第5讲 函数的三要素(一)(必修1)第5讲 测试题答案
2022版高考数学一轮复习第3章函数第5讲指数与指数函数课件

(2)指数函数的图象与性质:
a>1
0<a<1
图象
第七页,编辑于星期六:四点 六分。
定义域 值域
性质
a>1
0<a<1
①___R_____ ②_(_0_,__+__∞_)
③过定点___(0_,_1_) __,即x=0时,y=1
④当x>0时,__y_>__1__;
⑤当x<0时,___y>__1__;
当x<0时,_0_<__y_<_1_
×-25
×23
-32313
-1=52-32-1=0.
(2)原式=
1
a3
1
a3
1
a3
3-2b31
3
2+a31
1
·2b3
+2b13
1
a3 ÷
2
1
-2b3 a
2 1
·a·a3
1
1
2
1
a2
·a3
5
5
1
=a3
1
a3
1
-2b3
·1 a3
a
1
-2b3
·a61
1
=a3
a6
2
·a·a3
=a2.
第二十二页,编辑于星期六:四点 六分。
当x>0时,_0_<__y<__1_
⑥在(-∞,+∞)内是 __增_____函数
⑦在(-∞,+∞)内是 ___减____函数
第八页,编辑于星期六:四点 六分。
【特别提醒】 1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且 结果不能同时含有根号和分数指数幂,也不能既含有分母又含有负指 数. 2.指数函数y=ax(a>0,a≠1)的图像和性质跟a的取值有关,要特 别注意区分a>1或0<a<1.
2020_2021学年高一数学上学期高频考点突破专题06函数三要素含解析新人教A版必修第一册

高一数学上学期高频考点突破:专题 06函数三要素模块一:函数定义域 ⑴ 具体函数的自然定义域:目前的限制条件有分母不为零,零的零次方无意义,偶次根式下非负; ⑵ 限制定义域: ① 人为规定的限制,如2()1[12]f x x x =+∈-,,;② 实际背景的限制;⑶抽象复合函数的定义域问题.考点1:具体函数求定义域例1.(1)函数f (x )的定义域为( ) A .[1,6] B .(﹣∞,1]∪[6,+∞)C .[﹣6,﹣1]D .(﹣∞,﹣6]∪[﹣1,+∞)【解答】解:由题意得:x 2﹣7x +6≥0,解得:x ≥6或x ≤1, 故函数的定义域是:(﹣∞,1]∪[6,+∞), 故选:B .(2)函数()(1)f x x x x=--的定义域为( )A .{|0}x x >B .{|1}x xC .{|1x x 或0}x <D .{|01}x x <【解答】解:要使()f x 有意义,则:(1)00x x x -⎧⎨>⎩;解得1x ;()f x ∴的定义域为{|1}x x .故选:B .(3)函数y =( )A .[2-,1]-B .[2-,1]C .[2,)+∞D .(-∞,1)(1⋃,)+∞【解答】解:由220120xxx x +⎧⎪-⎨⎪--⎩①②, 解①得:21x -<. 解②得:1x -或2x .∴函数y =[2-,1]-.故选:A .例2.(1)函数()f x 的定义域为R ,则实数m 的取值范围是( )A .[0,8]B .[0,8)C .[8,)+∞D .(,8)-∞【解答】解:函数()f x 的定义域为R ;∴不等式220mxmx ++的解集为R ;①0m =时,20恒成立,满足题意;②0m ≠时,则280m m m >⎧⎨=-⎩; 解得08m <;综上得,实数m 的取值范围是[0,8]. 故选:A . (2)已知函数231()3x f x ax ax -=+-的定义域是R ,则实数a 的取值范围是( ) A .13a >B .120a -<C .120a -<<D .13a【解答】解:要使函数231()3x f x ax ax -=+-的定义域是R ,则230ax ax +-≠对任意实数x 都成立, 当0a =时显然成立;当0a ≠时,需△2120a a =+<,解得120a -<<.综上,a 的取值范围为120a -<. 故选:B . (3)若函数()f x =的定义域为R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【解答】解:()f x 的定义域为R ;210ax ax ∴++>的解集为R ;①0a =时,10>恒成立,210ax ax ++>的解集为R ;②0a ≠时,则240a a a >⎧⎨=-<⎩; 解得04a <<;∴综上得,实数a 的取值范围是[0,4).故选:C .考点2:抽象函数求定义域例3.(1)若函数()y f x =的定义域是[2-,3],则函数(1)y f x =-的定义域是 . 【解答】解:函数()y f x =的定义域是[2-,3],∴由213x --,解得14x -.∴函数(1)y f x =-的定义域是[1,4].故答案为:[1-,4].(2)函数()y f x =的定义域为[1-,2],则函数(1)(1)y f x f x =++-的定义域为( ) A .[1-,3]B .[0,2]C .[1-,1]D .[2-,2]【解答】解:函数()y f x =的定义域为[1-,2],∴由112112x x -+⎧⎨--⎩,解得11x -. ∴函数(1)(1)y f x f x =++-的定义域为[1-,1].故选:C .(3)若函数()f x 的定义域为[0,4],则函数()g x =的定义域为( )A .[0,1]B .[0,1)C .(0,1)D .[0,1)(1⋃,4]【解答】解:()f x 的定义域为[0,4];()g x ∴满足:02410x x ⎧⎨->⎩;解得01x <;()g x ∴的定义域为[0,1).故选:B .模块二:函数值域求解值域问题有两个大致的方向,一个方向是借助于基本函数的图象解决我们熟悉的函数及其复合函数的值域问题,当然每个人熟悉的函数是不一样多的,后面我们也会学习更多的函数,比如对勾函数、指对函数,扩充我们的函数库;另一个是借助于代数基本变形求值域,比如配方法、换元法、分离常数法、判别式法等.当然,这两个方向不是完全独立的,很多时候,进行换元或者分离常数后,一个陌生的函数会转化为我们熟悉的函数,从而利用图象解决值域问题.这里主讲直接法、换元法求值域.考点3:直接法求值域例4.求下列函数值域: (1)232y xx =--+,(0]x ∈-∞,;【解答】174⎛⎤-∞ ⎥⎝⎦,(2)已知函数2()32(3)3f x x m x m =-+++的值域为[0,)+∞,则实数m 的取值范围为()A .{0,3}-B .[3-,0]C .(-∞,3][0-,)+∞D .{0,3}【解答】解:2()32(3)3f x x m x m =-+++的值域为[0,)+∞,∴△24(3)12(3)0m m =+-+=,解可得0m =或3m =-,则实数m 的取值范围为{0,3}-. 