排队论例题

合集下载

排队论算例

排队论算例

排队论算例解:先根据每个状态的平衡条件建立状态方程组如下:245)1(5)4(41)1(6)3(21)1(12)2(241)1(1)1(24)1(5)1(6)1(12)1()()1(5)4()1(6)3()1(12)2()1()1()1(3)3(2)4(1)4(2)2(1)3(2)4(2)1(2)2(1)4(1)1(3)1(241=========+++=⎪⎪⎩⎪⎪⎨⎧====⎪⎪⎩⎪⎪⎨⎧+=+=+==+∑=P P P P P P P P P P P P i P P P P P P P P P P P P P P P P P P P P P i 由正则条件知:解得:076.0)0(8116)4(114.0)0(278)3(171.0)0(94)2(256.0)0(32)1(384.0)0(1)0(81211)0(8116)0(278)0(94)0(32)0()(4===========++++=∑=P P P P P P P P P P P P P P P i P i 由正则条件知:【例题4】求解下列生灭过程的状态指标?解:系统容量有限,即最多可同时容纳3个顾客。

系统中可能容纳0个、1个、2个和3个顾客,即有4个状态。

对于状态0S 有:1032P P =,即:0132P P =对于状态1S 有:120542P P P =+,即:0231P P =对于状态3S 有:3232P P =,即:0192P P =由正则条件可知,13210=+++P P P P ,即:45.00=P 故有:30.00=P 、15.02=P 、10.03=P 。

【例题5】某公路收费入口处设有一收费亭,汽车进入公路必须向收费亭交费。

收费亭的收费时间服从负指数分布,平均每辆汽车的交费时间为7.2s ,汽车的到达率为400辆/h ,服从泊松分布。

试求:(1)收费亭空闲的概率;(2)收费亭前没有车辆排队的概率;(3)收费亭前排队长度超过100m (即排队车辆超过12辆)的概率;(4)平均排队长度;(5)车辆通过收费亭所花费时间的平均值;(6)车辆的平均排队时间?解:显然这是一个M/M/1/∞∞/排队系统,收费亭是服务台,汽车是顾客,汽车向收费亭交费便是接受服务。

排队论练习题

排队论练习题

第9章排队论判断下列说法是否正确:(1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布;(4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流;(5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;(9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长;(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

M/M/1、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求:(1)理发店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内至少有1个顾客的概率;(4)在店内顾客平均数;(5)在店内平均逗留时间;(6)等待服务的顾客平均数;(7)平均等待服务时间;(8)必须在店内消耗15分钟以上的概率。

、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从负指数分布,平均需6分钟。

求:(1)修理店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内顾客平均数;(4)店内等待顾客平均数;(5)顾客在店内平均逗留时间;(6)平均等待修理时间。

排队论习题及答案

排队论习题及答案

排队论习题及答案排队论习题及答案排队论是概率论和数学统计中的一个重要分支,研究的是随机事件的排队问题。

在现实生活中,我们经常会遇到排队的情况,如等候乘坐公交车、购物结账等。

排队论的研究可以帮助我们更好地理解和优化排队过程,提高效率和服务质量。

下面,我们将介绍几个排队论的习题及其解答。

习题一:某银行有两个窗口,顾客到达银行的时间服从平均到达率为λ的泊松分布,每个顾客在窗口办理业务的时间服从平均服务率为μ的指数分布。

求平均等待时间和平均排队长度。

解答:首先,我们可以根据泊松分布和指数分布的性质,得到顾客到达时间和服务时间之间的关系。

假设顾客到达时间服从泊松分布,到达率为λ,那么两个顾客到达时间之间的时间间隔服从参数为λ的指数分布。

同样,假设顾客的服务时间服从指数分布,服务率为μ,那么两个顾客的服务时间之间的时间间隔服从参数为μ的指数分布。

根据排队论的基本原理,平均等待时间等于平均排队长度除以到达率。

平均排队长度可以通过利用排队论的公式计算得到。

在本题中,根据M/M/2模型,可以得到平均排队长度的公式为:Lq = λ^2 / (2μ(μ - λ))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率。

