高中数学必修一函数的性质单调性测试题含答案解析
新教材人教B版高中数学必修第一册练习-函数的单调性答案含解析

3.1.2函数的单调性第三章函数3.1函数的概念与性质3.1.2函数的单调性考点1函数单调性的定义1.(2019·山东栖霞二中高一月考)下列命题正确的是()。
A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数C.若函数f(x)在区间I1上为减函数,在区间I2上也为减函数,那么f(x)在区间I1∪I2上一定是减函数D.若函数f(x)是区间I上的增函数,且f(x1)<f(x2)(x1,x2∈I),则x1<x2答案:D解析:A项中,并不是对任意x1,x2都成立,故A错;B项中,虽然有无穷多对,但也不能代表“所有”“任意”,为例,虽然在(-∞,0)及(0,+∞)上均为减函数,但在整个定义域上却不具有单调性,故C错。
故B错;C项中,以f(x)=1x故选D。
2.若函数f(x)在R上是减函数,则下列关系式一定成立的是()。
A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a2)答案:D解析:因为f(x)是R上的减函数,且a2+1>a2,所以f(a2+1)<f(a2)。
故选D。
3.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不一定正确的是()。
>0A.f(x1)-f(x2)x1-x2B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)≤f(x1)<f(x2)≤f(b)D.f(x1)≠f(x2)答案:C解析:由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B,D中结论正确;对于C,若x1>x2,则f(x1)>f(x2),故C中结论不一定正确。
必修一函数的单调性1(含答案)

函数(一)单调性一、 基础知识1、 增函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 叫做函数的增区间。
2、 减函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 叫做函数的减区间。
3、 单调性:如果函数()f x 在区间D 上式增函数或者减函数,那么就是函数()f x 在这一区间上具有单调性,区间D 叫做函数的单调区间。
4、 单调区间:指的是函数具有单调性的最大取值区间。
5、证明单调性的步骤:做差→变形→判号→得结论。
6、单调函数的组合:某两个单调函数在同一区间内的加减后所得函数单调性增函数+ 增函数=增函数,减函数+减函数=减函数,增函数—减函数=增函数,减函数—增函数=减函数奇函数⨯奇函数=偶函数,偶函数⨯偶函数=偶函数奇函数⨯偶函数=奇函数二、习题精练1、(1)证明函数2()f x x x =+在)+∞上递增 (2)证明函数2()f x x x=-在()0,+∞上递增。
2、(1)找出函数223y x x =-++的增区间 (2)找出223y x x =-++的减区间3、(1)函数[)2()485,f x x kx =--+∞在区间上单调递增,求实数k 的取值范围。
(2)函数[)2()485,f x x kx =--+∞的增区间为,求实数k 的取值范围。
4、(1)已知函数{22,12,1()x ax x ax x f x -+<+≥=是R 上的增函数,求a 的范围 (2)已知函数{2(4),2416,2()x a x x ax x f x -<+-≥=是R 上的增函数,求a 的范围5、求函数21y x =-6、 已知函数()y f x =在区间(0,)+∞单调递减,请填空。
高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。
它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。
为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。
一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。
2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。
3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。
4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。
人教版高中数学必修第一册第三单元《函数概念与性质》检测题(含答案解析)

一、选择题1.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-132.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<3.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭6.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .37.函数()21x f x x-=的图象大致为( )A .B .C .D .8.函数()22368f x x x x =---+-的值域是( )A .35,5⎡⎤-⎣⎦B .[]1,5C .2,35⎡⎤+⎣⎦D .35,35⎡⎤-+⎣⎦9.函数f (x )=211x --的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 10.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( ) A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A.0,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞12.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞14.下列各组函数表示同一函数的是( ) A.()f x =2()f x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()f x =()g x =.()1f x x 与2()1x g x x=-15.现有下列四个结论中,其中正确结论的个数是( )①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知a R ∈,函数229()f x x a a x =++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.18.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.19.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.20.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.21.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________.22.函数()ln f x x x x =+的单调递增区间是_______. 23.已知函数2421()349x x f x +-=-+,则(21)(2)8f x f x -++>的解集为__.24.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x )的解集为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.2.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=,()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 3.