故选:A .(3)若函数244y x x =--的定义域为[0,]m ,值域为[8-,4]-,则m 的取值范围是( )A .(0,2]B .(2,4]C .[2,4]D .(0,4)【解答】解:函数2()44f x x x =--的图象是开口向上,且以直线2x =为对称轴的抛物线(0)f f ∴=(4)4=-,f (2)8=-函数2()44f x x x =--的定义域为[0,]m ,值域为[8-,4]-, 24m ∴即m 的取值范围是[2,4] 故选:C .(4)设函数21()2f x x x a =-++(其中5)2a ,若存在m 、n ,当()f x 的定义域为[m ,]n 时,值域为[3m ,3]n ,则实数a 的取值范围是 . 【解答】解:令21()()322g x f x x x x a =-=--+,结合题意()g x 有2个不相等的零点, 故△420a =+>,解得:522a -<, 故答案为:5(2,)2-.考点4:换元法求值域例5.(1)设函数()f x A ,值域为B ,则(A B = )A .[0,1]B .[1-,1]C .(0,1)D .{1-,1}【解答】210x -, 11x ∴-,解得:[1A =-,1]而21y x =- 中,[1x ∈-,1], 故1max y =,0min y =, 解得:[0B ∈,1],[1A B ∴=-,1],故选:B . (2)已知函数21()2f x x =+,则()f x 的值域是( ) A .1(,]2-∞B .1[,)2+∞C .1(0,]2D .(0,)+∞【解答】解:222x +;∴211022x <+; ()f x ∴的值域为1(0,]2.故选:C .(3)函数y x =+( ) A .(-∞,1] B .[1,)+∞ C .(-∞,2] D .[2,)+∞(0)t t =,则21x t =-,∴原函数化为2221(1)22y t t t =-++=--+,∴函数y x =+(-∞,2].故选:C .(4)4246y x x =-+; 【解答】[2)+∞,模块三:函数解析式若2(1)1f x x +=+,求()f x .此时,f 对应的规则是不直接给出的.关键要看f 对1x +进行了什么操作,所以要把21x +变成与1x +相关的:221(1)2(1)2x x x +=+-++,于是2()22f x x x =-+,这就是配凑的方法.也可以令1t x =+,于是1x t =-,代入得到2()(1)1f t t =-+,即换元法.考点5:换元法求解析式例6.(1)已知1)3f x =+,则(1)f x +的解析式为( )A .4(0)x x +B .23(0)x x +C .224(1)x x x -+D .23(1)x x +【解答】解:设1t =,1t 21,(1)t x t =-=-,所以2()(1)3f t t =-+,即2()(1)3f x x =-+,所以22(1)(11)33f x x x +=+-+=+, 由11x +,得0x ,所以22(1)(11)33f x x x +=+-+=+,(0)x . 故选:B .(2)若函数()f x 满足(32)98f x x +=+,则()f x 是( ) A .()98f x x =+ B .()32f x x =+C .()34f x x =--D .()32f x x =+或()34f x x =--【解答】解:令32t x =+,则23t x -=,所以2()98323t f t t -=⨯+=+. 所以()32f x x =+. 故选:B .课后作业:1. 函数1()2f x x =+的定义域为( ) A .(2-,1] B .(-∞,2)(2--⋃,1)C .(2,1)-D .(-∞,2)(2--⋃,1]【解答】解:由1020x x -⎧⎨+≠⎩,解得1x 且2x ≠-.∴函数1()2f x x =+的定义域为(-∞,2)(2--⋃,1]. 故选:D .2. 已知函数()f x =R ,则实数a 的取值范围是( ) A .(0,1]4B .(-∞,1]4C .1[4,)+∞D .[1,)+∞【解答】解:()f x 的定义域为R ,20x x a ∴++的解集为R ,∴△140a =-,解得14a, ∴实数a 的取值范围是1[,)4+∞.故选:C .3. 若函数()y f x =的定义域是[0,2],则函数(21)y f x =-的定义域是( ) A .{|01}x xB .{|02}x xC .13{|}22x x D .{|13}x x -【解答】解:函数()y f x =的定义域是[0,2],∴由0212x -,解得1322x . ∴函数(21)y f x =-的定义域是13{|}22x x . 故选:C .4. 已知函数234y x x =--的定义域是[1-,]m ,值域为25[4-,0],则m 的取值范围是( )A .(0,4]B .3[,4]2C .3[,3]2D .3[,)2+∞【解答】解:函数234y x x =--的图象是开口向上的抛物线,其对称轴方程为32x =, 如图:(1)f f -=(4)0=,325()24f =-.由图可知,要使函数234y x x =--,[1x ∈-,]m 的值域为25[4-,0], 则m 的取值范围是3[,4]2.故选:B .5. 函数()(4)1f x x x x +-的值域为 . 【解答】解:函数的定义域为[0,)+∞.2()(4)1212(1)33f x x x x x x x =+-=-=--,所以函数的值域为[3-,)+∞. 故答案为:[3-,)+∞.6.已知1(1)232f x x -=+,()6f m =,则m 等于( )A .32B .32-C .14D .14-【解答】解:设112x t -=,则22x t =+,()47f t t ∴=+,()476f m m ∴=+=,解得14m =-.故选:D .。
新高考数学一轮复习教师用书:第2章 5 第5讲 指数与指数函数