接下来,我们可以计算平均等待时间。

根据排队论的公式,平均等待时间等于平均排队长度除以到达率。

所以,平均等待时间的公式为:Wq = Lq / λ综上所述,我们可以通过计算得到平均等待时间和平均排队长度。

习题二:某餐厅有4个服务台,每个服务台的服务时间服从平均服务率为μ的指数分布,顾客到达时间服从平均到达率为λ的泊松分布。

求平均等待时间和平均排队长度。

解答:在这个问题中,我们可以使用M/M/4模型来求解。

根据M/M/4模型,平均排队长度的公式为:Lq = (λ/μ)^4 * (1/(4! * (1 - ρ)))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率,ρ表示系统繁忙度。

平均等待时间的公式为:Wq = Lq / λ通过计算可以得到平均等待时间和平均排队长度。

排队论举例

排队论举例

经满员 就离去? 就离去? Lq Wq = = 1.39 = 0.48h = 28.86 min 2.89 λe
(5) 在可能到来的顾客中,有百分之几不等待就离开? 在可能到来的顾客中,有百分之几不等待就离开?
1 ρ 1 0.75 N P7 = ρ = × 0.757 = 3.71% 1 ρ N +1 1 0.758
= 1 . 89 + 1/0.4 = 4.39 分钟
例 题 解 析 售票处的空闲的概率为0 售票处的空闲的概率为0.0748
平均等待时间 平均逗留时间 95( 队长 L s=3.95(人)
89分钟 分钟, W q=1.89分钟, 39分钟 W s=4.39分钟 70( L q=1.70(人)
例 题 解 析
Ls = m
λ ( + λ )(1 P0 ) Lq = Ls (1 P0 ) = m λ 1 Ls m Ws = = (1 P0 ) m (1 P0 ) λ 1 = Lq Wq = Ws (1 P0 )
某车间有5台机器 台机器, 例3 某车间有 台机器,每台机器的连续运转时间服从负指数 分布。平均连续运转时间15分钟 有一个修理工, 分钟, 分布。平均连续运转时间 分钟,有一个修理工,修理时间 服从负指数分布,平均每次12分钟 分钟。 服从负指数分布,平均每次 分钟。求: (1) 修理工空闲时间
(1 P0 )
解:(1) ∵ m=5,λ=1/15,μ=1/12,ρ=4/5=0.8 m! i P0 = ∑ ρ i = 0 ( m i )!
m 1
5! 5! 5! 5! 5! 2 3 4 5 = 1 + × 0.8 + × 0.8 + × 0.8 + × 0.8 + × 0.8 3! 2! 1! 0! 4!

(完整word版)《运筹学》_第六章排队论习题及_答案

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

排队论例题

排队论例题

莄几种典型的排队模型螁(1)M/M/1/ / /FCFS单服务台排队模型羁系统的稳态概率P n膈P。

=1 一匸,T = •/「:1为服务强度;P n二(1 螅系统运行指标蒃a.系统中的平均顾客数(队长期望值)Q0螀Ls =' n.Pn a膈b.系统中排队等待服务的平均顾客数(排队长期望值)O0 膆L q 八(n -1)-P ni =0羀C.系统中顾客停留时间的期望值蕿W s卩一九芈d.队列中顾客等待时间的期望值1 P 薇W q=W s -蚂⑵M/M/1/N/ 7FCFS单服务台排队模型薂系统的稳态概率P n1-P f莈R =1 N7, ” 1;P n 1-?—汕1蚃系统运行指标»n。