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数, 所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫ ⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.6.B解析:B 【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()212421,x x x M x x x ⎧⎡⎤---+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎪∈-∞⋃+∞ ⎪ ⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x > 当0x <时,()224g x x x x =--+≤-,得117x --≤即当117x --≤时,()()f x g x >,当1170x --<<时,()()f x g x <所以()()211724,1117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x =时,()M x 有最小值1 故选:B7.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-,函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.8.A解析:A 【详解】由()()2223682x 31x 3f x x x x =---+-=----,知2680x x -+-≥,解得[]2,4.x ∈令()2t 231x 3x =----,则()21x 323x t --=--.,即为()2y 1x 3=--和y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大. 3t 114-=+,解得35t =±35t =-当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 35,5⎡⎤∈⎣⎦,即() 35,5f x ⎡⎤∈⎣⎦.故选A.9.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合. 10.B解析:B【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.11.C解析:C【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10t t ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10t t ++-<,所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++, 所以90t >,所以'()0g t >,所以()g t 在3[,)4+∞单调递增,所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)t g t t =++,利用函数的单调性解不等式.12.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确;()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解.【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C .【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意:(1)对数要求真数大于0;(2)分式要求分母不等于0;(3)偶次根式要求被开方式大于等于0.14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数()f x =R,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.A解析:A【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真;④将函数变形,由均值不等式的性质可得最小值,可得命题为假.【详解】解:①取幂函数2y x ,显然与1y x =仅有一个交点,所以①不正确; ②函数()30x y k k =⋅>(k 为常数)的图象可由函数3x y =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231x x x x f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x x x x x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确.故选:A .【点睛】本题考查指对幂函数的性质,属于基础题.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果.令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-, 所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<, 综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞ 【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键. 17.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】 [3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x +≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-. 故答案为:[8,)-+∞.关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.18.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.19.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令 解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =, 令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠; 所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】 关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 20.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞ 【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.21.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解. 22.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.23.【分析】根据题意设则原不等式变形为分析函数的奇偶性以及单调性可得原不等式等价于解可得的取值范围即可得答案【详解】根据题意函数设则变形可得即;对于其定义域为则有即函数为奇函数;函数在上为增函数在上为减 解析:1(,)3-+∞ 【分析】根据题意,设2442()()433x x g x f x +-=-=-,则原不等式变形为(21)(2)0g x g x -++>,分析函数()g x 的奇偶性以及单调性可得原不等式等价于212x x ->--,解可得x 的取值范围,即可得答案.【详解】根据题意,函数 24244221()343349x x x x f x ++--=-+=-+,设2442()()433x x g x f x +-=-=-,则(21)(2)8f x f x -++>,变形可得(21)4(2)40f x f x --++->,即(21)(2)0g x g x -++>;对于2442()()433x x g x f x +-=-=-,其定义域为R , 则有24422442()33(33)()x x x x g x g x -+++--=-=--=-,即函数()g x 为奇函数; 函数243x y +=在R 上为增函数,423x y -=在R 上为减函数, 故函数2442()33x x g x +-=-在R 上为增函数,故(21)(2)0(21)(2)(21)(2)212g x g x g x g x g x g x x x -++>⇒->-+⇒->--⇒->--, 解可得13x >-, 即不等式的解集为1(3-,)+∞. 故答案为:1(3-,)+∞. 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析函数()g x 的奇偶性与单调性,属于中档题.24.