第5讲 指数与指数函数1.根式 (1)根式的概念①若x n =a,则x 叫做a 的n 次方根,其中n>1且n∈N *.n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n∈N *,n>1时,x =±n a ,当n 为偶数且n∈N *时.(2)根式的性质①(n a)n =a(n∈N *,且n>1). ②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a|=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a<0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn n a m (a>0,m,n ∈N *,且n>1); ②负分数指数幂:a -m n =1a m n =1na m (a>0,m,n∈N *,且n>1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a>0,r,s ∈Q);②(a r )s =a rs(a>0,r,s ∈Q); ③(ab)r=a r b r(a>0,b>0,r ∈Q). 3.指数函数的图象及性质函数 y =a x(a>0,且a≠1)图象0<a<1a>1图象特征在x 轴上方,过定点(0,1)当x 逐渐增大时,图象逐渐下降当x 逐渐增大时,图象逐渐上升性质定义域 R 值域(0,+∞)单调性 减增函数值 变化 规律当x =0时,y =1当x<0时,y>1; 当x>0时,0<y<1当x<0时,0<y<1; 当x>0时,y>14.指数函数的变化特征在同一平面直角坐标系中,分别作出指数函数y =a x,y =b x,y =c x,y =d x(a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线x =1,分别与四个图象自上而下交于点A(1,a),B(1,b),C(1,c),D(1,d),得到底数的大小关系是:a >b >1>c >d >0.根据y 轴右侧的图象,也可以利用口诀:“底大图高”来记忆.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)n a n =(n a)n=a.( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =a -x是R 上的增函数.( )(4)函数y =ax2+1(a>1)的值域是(0,+∞).( ) (5)函数y =2x -1是指数函数.( )(6)若a m<a n(a>0,且a≠1),则m<n.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× [教材衍化]1.(必修1P59A 组T4改编)化简416x 8y 4(x<0,y<0)=________. 解析:因为x<0,y<0,所以416x 8y 4=(16x 8·y 4)14=(16)14·(x 8)14·(y 4)14=2x 2|y|=-2x 2y.答案:-2x 2y2.(必修1P55“思考”改编)函数y =2x与y =2-x的图象关于________对称.解析:作出y =2x与y =2-x=⎝ ⎛⎭⎪⎫12x的图象(图略),观察可知其关于y 轴对称. 答案:y 轴3.(必修1P56例6改编)已知函数f(x)=a x -2+2(a>0且a≠1)的图象恒过定点A,则A 的坐标为________.解析:令x -2=0,则x =2,f(2)=3,即A 的坐标为(2,3). 答案:(2,3) [易错纠偏](1)忽略n 的范围导致式子n a n(a∈R)化简出错; (2)不能正确理解指数函数的概念致错; (3)指数函数问题时刻注意底数的两种情况; (4)复合函数问题容易忽略指数函数的值域致错. 1.计算3(1+2)3+4(1-2)4=________.解析:3(1+2)3+4(1-2)4=(1+2)+(2-1)=2 2. 答案:2 22.若函数f(x)=(a 2-3)·a x为指数函数,则a =________. 解析:由题意知⎩⎪⎨⎪⎧0<a ,a ≠1,a 2-3=1,即a =2.答案:23.若函数f(x)=a x 在[-1,1]上的最大值为2,则a =________. 解析:当a>1时,a =2;当0<a<1时a -1=2, 即a =12.答案:2或124.函数y =21x -1的值域为________. 解析:因为1x -1≠0,所以21x -1>0且21x -1≠1. 答案:(0,1)∪(1,+∞)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312(a,b>0).【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.[提醒] 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12. 解:(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b -32=85.指数函数的图象及应用(1)函数f(x)=21-x的大致图象为( )(2)函数f(x)=|a x+b|(a>0,a ≠1,b ∈R)的图象如图所示,则a +b 的取值范围是________.(3)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f(x)=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)因为根据图象得a>1,f(12)=0,b<0.所以a +b =0,所以a +b =a -a>1-1=0.(3)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2)(0,+∞) (3){0}∪[1,+∞)应用指数函数图象的4个技巧(1)画指数函数y =a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝ ⎛⎭⎪⎫-1,1a .(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除. (3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.1.函数y =xax|x|(a>1)的图象大致是( )解析:选B.y =⎩⎪⎨⎪⎧a x,x>0,-a x ,x<0,因为a>1,依据指数函数的图象特征可知选B.2.若函数y =21-x+m 的图象不经过第一象限,则m 的取值范围为________.解析:y =⎝ ⎛⎭⎪⎫12x -1+m,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m≤-2.答案:(-∞,-2]指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.主要命题角度有:(1)比较指数式的大小; (2)解简单的指数方程或不等式; (3)复合函数的单调性; (4)函数的值域(最值). 角度一 比较指数式的大小设a =0.60.6,b =0.61.5,c =1.50.6,则a,b,c 的大小关系是( ) A .a<b<c B .a<c<b C .b<a<cD .b<c<a【解析】 因为函数y =0.6x是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b<a<1.