1.在相关研究中,常用相关散点图表示两个变量之间的关系。在直角坐标系中,以 X、 Y 二列变量中的一列变量(如 X 变量)为横坐标,以另一列变量(如 Y 变量)为纵坐标, 把每对数据 Xi、Yi 当作同一个平面上的 N 个点(Xi、Yi),一一描绘在 XOY 坐标系中,产生 的图形就称为散点图或相关图。 2.散点图通过点的散布形状和疏密程度来显示两个变量的相关趋势和相关程度,能够 对原始数据间的关系做出直观而有效的预测和解释。成对观测值愈多,散点图提供的信息就 越准确。因此,散点图是确定变量之间是否存在相关关系及关系紧密程度的简单而又直观的 方法。 3.不同形状的散点图形显示了两个变量间不同程度的相关关系。假设在直角坐标系中,
1 / 157
圣才电子书 十万种考研考证电子书、题库视频学习平台
哪个是果;也有理由认为这两者并不同时受第三因素的影响,即不存在共变关系。具有相关 关系的两种现象之间的关系是比较复杂的,甚至可能包含有暂时尚未认识的因果关系以及共 变关系在内。
2.相关的类别 统计学中所讲的相关是指具有相关关系的不同现象之间的关系程度,前提是事物之间的 这种联系又不能直接做出因果关系的解释。有时,相关被解释为两种特征相伴随的变化。相 关有以下三种: (1)正相关,两列变量变动方向相同,即一种变量变动时,另一种变量亦同时发生或 大或小与前一种变量同方向的变动。 (2)负相关,两列变量中有一列变量变动时,另一列变量呈现出或大或小但与前一列 变量方向相反的变动。 (3)零相关,两列变量之间没有关系,即一列变量变动时,coefficient of correlation)是两列变量间相关程度的数字表现形式,或者 说是用来表示相关关系强度的指标。作为样本间相互关系程度的统计特征数,常用 r 表示, 作为总体参数,一般用 表示,并且是就线性相关而言。相关系数与 X 、s 一样,也是应用 比较广泛的一个有代表性的统计量。r 的取值范围如下: -1.00≤r≤+1.00 上式表明: 1.相关系数 r 的取值范围介于-1.00 至+1.00 之间,它是一个比率,常用小数形式表 示。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](假设检验)
](https://img.taocdn.com/s3/m/e725406667ec102de2bd89c9.png)
第8章 假设检验1.从假设检验的过程看,统计推断有什么特点? 答:(1)假设检验的基本过程是①根据问题要求,提出虚无假设0H 和备择假设1H 。
②选择适当的检验统计量。
③规定显著性水平α。
④计算检验统计量的值。
⑤做出决策。
(2)从假设检验的过程看,“反证法”是统计推论的一个重要特点。
假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。
假设检验的基本思想是概率性质的反证法。
为了检验虚无假设,首先假定虚无假设为真。
在虚无假设为真的前提下,如果导致违反逻辑或违背人们常识和经验的不合理现象出现,则表明“虚无假设为真”的假定是不正确的,也就不能接受虚无假设。
若没有导致不合理现象出现,那就认为“虚无假设为真”的假定是正确的,也就是说要接受虚无假设。
2.从α与β两类错误的关系分析,为什么α与β的和不一定等于1?答:α与β是在两个前提下的概率。
α是拒绝0H 时犯错误的概率(这时前提是“0H 为真”);β是接受0H 时犯错误的概率(这时“0H 为假”是前提),所以αβ+不一定等于1。
图8.3 α与B 的关系示意图如果010H μμ=:为真,关于i X 与μ的差异就要在图8.3中左边的正态分布中讨论。
对于某一显著性水平α,其临界点为X α。
(将两端各/2α放在同一端)。
X α右边表示0H 的拒绝区,面积比率为α;左边表示0H 的接受区,面积比率为1α-。
在“0H 为真”的前提下随机得到的i X 落到拒绝区时拒绝0H 是犯了错误的。
由于i X 落到拒绝区的概率为α,因此拒绝在“0H 为真”时所犯错误(I 型)的概率等于α。
而又落到0H 的接受区时,由于前提仍是“0H 为真”,因此接受0H 是正确决定,i X 落在接受区的概率为1α-。
,那么正确接受0H 的概率就等于1α-。
如0.05α=则10.95α-=,这0.05和0.95均为“0H 为真”这一前提下的两个概率,一个指犯错误的可能性,一个指正确决定的可能性,这二者之和当然为1。
张厚粲《现代心理与教育统计学》第3版笔记和课后习题含考研真题详解(1-4章)【圣才出品】

统计图表
1.描述统计
差异量数 集中量数 相关分析
点估计
心理与教育统计
2.推断统计 统计估计
参数估计
区间估计
非参数估计
假设检验
参数检验 非参数检验
样本选择与分配
实验误差分析
3.实验设计
方差分析 协方差分析
回归分析
因子分析 ... ...