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题.【详解】解:由题意可设()x f x e x t -+=,则()xf x e x t =-+, ∵()xf f x e x e ⎡⎤-+=⎣⎦, ∴()t tf t e t t e e =-+==, ∴1t =,∴()1xf x e x =-+, ∴()1xf x e '=-, 由()()f x f x ax '+≥得11x x e x e ax -++-≥, ∴21x e a x≤-对()0,x ∈+∞恒成立, 令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增,∴()()121g x g e ≥=-,∴21a e ≤-,故答案为:(],21e -∞-.【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数和的解析式在同一坐标系中做出和的图像求出交点的坐标根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的 解析:{23}x x -<<【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数()f x 和()1f x -的解析式,在同一坐标系中做出()f x 和()1f x -的图像,求出交点的坐标,根据不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当0x <时, 0x ->,所以 ()()22()55f x x x x x -=--⨯-=+,又f (x )是R 上的奇函数,所以 2()()5f x f x x x =--=--,所以225,0()5,0x x x f x x x x ⎧-≥=⎨--<⎩, 所以()()()()22151,1(1)151,1x x x f x x x x ⎧---≥⎪-=⎨----<⎪⎩,即2276,1(1)34,1x x x f x x x x ⎧-+≥-=⎨--+<⎩, 做出()f x 和()1f x -的图像如下图所示,不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合, 由22576,x x x x -=-+得3,x =所以()3,6A -, 由22534x x x x --=--+得2x =-,所以()2,6B -,所以不等式(1)()f x f x ->的解集为{23}x x -<<. 故答案为:{23}x x -<<.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.。
湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练【含解析】

湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练(原卷版)A组夯基精练一、单项选择题1.函数g(x)=x|x-1|+1的单调递减区间为()A∞,12B.12,1C.[1,+∞)D∞,12∪[1,+∞)2.若函数f(x)=2x2+31+x2,则f(x)的最大值为()A.1B.2C.3D.43.已知函数f(x)=30+ax2+a在区间[-10,-3]上单调递增,则实数a的取值范围是()A.(-∞,-2)∪(0,3)B.(-∞,-2)∪(0,3]C.(-∞,-2)∪(0,10)D.(-∞,-2)∪(0,10]4.已知函数f(x)+1,x<0,x2,x≥0,则不等式f(2a2-1)>f(3a+4)的解集为()A.(-∞,-1)BC.(-∞,-1)D1二、多项选择题5.已知函数f(x)=x-ax(a≠0),下列说法正确的是() A.当a>0时,f(x)在定义域上单调递增B.当a=-4时,f(x)的单调递增区间为(-∞,-2),(2,+∞) C.当a=-4时,f(x)的值域为(-∞,-4]∪[4,+∞)D.当a>0时,f(x)的值域为R6.已知函数f(x),x≤a,2+2x+1,x>a,则下列结论正确的是()A.当a=0时,函数f(x)的单调递增区间为(0,1)B.不论a为何值,函数f(x)既没有最小值,也没有最大值C.不论a为何值,函数f(x)的图象与x轴都有交点D.存在实数a,使得函数f(x)为R上的减函数三、填空题7.若函数f(x)=2x+mx+1在区间[0,1]上的最大值为3,则实数m=____.8.已知函数f(x)=x-8,g(x)=3x-x2,x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},则函数m(x)的最大值为____.9.已知f(x)a-1)x+2a,x<1,x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0恒成立,那么实数a的取值范围是__.四、解答题10.已知函数f(x)=2x-1x+1.(1)判断f(x)在[0,+∞)上的单调性,并证明你的判断;(2)若x∈[1,m],f(x)的最大值与最小值的差为12,求m的值.11.已知函数f(x)=xx2+1.(1)根据定义证明函数f(x)在(1,+∞)上单调递减;所以f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在(1,+∞)上单调递减.(2)若不等式f(x)<b对一切实数x都成立,求b的取值范围.B组滚动小练12.若函数y=f(2x)的定义域是[0,1012],则函数g(x)=f(x+1)x-1的定义域是()A.[-1,2023]B.[-1,1)∪(1,2023]C.[0,2024]D.[-1,1)∪(1,2024]13.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或都为正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=8}中的元素个数是()A.10B.9C.8D.714.已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x -c.(1)求证:方程f(x)=0必有两个不相同的根;(2)若方程f(x)=0的两个根分别为x1,x2,求|x2-x1|的取值范围.湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练(解析版)A 组夯基精练一、单项选择题1.函数g (x )=x |x -1|+1的单调递减区间为(B )A ∞,12B .12,1C .[1,+∞)D ∞,12∪[1,+∞)【解析】g (x )=x |x -1|+12-x +1,x ≥1,x 2+x +1,x <1,画出函数图象如图所示,根据图象知函数g (x )的单调递减区间为12,1.2.若函数f (x )=2x 2+31+x 2,则f (x )的最大值为(C )A .1B .2C .3D .4【解析】f (x )=2x 2+31+x 2=2+1x 2+1,因为x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,所以f (x )∈(2,3],故f (x )的最大值为3.3.已知函数f (x )=30+ax2+a在区间[-10,-3]上单调递增,则实数a 的取值范围是(B)A .(-∞,-2)∪(0,3)B .(-∞,-2)∪(0,3]C .(-∞,-2)∪(0,10)D .(-∞,-2)∪(0,10]【解析】因为函数f (x )=30+ax2+a在[-10,-3]上单调递增,所以a (2+a )>0,且30+ax ≥0在[-10,-3]上恒成立,(2+a )>0,-10a ≥0,-3a ≥0,解得a <-2或0<a ≤3.4.已知函数f (x )+1,x <0,x 2,x ≥0,则不等式f (2a 2-1)>f (3a +4)的解集为(D )A .(-∞,-1)BC .(-∞,-1)D 1【解析】函数f (x )+1,x <0,x 2,x ≥0中,y+1在(-∞,0)上单调递减,y =2-x 2在[0,+∞)+1=2-02,则函数f (x )=+1,x <0,x 2,x ≥0在定义域R 上单调递减.因为f (2a 2-1)>f (3a +4),所以2a 2-1<3a +4,解得-1<a <52,即不等式f (2a 2-1)>f (3a +4)1二、多项选择题5.已知函数f (x )=x -ax (a ≠0),下列说法正确的是(BCD )A .当a >0时,f (x )在定义域上单调递增B .当a =-4时,f (x )的单调递增区间为(-∞,-2),(2,+∞)C .当a =-4时,f (x )的值域为(-∞,-4]∪[4,+∞)D .