因为函数y =1.5x在(0,+∞)上是增函数,0.6>0,所以1.50.6>1.50=1,即c>1.综上,b<a<c. 【答案】 C角度二 解简单的指数方程或不等式设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x<0,x ,x ≥0 ,若f(a)<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】 当a<0时,不等式f(a)<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为a<1,所以0≤a<1.故a 的取值范围是(-3,1).故选C.【答案】 C角度三 复合函数的单调性(1)函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调减区间为________. (2)(2020·金华十校联考)若函数f(x)=2|x -a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于________.【解析】 (1)设u =-x 2+2x +1,因为y =⎝ ⎛⎭⎪⎫12u在R 上为减函数, 所以函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], 所以f(x)的减区间为(-∞,1]. (2)因为f(x)=2|x -a|,所以f(x)的图象关于x =a 对称.又由f(1+x)=f(1-x),知f(x)的图象关于直线x =1对称,故a =1,且f(x)的增区间是[1,+∞),由函数f(x)在[m,+∞)上单调递增,知[m,+∞)⊆[1,+∞),所以m ≥1,故m 的最小值为1. 【答案】 (1)(-∞,1] (2)1 角度四 函数的值域(最值)如果函数y =a 2x+2a x-1(a>0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13 B .1 C .3D.13或3 【解析】 令a x=t,则y =a 2x+2a x-1=t 2+2t -1=(t +1)2-2.当a>1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤1a ,a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a<1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤a ,1a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤a ,1a 上单调递增,则y max =⎝ ⎛⎭⎪⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.【答案】 D有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.[提醒] 在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.1.已知函数f(x)=a x+b(a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:当a >1时,函数f(x)=a x+b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a <1时,函数f(x)=a x+b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.答案:-322.已知函数f(x)=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫12x,a ≤x<0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.解析:当0≤x≤4时,f (x)∈[-8,1],当a≤x<0时,f(x)∈⎣⎢⎡⎭⎪⎫-⎝ ⎛⎭⎪⎫12a ,-1,所以⎣⎢⎡⎭⎪⎫-12a ,-1[-8,1],即-8≤-12a <-1,即-3≤a<0,所以实数a 的取值范围是[-3,0). 答案:[-3,0)[基础题组练]1.函数f(x)=1-e |x|的图象大致是( )解析:选A.将函数解析式与图象对比分析,因为函数f(x)=1-e |x|是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎫-23a -13b 23的结果为( )A .-2a3bB .-8a bC .-6a bD .-6ab解析:选C.原式=⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-23a 23-⎝ ⎛⎭⎪⎫-13b -13-23=-6ab -1=-6a b ,故选C.3.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1解析:选B.A 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73.B 中,因为y =0.6x在R 上是减函数,-1<2,所以0.6-1>0.62.C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小.因为y =1.25x在R 上是增函数,0.1<0.2,所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.4.(2020·宁波效实中学高三质检)若函数f(x)=a |2x -4|(a>0,a ≠1)满足f(1)=19,则f(x)的单调递减区间是 ( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B.由f(1)=19得a 2=19.又a>0,所以a =13,因此f(x)=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g(x)=|2x -4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).5.已知函数y =f(x)与y =F(x)的图象关于y 轴对称,当函数y =f(x)和y =F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫作函数y =f(x)的“不动区间”,若区间[1,2]为函数y =|2x-t|的“不动区间”,则实数t 的取值范围是( )A .(0,2]B.⎣⎢⎡⎭⎪⎫12,+∞C.⎣⎢⎡⎦⎥⎤12,2 D.⎣⎢⎡⎦⎥⎤12,2∪[)4,+∞ 解析:选C.