1 / 107
圣才电子书 十万种考研考证电子书、题库视频学习平台
(二)心理与教育科学研究数据的特点 1.心理与教育科学研究数据与结果多用数字形式呈现 2.心理与教育科学研究数据具有随机性和变异性 3.心理与教育科学研究数据具有规律性 4.心理与教育科学研究的目标是通过部分数据来推测总体特征 (三)学习心理与教育统计应注意的事项 1.学习心理与教育统计学要注意的几个问题 (1)学习心理与教育统计学时,必须要克服畏难情绪。心理与教育统计学偏重于应用, 只要有中学数学知识就具备了学好心理与教育统计学的前提。 (2)在学习时要注意重点掌握各种统计方法使用的条件。 (3)要做一定的练习。 2.应用心理与教育统计方法时要做到: (1)克服“统计无用”与“统计万能”的思想,注意科研道德。 (2)正确选用统计方法,防止误用和乱用统计。
圣才电子书
第1章 绪 论
十万种考研考证电子书、题库视频学习平台
1.1 复习笔记
本章重点 心理与教育统计的研究内容 选择使用统计方法的基本步骤 统计数据的基本类型 心理与教育统计的基本概念
一、统计方法在心理和教育科学研究中的作用 (一)心理与教育统计的定义与性质 1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理 与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论 找出心理与教育活动规律的一门学科。 2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些 数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理, 最后得出结论的一种研究方法。 3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(applied statistics)两部分。前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各 个实践领域中的应用。心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。 类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
张厚粲《现代心理与教育统计学》(第三版)教材辅导书-考研真题解析-2008年全国硕士研究生入学统一考

2008年全国硕士研究生入学统一考试心理学专业基础综合试题及详解(科目代码:312)一、单项选择题:1~65小题,每小题2分,共130分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
请在答题卡上将所选项的字母涂黑。
1.强调心理学不应该以意识为主要研究对象的学派是()。
A.构造主义B.机能主义C.人本主义D.行为主义【答案】D【解析】行为主义反对以意识作为心理学的研究对象,而主张以外显的可观察的行为作为心理学的研究对象。
构造主义和机能主义都以意识作为研究对象,所不同的是前者主张研究意识的成分,而后者主张研究意识的功能。
人本主义则主张以人的内在意识经验作为心理学的研究对象。
2.现代心理学诞生和发展的两个重要历史渊源是哲学和()。
A.生理学B.社会学C.人类学D.物理学【答案】A【解析】现代心理学诞生和发展的两个重要历史渊源是哲学和生理学(实验生理学),近代哲学为西方现代心理学的诞生提供了理论基础,而现代心理学的实验方法则直接来源于实验生理学。
3.通过裂脑人研究来揭示大脑两半球功能单侧化的科学家是()。
A.布洛卡(P.Broca)B.拉什利(K.S.Lashley)C.斯佩里(R.Sperry)D.威尔尼克(C.Wernicke)【答案】C【答案】斯佩里通过对切断了胼胝体的癫痫病人所进行的裂脑人的研究,揭示了大脑两半球功能的单侧化,并因此获得的诺贝尔生物学奖。
布洛卡发现了言语运动中枢,即布洛卡区。
拉什利通过脑皮层局部切除的研究,提出了脑功能的“整体说”,认为学习活动与大脑具体的部位关系不大,与切除的面积密切相关。
威尔尼克通过对接受性失语症患者的研究,发现了言语理解中枢,即威尔尼克区。
4.颜色视觉的三个基本属性是()。
A.色调、波长、照度B.色调、明度、照度C.波长、明度、饱和度D.色调、明度、饱和度【解析】颜色视觉的三个基本属性是色调、明度、饱和度。
色调主要决定于光波的波长。
明度是指颜色的明暗程度,决定于照明的强度和物体表面的反射系数。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](抽样原理及方法)
](https://img.taocdn.com/s3/m/f28b378b55270722182ef72e.png)
第14章抽样原理及方法1.什么是抽样误差?什么是最大允许抽样误差?答:任何一个抽样调查都可能产生误差。
调查的总误差可以分为两部分:非抽样误差和抽样误差。
非抽样误差指漏报、错报、测量误差以及在调查结果的登录、汇总等环节上产生的误差,其误差大小很大程度上取决于调查的组织工作是否完善;抽样误差则是根据样本信息来推断总体信息时产生的随机误差。
确定样本容量时应该考虑的因子(1)参数估计在样本平均数的分布中当或0.01时,或2.58。
此时而因此(公式14.14)可以看到,进行平均数的估计时,当α确定后(0.05或0.01),总体标准差σ和最大允许误差d是决定样本容量的两个因子。
2.什么情况下要进行分层抽样,举例说明或以公式证明分层抽样的优点。
答:1.方法(1)分层随机抽样简称分层抽样(stratified sampling或hierarchical sampling)。
具体做法是按照总体已有的某些特征,将总体分成几个不同的部分(每一部分叫一个层),再分别在每一部分中随机抽样。
它充分利用了总体的已有信息,因而是一种非常实用的抽样方法。
(2)对于一个总体究竟应该如何分层,分几层,要视具体情况而定。
总的一个原则是,各层内的变异要小,而层与层之间的变异越大越好,否则将失去了分层的意义。
(3)设总体为N,所需样本容量为n,则如何合理地将n分配在各层,是分层抽样的一个重要问题。
具体施行过程中有两种方式:①按各层人数比例分配这是在各层内的标准差不知道的情况下常用的分配方式,基本思想是人数多的层多分配,人数少的层少分配。
设各层的人数分别为N1,N2,N3…N k每层应分配的人数为n1,n2,n3…n k。
则如果按人数比例分配,则或任意一层应分配的人数应当为:(公式14.5)②最佳分配(最优配置法)这种分配不但根据各层人数比例,还考虑到了各层标准差。
如果各层内的标准差已知,就应该考虑到标准差大的层要多分配,标准差小的层要少分配。