当a >0时,f (x )的值域为R【解析】当a >0时,f (x )=x -ax ,定义域为(-∞,0)∪(0,+∞),则f (x )在(-∞,0),(0,+∞)上单调递增,当x →+∞时,f (x )→+∞,当x →0时,f (x )→-∞,故f(x)的值域为R,故A错误,D正确;当a=-4时,f(x)=x+4x为对勾函数,其单调递增区间为(-∞,-2),(2,+∞),故B正确;当x>0时,x+4x≥2x·4x=4(当且仅当x=2时取等号),当x<0时,x+4x=-(-x)-4(当且仅当x=-2时取等号),故f(x)的值域为(-∞,-4]∪[4,+∞),故C正确.6.已知函数f(x),x≤a,2+2x+1,x>a,则下列结论正确的是(ABD) A.当a=0时,函数f(x)的单调递增区间为(0,1)B.不论a为何值,函数f(x)既没有最小值,也没有最大值C.不论a为何值,函数f(x)的图象与x轴都有交点D.存在实数a,使得函数f(x)为R上的减函数【解析】对于A,当a=0时,函数f(x),x≤0,2+2x+1,x>0,当x≤0时,f(x)为减函数,当x>0时,f(x)=-x2+2x+1的单调递增区间为(0,1),故A正确;对于B,当x≤a时,f(x)为减函数,所以不论a为何值,当x趋近于负无穷时,f(x)趋近于正无穷,即f(x)没有最大值,当x>a时,f(x)=-x2+2x+1的图象是开口向下的抛物线的一部分,所以不论a为何值,当x趋近于正无穷时,f(x)趋近于负无穷,即f(x)没有最小值,故B正确;对于C,当x≤a时,函数f(x)的图象与x轴没有交点,当x>a时,由-x2+2x+1=0得x =1+2或x=1-2,所以当a≥1+2时,函数f(x)=-x2+2x+1(x>1+2)的图象与x轴没有交点,故C错误;对于D,当a≥1+2时,函数f(x)在(-∞,a]上为减函数,函数f(x)=-x2+2x+1在(a,+∞)>0,-a2+2a+1=-(a-1)2+2≤0>-a2+2a+1,所以此时函数f(x)为R上的减函数,故D正确.三、填空题7.若函数f(x)=2x+mx+1在区间[0,1]上的最大值为3,则实数m=__3__.【解析】因为函数f(x)=2x+mx+1=2+m-2x+1,由复合函数的单调性知,当m>2时,f(x)=2x+mx+1在[0,1]上单调递减,最大值为f(0)=m=3;当m<2时,f(x)=2x+mx+1在[0,1]上单调递增,最大值为f(1)=2+m2=3,即m=4,与m<2矛盾,舍去.故实数m=3.8.已知函数f(x)=x-8,g(x)=3x-x2,x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},则函数m(x)的最大值为__-4__.【解析】在同一平面直角坐标系中作出两函数图象如图所示.由图可得,函数f(x)=x-8与g(x)=3x-x2的交点为(4,-4),(-2,-10),所以m(x)=min{f(x),g(x)}x-x2,x∈(-∞,-2]∪[4,+∞),-8,x∈(-2,4),故m(x)max=m(4)=-4.9.已知f(x)a-1)x+2a,x<1,x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0恒成立,那么实数a的取值范围是.【解析】由函数单调性定义可得函数f(x)在R上单调递减,则根据分段函数a-1<0,<a<1,a-1+2a≥a,解得13a<12四、解答题10.已知函数f(x)=2x-1x+1.(1)判断f (x )在[0,+∞)上的单调性,并证明你的判断;【解答】f (x )在[0,+∞)上单调递增.证明如下:设0≤x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3(x 1-x 2)(x 1+1)(x 2+1).因为0≤x 1<x 2,所以x 1-x 2<0,(x 1+1)(x 2+1)>0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在[0,+∞)上单调递增.(2)若x ∈[1,m ],f (x )的最大值与最小值的差为12,求m 的值.【解答】由(1)可知f (x )在[1,m ]上为增函数,故f (x )min =f (1)=12,f (x )max =f (m )=2m -1m +1,所以2m -1m +1-12=12,故m =2,此时m >1,符合题意.11.已知函数f (x )=xx 2+1.(1)根据定义证明函数f (x )在(1,+∞)上单调递减;【解答】任取x 1>x 2>1,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(x 1x 2-1)(x 2-x 1)(x 21+1)(x 22+1).因为x 1>x 2>1,所以(x 21+1)(x 22+1)>0,x 1x 2-1>0,x 2-x 1<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )在(1,+∞)上单调递减.(2)若不等式f (x )<b 对一切实数x 都成立,求b 的取值范围.【解答】因为函数f (x )=xx 2+1的定义域为R ,所以f (-x )=-x x 2+1=-f (x ),故f (x )为奇函数.由(1)知函数f (x )在(1,+∞)上单调递减,任取0≤x 1<x 2<1,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(x 1x 2-1)(x 2-x 1)(x 21+1)(x 22+1).因为0≤x 1<x 2<1,所以(x 21+1)(x 22+1)>0,x 1x 2-1<0,x 2-x 1>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )在[0,1)上单调递增,所以f (x )max =f (1)=12.又f (0)=0,且x =0是方程f (x )=0唯一的根,所以当x ∈[0,+∞)时,f (x )∈0,12,又f (x )为奇函数,所以f (x )∈-12,12.不等式f (x )<b 对一切实数x 都成立,则b >f (x )max=12,即b B 组滚动小练12.若函数y =f (2x )的定义域是[0,1012],则函数g (x )=f (x +1)x -1的定义域是(B)A .[-1,2023]B .[-1,1)∪(1,2023]C .[0,2024]D .[-1,1)∪(1,2024]【解析】函数y =f (2x )的定义域是[0,1012],即x ∈[0,1012],则2x ∈[0,2024],所以函数y =f (x )的定义域是[0,2024],从而函数g (x )=f (x +1)x -1的定义域≤x +1≤2024,-1≠0,解得-1≤x ≤2023且x ≠1,故g (x )的定义域是[-1,1)∪(1,2023].13.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或都为正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn ,则在此定义下,集合M ={(a ,b )|a ※b =8}中的元素个数是(B)A .10B .9C .8D .7【解析】由定义知,当a ,b 都为正偶数或都为正奇数时,a ※b =a +b =8,故(a ,b )是(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1);当a ,b 中一个为正偶数,另一个为正奇数时,a ※b =ab =8,故(a ,b )是(1,8),(8,1),故共有9个元素.14.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c .(1)求证:方程f (x )=0必有两个不相同的根;【解答】由题意知ca =1·t >0,所以ac >0.对于方程f (x )=ax 2+(a -b )x -c =0,因为Δ=(a -b )2+4ac >0恒成立,所以方程f (x )=ax 2+(a -b )x -c =0必有两个不相同的根.(2)若方程f(x)=0的两个根分别为x1,x2,求|x2-x1|的取值范围.【解答】因为ax2+bx+c>0的解集为(1,t),所以1和t为方程ax2+bx+c=0的两个根,且a<0,t>10,b+c=0,t,<0,=-a-c,=at,所以|x2-x1|2=(x2+x1)2-4x2x1+4ca=+4ca =+8·ca+4.又ca=t(t>1),则|x2-x1|2=t2+8t+4=(t+4)2-12.因为t>1,所以(t+4)2-12>13,所以|x2-x1|∈(13,+∞。
高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(包含答案解析)