因为函数y =f(x)与y =F(x)的图象关于y 轴对称,所以F(x)=f(-x)=|2-x-t|,因为区间[1,2]为函数f(x)=|2x-t|的“不动区间”,所以函数f(x)=|2x-t|和函数F(x)=|2-x-t|在[1,2]上单调性相同, 因为y =2x-t 和函数y =2-x-t 的单调性相反, 所以(2x-t)(2-x-t)≤0在[1,2]上恒成立, 即1-t(2x+2-x)+t 2≤0在[1,2]上恒成立, 即2-x≤t ≤2x 在[1,2]上恒成立, 即12≤t ≤2,故答案为C. 6.指数函数y =f(x)的图象经过点(m,3),则f(0)+f(-m)=________. 解析:设f(x)=a x(a >0且a≠1),所以f(0)=a 0=1. 且f(m)=a m=3.所以f(0)+f(-m)=1+a -m=1+1a m =43.答案:437.(2020·杭州中学高三月考)已知e x+x 3+x +1=0,1e3y -27y 3-3y +1=0,则ex +3y的值为________. 解析:因为e x+x 3+x +1=0,1e3y -27y 3-3y +1=0等价于e-3y +(-3y)3+(-3y)+1=0,所以x =-3y,即x +3y =0,所以ex +3y =e 0=1.答案:18.若函数f(x)=⎩⎪⎨⎪⎧a x,x>1,(2-3a )x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧ 0<a<1,2-3a<0,(2-3a )×1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,349.当x∈(-∞,-1]时,不等式(m 2-m)·4x-2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m<⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x∈(-∞,-1]时,m 2-m<⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m<2,解得-1<m<2. 答案:(-1,2)10.已知函数f(x)=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1)若a =-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a 的值.解:(1)当a =-1时,f(x)=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g(x)=-x 2-4x +3, 由于g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减, 所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g(x)=ax 2-4x +3,f(x)=⎝ ⎛⎭⎪⎫13g (x ),由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1, 即当f(x)有最大值3时,a 的值为1.11.已知函数f(x)=a |x +b|(a>0,a ≠1,b ∈R).(1)若f(x)为偶函数,求b 的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a,b 应满足的条件.解:(1)因为f(x)为偶函数,所以对任意的x∈R ,都有f(-x)=f(x),即a |x +b|=a |-x +b|,|x +b|=|-x +b|,解得b =0.(2)记h(x)=|x +b|=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x<-b. ①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,所以-b≤2,b ≥-2.②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数,但h(x)在区间[-b,+∞)上是增函数,故不存在a,b 的值,使f(x)在区间[2,+∞)上是增函数.所以f(x)在区间[2,+∞)上是增函数时,a,b 应满足的条件为a>1且b≥-2.[综合题组练]1.已知函数f(x)=|2x-1|,a<b<c 且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A .a<0,b<0,c<0B .a<0,b ≥0,c>0C .2-a <2cD .2a +2c <2解析:选D.作出函数f(x)=|2x -1|的图象,如图,因为a<b<c 且f(a)>f(c)>f(b),结合图象知,0<f(a)<1,a<0,c>0,所以0<2a <1.所以f(a)=|2a -1|=1-2a <1,所以f(c)<1,所以0<c<1.所以1<2c <2,所以f(c)=|2c -1|=2c -1,又因为f(a)>f(c),所以1-2a >2c -1,所以2a +2c <2,故选D.2.(2020·衢州市高考模拟)已知函数f(x)=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有( )A .0对B .1对C .2对D .3对 解析:选B.作出函数y =f(x)图象如图所示:再作出-y =f(-x),即y =x 2-4x,恰好与函数图象位于y 轴左侧部分(对数函数的图象)关于原点对称,记为曲线C,发现y =⎝ ⎛⎭⎪⎫12x与曲线C 有且仅有一个交点, 因此满足条件的对称点只有一对,图中的A 、B 就是符合题意的点.故选B.3.(2020·杭州模拟)已知函数y =a x +b(a>0,且a≠1,b>0)的图象经过点P(1,3),如图所示,则4a -1+1b的最小值为________,此时a,b 的值分别为________. 解析:由函数y =a x +b(a>0且a≠1,b>0)的图象经过点P(1,3),得a +b =3,所以a -12+b 2=1,又a>1,则4a -1+1b =⎝ ⎛⎭⎪⎫4a -1+1b ⎝ ⎛⎭⎪⎫a -12+b 2=2+12+2b a -1+a -12b ≥52+2 2b a -1·a -12b =92,当且仅当2b a -1=a -12b ,即a =73,b =23时取等号,所以4a -1+1b 的最小值为92. 答案:92 73,23 4.(2020·绍兴一中高三期中)已知函数f(x)=e |x|,将函数f(x)的图象向右平移3个单位后,再向上平移2个单位,得到函数g(x)的图象,函数h(x)=⎩⎪⎨⎪⎧e (x -1)+2,x ≤5,4e 6-x +2,x>5,若对于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),则实数λ的最大值为________.