一、选择题1.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞2.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32 D .523.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-14.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 5.已知()f x 是定义在R 上的奇函数,若12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,则不等式()()2120x f x x -->的解集是( )A .()(),11,2-∞B .()()0,11,+∞C .()(),01,2-∞D .()()0,12,⋃+∞6.函数()ln x xxf x e e -=-的大致图象是( )A .B .C .D .7.已知函数f (x )=|x |+ln|x |,若f (3a -1)>f (1),则实数a 的取值范围是( ) A .a <0B .23a >C .023a <<D .a <0或23a >8.设函数()()1xf x x R x=-∈+,区间[,]M a b =,集合{(),}N y y f x x M ==∈,则使MN 成立的实数对(,)a b 有( )A .0个B .1个C .2个D .无数个9.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞10.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数11.函数1()2lg f x x x=+- ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃ D .(,2]-∞12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-2018 13.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( )A .2x y =B .2y xC .2log y x =D .21y x =+14.现有下列四个结论中,其中正确结论的个数是( ) ①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个15.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______. 17.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________.18.设函数()()333f x x x x R =-+∈.已知0a >,且()()()()2f x f a x b x a -=--,b R ∈,则ab =______.19.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.20.记号{}max ,m n 表示m ,n 中取较大的数,如{}max 1,22=.已知函数()f x 是定义域为R 的奇函数,且当0x >时,()222max ,4x f x x x a a ⎧⎫=-+-⎨⎬⎩⎭.若0x <时,()f x 的最大值为1,则实数a 的值是_________.21.已知函数y =f (x )和y =g (x )在[-2,2]的图像如图所示,给出下列四个命题:①方程f [g (x )]=0有且仅有6个根 ②方程g [f (x )]=0有且仅有3个根 ③方程f [f (x )]=0有且仅有5个根 ④方程g [g (x )]=0有且仅有4个根 其中正确的命题是___22.定义在()1,1-上的函数()3sin f x x x =--,如果()()2110f a f a -+->,则实数a 的取值范围为______.23.函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-,若对任意的(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是_______参考答案24.函数()22f x x x =-,[]2,2x ∈-的最大值为________.25.已知函数()()11xf x x x =>-,())2g x x x ≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是_________.26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.2.C解析:C 【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.3.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.4.A解析:A 【分析】由图象知函数的定义域排除选项选项B 、D ,再根据()01f =-不成立排除选项C ,即可得正确选项. 【详解】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C , 故选:A 【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.5.C解析:C 【分析】根据条件先判断出()f x 的单调性,根据单调性得到()f x 取值的特点,根据1x -与0的关系,采用分类讨论的方法解不等式,从而求解出解集. 【详解】因为12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,所以()f x 为R 上增函数,又因为()f x 为R 上奇函数,所以0x <时,()0f x <;0x >时,()0f x >;0x =时,()0f x =;当10x -=时,1x =,此时()()2012x f x x --=,不符合条件;当10x ->时,因为()()2120x f x x -->,所以22010x x x ⎧->⎨->⎩,解得0x <;当10x -<时,因为()()2120x f x x -->,所以22010x x x ⎧-<⎨-<⎩,解得12x <<;所以()()2120x f x x -->的解集为()(),01,2-∞,故选:C. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.6.C解析:C 【分析】结合选项中函数图象的特征,利用函数的性质,采用排除法求解即可. 【详解】由题可知,函数()f x 的定义域为()(),00,-∞⋃+∞,()()ln ln x x x xx xf x f x e e e e----==-=---, 所以函数()f x 为奇函数,所以排除选项BD ;又()10f =,所以排除选项A. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.7.D解析:D 【分析】根据函数为偶函数可转化为(|31|)(1)f a f ->,利用单调性求解即可.【详解】()||ln ||f x x x =+的定义域为(,0)(0,)-∞+∞,关于原点对称,又()||ln ||()f x x x f x -=-+-=, 所以()||ln ||f x x x =+为偶函数, 当0x >时,()ln f x x x =+为增函数, 又(31)(1)f a f ->可化为(|31|)(1)f a f ->, 所以|31|1a ->,所以311a ->或311a -<-, 解得23a >或0a <, 故选:D 【点睛】本题主要考查了函数的奇偶性,函数的单调性,绝对值不等式的解法,属于中档题.8.A解析:A 【分析】 由已知中函数()()1||xf x x R x =-∈+,我们可以判断出函数的奇偶性及单调性,再由区间[M a =,]()b a b <,集合{|()N y y f x ==,}x M ∈,我们可以构造满足条件的关于a ,b 的方程组,解方程组,即可得到答案.【详解】x R ∈,()()1xf x f x x-==-+,()f x ∴为奇函数, 0x 时,1()111x f x x x -==-++,0x <时,1()111x f x x x-==--- ()f x ∴在R 上单调递减函数在区间[a ,]b 上的值域也为[a ,]b ,则()(),f a b f b a ==, 即1a b a -=+,1ba b-=+,解得0a =,0b = a b <,使M N 成立的实数对(,)a b 有0对 故选:A 【点睛】本题考查的知识点是集合相等,函数奇偶性与单调性的综合应用,其中根据函数的性质,构造出满足条件的关于a ,b 的方程组,是解答本题的关键.9.A解析:A 【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围. 【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩,当()212f x x ax a =+-在[)2,+∞上单调递增时,22a-≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-, 故选:A. 【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤: (1)先分析每一段函数的单调性并确定出参数的初步范围; (2)根据单调性确定出分段点处函数值的大小关系; (3)结合(1)(2)求解出参数的最终范围.10.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()|3|3f x x =+-所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x x-==-=-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;11.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.12.B解析:B 【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=, 所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=.故选:B . 【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.13.D解析:D 【解析】根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.14.A解析:A 【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真; ④将函数变形,由均值不等式的性质可得最小值,可得命题为假. 【详解】 解:①取幂函数2y x ,显然与1y x=仅有一个交点,所以①不正确;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231xxxx f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x xxx x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确. 故选:A . 【点睛】本题考查指对幂函数的性质,属于基础题.15.C解析:C 【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑. 【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C. 【点睛】本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.17.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3-【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-.故答案为:(3,0)(1,3)-18.【分析】先将进行因式分解再与比较利用对应系数相等可得关于的方程即可得的值即可求解【详解】因为所以因为所以对任意的恒成立所以不恒为所以展开整理可得:所以解得:或(舍)所以故答案为:【点睛】关键点点睛: 解析:2-【分析】先将()()f x f a -进行因式分解再与()()2x b x a --比较,利用对应系数相等可得关于,a b 的方程,即可得,a b 的值,即可求解.【详解】因为()()333f x x x x R =-+∈,所以()()()()333333333f x f a x x a a x a x a -=-+----=-+,()()()()222233x ax a x ax x a x a x a a ⎡⎤---==+-++-⎣+⎦,因为()()()()2f x f a x b x a -=--,所以()()()2223x ax a x b x x a a ⎡⎤-=⎣-⎦++--,对任意的x 恒成立, 所以x a -不恒为0,所以()()223x ax a x b x a ++-=--展开整理可得:()23ax a a b x ab +-=-++,所以()23a a b a ab⎧=-+⎨-=⎩ 解得:12a b =⎧⎨=-⎩或12a b =-⎧⎨=⎩(舍),所以()122ab =⨯-=-, 故答案为:2-. 【点睛】关键点点睛:本题解题的关键是将()()f x f a -进行因式分解,由x a -不恒为0,得出()()223x ax a x b x a ++-=--利用待定系数法可求,a b 的值.19.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案 【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =,令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠;所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 20.【分析】首先将时函数写成分段函数的形式并求函数的最小值根据奇函数的性质可知时的最小值是建立方程求【详解】当时解得:此时令解得此时所以时函数又因为此时是定义在上的奇函数所以图象关于原点对称时函数的最小解析:2±【分析】首先将0x >时,函数()f x 写成分段函数的形式,并求函数的最小值,根据奇函数的性质可知0x >时的最小值是1-,建立方程求a 【详解】当0x >时,22240x x x a a -+-+≥,解得:202x a <≤,此时()22x f x x a =-+,令22240x x x a a-+-+<,解得22x a >,此时()24f x x a =-, 所以0x >时,函数()222224,2,02x a x a f x x x x a a⎧-≥⎪=⎨-<≤⎪⎩,又因为此时()f x 是定义在R 上的奇函数,所以图象关于原点对称,0x ∴>时,函数的最小值是-1, 当22x a ≥时,函数单调递增,()222min 242f x a a a =-=-,当202x a <≤时,()222222124x a af x x x a a ⎛⎫=-=--+ ⎪⎝⎭,函数的()()22min 22f x f aa==-,所以0x >时,函数的最小值是22a -,即221a -=-,解得:a =故答案为:2± 【点睛】思路点睛:本题主要考查分段函数与函数性质的综合应用,首先根据新定义,正确写出函数()f x 的表达式,这是本题最关键的一点,然后就转化为分段函数求最值问题.21.①③④【分析】根据函数图像逐一判断即可【详解】对于①令结合图象可得有三个不同的解从图象上看有两个不同的解有两个不同的解有两个不同的解故有6个不同解故①正确对于②令结合图象可得有两个不同的解从图象上看解析:①③④ 【分析】根据函数图像逐一判断即可. 【详解】对于①,令()t x g =,结合图象可得()0f t =有三个不同的解12321,0,12t t t -<<-=<<,从图象上看()1g x t =有两个不同的解,()2g x t =有两个不同的解,()3g x t =有两个不同的解,故[()]0f g x =有6个不同解,故①正确.对于②,令()t f x =,结合图象可得()0g t =有两个不同的解1221,01t t -<<-<<, 从图象上看()1f x t =的有一个解,()2f x t =有三个不同的解, 故[()]0g f x =有4个不同解,故②错误. 对于③,令()t f x =,结合图象可得()0f t =有三个不同的解12321,0,12t t t -<<-=<<, 从图象上看()1f x t =有一个解,()2f x t =有三个不同的解,()3f x t =有一个解,故[()]0f f x =有5个不同解,故③正确.对于④,令()t x g =,结合图象可得()0g t =有两个不同的解1221,01t t -<<-<<, 从图象上看()1g x t =有两个不同的解,()2g x t =有两个不同的解, 故[()]0g g x =有4个不同解,故④正确. 故答案为①③④. 【点睛】本题考查了函数图像的应用,考查了数学结合思想,属于中档题.22.