解析:依题意,g(x)=f(x -3)+2=e |x -3|+2,在同一坐标系中分别作出g(x),h(x)的图象如图所示,观察可得,要使得h(x)≥g(x),则有4e 6-x +2≥e (x -3)+2,故4≥e 2x -9,解得2x -9≤ln 4,故x≤ln 2+92,实数λ的最大值为ln 2+92. 答案:ln 2+925.已知函数f(x)=2a·4x -2x-1.(1)当a =1时,求函数f(x)在x ∈[-3,0]上的值域;(2)若关于x 的方程f(x)=0有解,求a 的取值范围.解:(1)当a =1时,f(x)=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1, 故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a(2x )2-2x-1=0有解,设2x =m>0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g(m)=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a<0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a>0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,综上得a>0.6.(2020·宁波效实中学模拟)已知函数f(x)=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).(1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n 2,m 2]?若存在,求出m,n 的值;若不存在,说明理由. 解:(1)因为x∈[-1,1], 所以f(x)=⎝ ⎛⎭⎪⎫13x ∈⎝ ⎛⎭⎪⎫13,3, 设t =⎝ ⎛⎭⎪⎫13x∈⎝ ⎛⎭⎪⎫13,3. 则y =φ(t)=t 2-2at +3=(t -a)2+3-a 2.当a<13时,y min =h(a)=φ⎝ ⎛⎭⎪⎫13=289-2a 3; 当13≤a ≤3时,y min =h(a)=φ(a)=3-a 2; 当a>3时,y min =h(a)=φ(3)=12-6a. 所以h(a)=⎩⎪⎨⎪⎧289-2a 3,a<13,3-a 2,13≤a ≤3,12-6a ,a>3. (2)假设存在m,n 满足题意.因为m>n>3,h(a)=12-6a 在(3,+∞)上是减函数,又因为h(a)的定义域为[n,m],值域为[n 2,m 2],所以⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减得6(m -n)=(m -n)(m +n),即m +n =6,与m>n>3矛盾, 所以满足题意的m,n 不存在.。
暑假初升高数学衔接讲义 第5讲 函数的概念及定义域(教师版)

第五讲 函数的概念及定义域一、【知识梳理】知识点一 函数的概念1、函数的概念:设,A B 是非空的数集,如果按某个确定的对应关系f,使对于集合A 中的任意一个数x ,在集合B 中有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:()y f x =,x A ∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,所有函数值y 的集合B 叫做函数的值域。
注:(1)定义域、值域、对应法则称函数的三要素。
两个函数相同,这三个要素必须相同,缺一不可。
(2)对应法则f ,可以是解析式,可以是图象、表格、文字描述;自变量x 只能是数。
(3)()f x 与()f a 的关系:()f x 是自变量x 的函数,()f a 表示x a =时()f x 的函数值。
2、区间与“无穷大”:设,a b 是两个实数,而且a b <,则(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[],a b ; (2)满足不等a x b <<的实数x 的集合叫做开区间,表示为(),a b ;(3)满足不等式a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为[)(],,,a b a b ;(4)实数集R 也可以用区间表示为(,)-∞+∞,其中“∞”读作“无穷大”。
(5)若x a ≤,可表示为],(a -∞,x a ≥ ,可表示为[),a +∞; (6)若a x <,可表示为(,)a -∞,a x > ,可表示为(,)a +∞。
知识点二 映射的概念1、映射的概念:设,A B 是两个非空的集合,如果按照某种对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素和它对应,那么这样的对应叫做集合A 到集合B 的映射,记作:f A B →2、若:f A B →,且,a Ab B ∈∈,如果元素a 和元素b 对应,那么我们把元素b 叫做元素a的象,元素a 叫做元素b 的原象。
2023年新高考数学大一轮复习专题一函数与导数第5讲基本不等式的综合问题(含答案)

新高考数学大一轮复习专题:第5讲 基本不等式的综合问题利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求.例1 (1)已知x 2+y 2+xy =1,则x +y 的最大值是_________________________.(2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x >0,y >0,1x +2y +1=2,则2x +y 的最小值为________. 答案 (1)233 (2)324(3)3 解析 (1)由(x +y )2=xy +1,得(x +y )2≤⎝ ⎛⎭⎪⎫x +y 22+1, 则x +y ≤233(当且仅当x =y =33时取等号), 故x +y 的最大值为233. (2)x ·1+y 2=2x ·1+y 22 ≤2·x 2+1+y 222=2·x 2+y 22+122=324⎝ ⎛⎭⎪⎫当且仅当x =32,y =22时取等号, 故x ·1+y 2的最大值为324. (3)∵2x +(y +1)=12⎝ ⎛⎭⎪⎫1x +2y +1[2x +(y +1)] =12⎝ ⎛⎭⎪⎫2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3.