【分析】先得出函数是奇函数且是减函数从而得到结合函数的定义域从而求出的范围【详解】解:是奇函数又是减函数若则则解得:或由解得:综上:故答案为:【点睛】本题考查了函数的奇偶性函数的单调性的应用属于中档题解析:(【分析】先得出函数是奇函数且是减函数,从而得到211a a -<-,结合函数的定义域,从而求出a 的范围. 【详解】 解:()3sin (3sin )()f x x x x x f x -=-=-+=-,是奇函数,又()3cos 0f x x '=-+<,是减函数, 若2(1)(1)0f a f a -+->, 则2((1))1f a f a -->,则211a a -<-,解得:1a >或2a <-,由2111111a a -<-<⎧⎨-<-<⎩,解得:0a <<,综上:12a <<,故答案为:()1,2. 【点睛】本题考查了函数的奇偶性,函数的单调性的应用,属于中档题.23.【分析】首先根据已知条件依次得到在附近的区间对应的函数解析式然后按其规律画出函数的图像再根据不等式恒成立的意义与函数图像即可求得实数m 的取值范围【详解】当时则当时则当时则由此作出图象如图所示由图知当解析:7,3⎛⎤-∞ ⎥⎝⎦【分析】首先根据已知条件依次得到在(0,1]x ∈附近的区间,(1,2]x ∈、(2,3]x ∈对应的函数解析式,然后按其规律画出函数的图像,再根据不等式恒成立的意义与函数图像即可求得实数m 的取值范围 【详解】当10-<≤x 时,011x <+≤,则11()(1)(1)22f x f x x x =+=+, 当12x <≤时,011x <-≤,则()2(1)2(1)(2)f x f x x x =-=--,当23x <≤时,021x <-≤,则22()2(1)2(2)2(2)(3)f x f x f x x x =-=-=--,由此作出()f x 图象如图所示,由图知当23x <≤时,令282(2)(3)9x x --=-, 整理得:(37)(38)0x x --=, 解得:73x =或83x =,要使对任意的(,]x m ∈-∞,都有8()9f x ≥-,必有73m ≤, 所以m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦,故答案为:7,3⎛⎤-∞ ⎥⎝⎦【点睛】本题主要考查函数的解析式,函数的图象,不等式恒成立问题,考查分类讨论,数形结合的思想,属于中档题.24.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8 【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.25.甲【分析】由题意求出的解析式依据两函数为同一函数的条件:定义域和对应关系相同即可得出结论【详解】解得所以故答案为:甲【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析:甲 【分析】由题意求出()(),F x G x 的解析式,依据两函数为同一函数的条件:定义域和对应关系相同,即可得出结论. 【详解】()()11xf x x x =>-,())2g x x x =≥, ()()11xf x x x ∴=>-, ())21x F x x x x x∴==≥-, ()()()G x g x f x =,())21G x x x x ∴=≥-, 解得())2G x x =≥,所以()())2F x G x x ==≥.故答案为:甲 【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析式和定义域是求解本题的关键;属于易错题;26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确; 由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。
必修一函数的单调性1(含答案)

函数(一)单调性一、 基础知识1、 增函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 叫做函数的增区间。
2、 减函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 叫做函数的减区间。
3、 单调性:如果函数()f x 在区间D 上式增函数或者减函数,那么就是函数()f x 在这一区间上具有单调性,区间D 叫做函数的单调区间。
4、 单调区间:指的是函数具有单调性的最大取值区间。
5、证明单调性的步骤:做差→变形→判号→得结论。
6、单调函数的组合:某两个单调函数在同一区间内的加减后所得函数单调性增函数+ 增函数=增函数,减函数+减函数=减函数,增函数—减函数=增函数,减函数—增函数=减函数奇函数⨯奇函数=偶函数,偶函数⨯偶函数=偶函数奇函数⨯偶函数=奇函数二、习题精练1、(1)证明函数2()f x x x =+在)+∞上递增 (2)证明函数2()f x x x=-在()0,+∞上递增。
2、(1)找出函数223y x x =-++的增区间 (2)找出223y x x =-++的减区间3、(1)函数[)2()485,f x x kx =--+∞在区间上单调递增,求实数k 的取值范围。
(2)函数[)2()485,f x x kx =--+∞的增区间为,求实数k 的取值范围。
4、(1)已知函数{22,12,1()x ax x ax x f x -+<+≥=是R 上的增函数,求a 的范围 (2)已知函数{2(4),2416,2()x a x x ax x f x -<+-≥=是R 上的增函数,求a 的范围5、求函数21y x =-6、 已知函数()y f x =在区间(0,)+∞单调递减,请填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的性质单调性
1.在区间(0,+∞)上不是增函数的函数是()
222xxyxyyyx+ 1
DC..B.A.==2=3+1
+=2+1
x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42)
上是减函数,f(1)等于(则)
B.1
C.17
A.-7
D.25
fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8)
B.(-7,-2) C.(-2,3)
D.(0,5)
ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间()
4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.(
,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已
知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没
有实根 D.必有唯一的实根
22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数
C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数
fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是
A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞)
fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定
义域为tfff(13)
<(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1)
<1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增
区间依次是(.函数9 )
B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范
围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3
B.5
≥-3
C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、
fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+
fafbfafbfafbfafb)
-(+)-(≥)(+)(.D ])(+)(≥-)(+)(.C
xxfyxyf)=0=,则(( +2)=(图象的对)在(-∞,2)上是增函数,且称轴是
12.定义在R上的函数ffffffff(3)
(2)1)=< (-1)<-(3) B.3) D (0)>.(3) C.- ( A.(-2xy的减区间
是.函数___ _=(-1).13xy.2=
的值域为-__ ___214.函数+x1?
???? .上的减函数,则的单调递减区间为15、
设是3x?y?f xfy?R2aaxfx ax __ 上递减,则.的取值范围是-3在16、函数([2) =,+∞+4(]+1)
x yffxffx) ) = -((17.())是定义在( 0,+∞)上的增
函数,且(y1f fxff(( -+(1)的值.(2)若(6)= 1,解不等式)求 ) <2 .(13 ) x
3xfx上是增函数还是减RR-上是否具有单调性?如果具有单调性,它在+118.函
数在()= 函数?试证明你的结论.
2xf在区间[-1,1)=]上的单调性..试讨论函数19(x1?
axaafxfx2)在0,+∞0)>,试确定:当.设函数20)(取什么值时,函数上)=-
(,(1x?为单调函数.
fxfmfmm的取值,求实数>-22)2,上的减函数,并且0()-1)-(121.已知(()
是定义在-范围.
2?2xx?a fxx∈[1,+∞]22.已知函数 (,)=x1xfxafx恒成立,>)0,
[12的最小值;=1()当时,求函数()()若对任意∈,+∞()2a的取值范围.试
求实数
答案解析??15.,, 14. (-∞,3),+∞一、选择题: CDBBD ADCCA BA 二、填空题:13. (1,)??3,1???,????2??f则x=36,,则三、解答题:17.解析:
①在等式中y=6(1)=0.②在等式中令0?令x?y136xfx),(36)?ff(x?3)?f(<( 故原不等
式为:3)]即[+.?2(6(f)()?f(36)?f(6),?f36)?2f x60?x?3??3?1153?xff故不等式等
价于:在(0,+∞(36),又)(上为增函数,)0?0?x?.??
2x?36)?x(x?30??? xfxx,∈18.解析: ((-∞,+∞)在R上具有单调性,且是
单调减函数,证明如下:设)、2123333xxxxfxx fxxxfxfxxxxx+-(<)( ,则)()=
---+1,((=()=-)=+1.+212111112222112xx3322222xxxxxxxxxxxfx)>)=(0-[)(++,
>0而(∴)+].∵+<),∴(-2211122122221144223xxffx上是减函数.+
1在).∴函数((-∞,+∞)=->()22xxxxfxxxfx--1≤.19.解析:设)=、1
∈-1,]且(<(,即-1≤)<x1?22211112122)?x(x?x)(x)x(1?(1?x)?222xxx1212,∴当,,∵=
>-0>0=21x?1?x1?x?11212122222x1??1?x x1??x?12121xfxxxxfxfxxxx<(,那么>0,那么+(>))(<).当0<0,时,<>0,>0时,0+1212122211xf (.)222xffx 1)=]上是减
函数.故((在区间[0)=在区间[-1,0]上是增函数,,x?1?x1?22xxaxfxfxxx-,
则-()=),+且-<((20.解析:任取、-∈01xx??1?12211122122x?xx?x axxxxxaa时,∵
-1)=(≥-)=))(,(1)--(当21212211222221?x1?x?x?1?x?12121x?x xxfxfxfxfxa≥1∴(时,(即)>0,)(,),<1又∵-0<,∴>()-21212211221x???x121fx)在区间[0,+∞)
上为减函数.函数 (2a fxfxaxx)=1,∴)=时,在区间[<10,+∞]上存在=0,
=(,满足0(<当(2)022112a?1?xaf①判断单调性常规思路为定义法;②时,
<<1()在[0,+上不是单调函数。
注:?.
x?x22xaxx的范围看还>|;变形过程中|≥<1;③从利用了>211?x1x?21112221?xx?1?21afx)
的单调性,这也是数学严谨性的体现.时须讨论0<(<1fxfmfmfmf(1>-)>
上是减函数,∴由0(,得-1)-1)(1-221.解析:∵(()在(-2,2)m)
2-???1?m?3?2?m?1?2??123121??m?m??的取值范围是(-)
,∴∴解得??m?2,即??2?1?2m,??232232??m?2?1?1m?2?m??
3?11xxxfxffaxxxx)=≥1,则(()=(++2,,+∞∈1),设->22.解析: (1)当=时,)221212x2x?x111xxxxxxxx-01,+)=(--1)(1-),∵>=(+>-≥
21??x112221211x2x2xxxx221
221112xffxfxxf,+∞(1))在[1>0,则,+∞)()>上是增函数.∴(,可知)在区间[()12
27a2x?x?x2x222aaxxxafxxfayyxaxayfxyx?=33上是增故[1恒成立.0>11)0+,+∞,
+∞于是当且仅当(2)。
(1)=当0>上,上的最小值为函数,恒成立。
设=1时,
==3+2++,,在区间[∈11),由=( >(+)=+-时函数(可知其在)>0恒成立,+∞)+>-2+.)21minmin x2.。