例2 记max{a ,b }为a ,b 两数的最大值,则当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y的最小值为________.答案 10解析 方法一 由题意知t ≥x 2,t ≥25y x -y , ∴2t ≥x 2+25y x -y, 又∵x 2+25y x -y ≥x 2+25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10.∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥25y x -y >0, ∴t 2≥x 2·25y x -y , 又∵x 2·25yx -y ≥x 2·25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2·100x 2 =100,∴t 2≥100,即t ≥10.∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件.(2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值.1.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1B .6C .9D .16答案 B解析 ∵正数a ,b 满足1a +1b=1, ∴b =aa -1>0,解得a >1.同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥21a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴所求最小值为6.2.(2020·厦门模拟)函数y =2x -1+5-2x ⎝ ⎛⎭⎪⎫12<x <52 的最大值是________.答案 2 2解析 y 2=(2x -1+5-2x )2=4+22x -15-2x ≤4+(2x -1)+(5-2x )=8,又y >0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32时取等号.故函数的最大值是2 2. 3.(2020·天津)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为________. 答案 4解析 因为a >0,b >0,ab =1, 所以原式=ab 2a +ab 2b +8a +b=a +b2+8a +b ≥2a +b 2·8a +b=4, 当且仅当a +b2=8a +b, 即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 4.设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值. 答案 -2解析12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥-14+2b 4|a |·|a |b =34,当且仅当b 4|a |=|a |b 且a <0,即a =-2,b =4时取等号.故当a =-2时,12|a |+|a |b取得最小值.。
第5讲 函数的表示法及映射(基础)

函数的表示法及映射【学习目标】(1)掌握函数的表示法,能根据对应关系满足的条件,求函数的解析式;(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用;(4)了解映射的概念,象与原象的概念,和一一映射的概念.【要点梳理】要点一、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点二、映射1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象.对于给出象,要求原象的问题,可先假设原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.要点三、关于分段函数应注意的几点(1)分段函数是一个函数,而不是几个函数.(2)处理分段函数的求值问题时,一定要明确自变量的取值应属于哪一个区间,以免因误用法则造成错误结果.(3)分段函数的定义域是各段定义域的并集,其值域也是各段值域的并集.要点四、函数解析式的求法(1)若已知函数的结构形式,可用待定系数法求解.(3)已知(())f g x 得解析式,求()f x 的解析式用换元法.可令()g x t =,反解出x ,即用t 表示x ,然后代入(())f g x 中即求得()f t ,从而求得()f x . 要点诠释:利用配凑法、换元法求解析式时一定要注意自变量的取值范围为所求函数的定义域.(4)已知()f x ,()g x 的解析式,求(())f g x 的解析式,用代入法,只需将()g x 替换()f x 中的x . (5)方程组法(消去法),适用于自变量有对称规律,如:互为倒数(如()f x ,1()f x);互为相反数(如()f x ,()f x -)的函数方程,通过对称构造一个对称方程组,解方程组即可.【典型例题】类型一、映射与函数例1.(1)试用列举法表示[]3,3-内的整数的绝对值;则零售量是否为月份的函数?为什么?例2. 判断下列对应哪些是从集合A 到集合B 的映射,哪些是从集合A 到集合B 的函数?(1)A={直角坐标平面上的点},B={(x ,y )|,x R y R ∈∈},对应法则是:A 中的点与B 中的(x ,y )对应.(2)A={平面内的三角形},B={平面内的圆},对应法则是:作三角形的外接圆; (3)A=N ,B={0,1},对应法则是:除以2的余数;(4)A={0,1,2},B={4,1,0},对应法则是f :2x y x =→(5)A={0,1,2},B={0,1,12},对应法则是f :x 1y x =→举一反三:【变式1】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?(1)A=N ,B={1,-1},f :x →y=(-1)x; (2)A=N ,B=N +,f :x →y=|x-3|; (3)A=R ,B=R ,;x1x1y x :f -+=→ (4)A=Z ,B=N ,f :x →y=|x|; (5)A=N ,B=Z ,f :x →y=|x|; (6)A=N ,B=N ,f :x →y=|x|.例3.已知映射:f A B →中,{}(,)|,A B x y x R y R ==∈∈,:(,)(321,431).f x y x y x y →-++- (1)求A 中元素(1,2)的像; (2)求B 中元素(1,2)的原像.【变式1】如果(,)x y 在映射f 的作用下的像为(,)x y xy +,其中,x y R ∈,则(1,2)的像是 ,(2,-3)的原像是 .类型二、函数解析式的求法 例4. 求函数的解析式(1)若2()2f x x x =+,求(21)f x +; (2)若2(1)21f x x +=+,求()f x ; (3)已知1()2()32f x f x x-=+,求()f x .举一反三:【变式1】已知f(x+1)=x 2+4x+2,求f(x).【变式2】求下列函数的解析式(1)已知()f x 为二次函数,(0)2,f =且当1x =时()f x 取最小值1-,求()f x ; (2)函数()y f x =满足1()3(),f x f x x-=求()f x .类型三、函数的图象例5.作出下列函数的图象.(1)1({21012})y x x =-∈--,,,,;(2)211x y x +=-;(3)2|2|1y x x =-+.类型四、分段函数例6.函数22,1,(),12,2, 2.x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()3f x =,则x 的值为( ).A .1B .1或32C.举一反三:【变式1】 已知2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f α=,则实数α=A .-4或-2B .-4或2C .-2或4D .-2或2【巩固练习】1.对于集合A 到集合B 的映射,有下述四个结论 ( )①B 中的任何一个元素在A 中必有原象; ②A 中的不同元素在B 中的象也不同;③A 中任何一个元素在B 中的象是唯一的; ④A 中任何一个元素在B 中可以有不同的象. 其中正确结论的个数是( )2.设,f g都是由A到A的映射,其对应法则如表1和表2所示:表1 映射f的对应法则表2 映射g的对应法则原像 1 2 3 4像 3 4 2 1则与((1))f g相同的是()A.((1))g f B.((2))g f C.((3))g f D.((4))g f3.点(x,y)在映射f下的象是(2x-y,2x+y),求点(4,6)在f下的原象( )A.(25,1) B.(1,3) C.(2,6) D.(-1,-3)4.函数222(03)()6(20)x x xf xx x x⎧-≤≤⎪=⎨+-≤<⎪⎩的值域是()A.R B.[)9,-+∞C.[]8,1-D.[]9,1-5.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中,纵轴表示离学校的距离,横轴表示出发后的时间,如图四个图象中较符合该学生走法的是( )6.已知函数2,0(),()(1)0,1,0x xf x f a fx x>⎧=+=⎨+≤⎩若则实数a的值等于()A.-3 B.-1 C.1 D.37.已知函数)(xfy=的图象关于直线1-=x对称,且当),0(+∞∈x时,有,1)(xxf=则当)2,(--∞∈x时,)(xf的解析式为()A.x1-B.21--xC.21+xD.21+-x8.如图所表示的函数解析式是( )A.3|1|(02)2y x x=-≤≤ B.33|1|(02)22y x x=--≤≤C.3|1|(02)2y x x=--≤≤ D. 1|1|(02)y x x=--≤≤13(,),(1,3),(2,3)A B C-原像 1 2 3 4像 4 3 1 2为 。
(完整word)函数三要素经典习题(含答案),推荐文档.docx

函数的三要素练习题(一)定义域1、函数 f ( x)4 x 2x 2 4 的定义域是()A 、 [ 2,2]B 、 ( 2,2)C 、 (, 2) U (2, )D 、 { 2,2}2、设函数 f ( x) 的定义域为 [0,1] ,则函数 f (x 2 ) 的定义域为 _ __ ;函数 f (x 2) 的定义域为 ________; [ 1,1]; [4,9]3、若函数 f (x1) 的定义域为 [ 2, 3] ,则函数 f (2 x1) 的定义域是 ;函数f ( 12) 的定义域为。
[0, 5 ]; ( ,1] U[ 1, )x2 3 24、知函数 f ( x) 的定义域为1,1 ,且函数 F (x)f (x m) f ( x m) 的定义域存在,求实数 m 的取值范围。
1 m 1 5、求下列函数的定义域4 (x 2 3x4)3 ( 1) y| x 1 |2解:(1)x 23x 4 0 x或x 41 | x1| 2 0 x且 31 x∴ x ≥ 4 或x ≤- 1 且 x ≠- 3,即函数的定义域为(-∞,- 3)∪(- 3,- 1)∪ [4 ,+∞]( 2) y1 ( x 1)2{ x | x 0}x1( 3)y1 1(2 x 1)04 x 211{ x | 2 x 2且 x 0, x1 x, x 1}2(二)解析式1. 设 X={x|0 ≤x ≤2}, Y={y|0 ≤ y ≤ 1},则从 X 到 Y 可建立映射的对应法则是 ( )(A ) y 2 x (B ) y (x 2) 2(C ) y1 x2 (D ) y x 1342. 设 ( x, y) 在映射 f 下的象是 (x y ,xy) ,则 ( 6, 14) 在 f 下的原象是 ()22( A ) ( 10,4) (B ) ( 3, 7)(C ) ( 6,4)( D ) 37(,)3. 下列各组函数中表示同一函数的是22(A )f ( x)x 与 g( x) ( x)2( )x | x | 与 g( x)x 2(x0)B f ( x)x 2 (x0)(C ) f ( x) | x | 与 g(x)3x 3(D ) f ( x)x 21与 g( x) t 1(t 1) 4. 已知函数 yf ( x 1) 定义域是 [ 2, 3] ,则 yx 1f (2x 1) 的定义域是()A. 0,5B. 1,4C.5,5 D.3,72x 2( x 1)5. 已知 f ( x)x 2 ( 1 x 2) ,若 f ( x)3 ,则 x 的值是()2x( x2)A.1 B.或3C.1 , 3或 3 D.31 2 26. (1)已知 f (x )是一次函数,且 f[f (x )] =4x -1,求 f (x )的解析式;(2)已知 f ( 4x1)4 x 616x2,求 f ( x )的解析式;1x5答案( 1)1(2)f ( x)3 或f (x )=- 2x+1x 22x 22 xf ( x)7、已知 f (x) 是二次函数,且 f ( x1) f ( x 1)2x 24x ,求 f ( x) 的解析式。
专题一 第5讲 导数与不等式的证明

可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.
设
g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),