莄a•系统中的平均顾客数(队长期望值)莀b•系统中排队等待服务的平均顾客数(排队长期望值)蒈c.系统中顾客停留时间的期望值肄d•队列中顾客等待时间的期望值1W q =Ws-~腿(3)M/M/1/ /m/FCFS(或 M/M/1/m/m/FCFS )单服务台排队模型薈系统的稳态概率P n薄系统运行指标袈a•系统中的平均顾客数(队长期望值)蚇b•系统中排队等待服务的平均顾客数(排队长期望值)祎c.系统中顾客停留时间的期望值 羂d•队列中顾客等待时间的期望值羁⑷M/M/c/ 7 7FCFS单服务台排队模型蚇系统的稳态概率P n二1九k 肃P03卅)1九n— (—)P 0,n^c1c () P o ,n Cc!c '螄系统运行指标蚀a•系统中的平均顾客数(队长期望值):蒅P o 二市1一m! (m - n)!(丁)nP °,1 乞 n 冬 m螇b •系统中排队等待服务的平均顾客数(排队长期望值)蒄c.系统中顾客停留时间的期望值:膂d •队列中顾客等待时间的期望值:葿[典型例题精解]袇例1 :在某单人理发馆,顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。

排队论练习题

排队论练习题
3.在[M/M/1]:[N/∞/FCFS]系统中,设顾客到达速率为λ,服务速率为μ,求单位时间内被拒绝的 顾客数的期望值。
4.在第一题中,设顾客到达速率增加到12人/小时,这时又增加一个同样熟练的修理工,平均 修理时间也是6分钟。求: (1)店内空闲的概率; (2)店内有两个或更多顾客的概率; (3)计算运行指标L,Lq,W,Wq。
Ls=1.47708 (7) Wq=1.08分钟
Ws=6.08分钟
例10 某车站候车室在某段时间旅客到达服从泊松流分布,平均速度 为50人/小时,每位旅客在候车室内逗留的时间服从负指数分布,平均 停留时间为0.5小时,问候车室内平均人数为多少? 解:把旅客停留在候车室看做服务,于是就看为M/M/∞/∞/∞
服从负指数分布,平均理发时间为15分钟。求:
(1)顾客来店理发不必等待的概率; (2)理发店内顾客平均数; (3)顾客在理发店内的平均逗留时间; (4)当顾客到达速率是多少时,顾客在店内的平均逗留时间将超过1.25小时。
解:这是一个[M/M/1]:[//FCFS]排队系统
=3,=4,=/=3/4=0.75 (1) P0=1-=1-0.75=0.25 (2) (3) (4) ,=3.2,
解:这是一个[M/M/1]:[//FCFS]排队系统
=4,=10,=/=2/5=0.4 (1) P0=1-=1-2/5=3/5=0.6 (2) P3=3(1-)=0.43×0.6=0.0384 (3) 1-P0=1-(1-)==0.4 (4) (5) (6)
(7)
例7.一个单人理发点,顾客到达服从Poisson分布,平均到达时间间隔为20分钟;理发时间
问题解决:
分三种情况考虑: (1) 当无病人时,三种互不相容事件的概率分别为: (a) 在时间t内没有病人排队,时刻也没有病人到达的概 率为。 (b) 在时间t内有一个病人,内没有顾客到达,但有一位 病人接受诊断后离去的概率为。 (c) 在时间t内没有病人排队,但在时刻内有一位病人到 达,也有一位病人接受诊断后离去的概率为。

排队论习题

排队论习题

排队论习题排队论习题1. 一个车间内有10台相同的机器,每台机器运行时每小时能创造4元的利润,且平均每小时损坏一次。

而一个修理工修复一台机器平均需4小时。

以上时间均服从指数分布。

设一名修理工一小时工资为6元,试求:(i )该车间应设多少名修理工,使总费用为最小;解:这个排队系统可以看成是有限源排队模型M/M/s/10,已知11,0.25,4,104m λλμρμ====== 设修理工数为s ,由公式()()11010s m n n n n n s m m p m n n m n s s ρρ---==??=+??--??∑∑()11001m q nn ss s s n q n n n L n s p L np L s p =--===-??=++-∑∑∑ 目标函数为min 64s s L =+,用lingo 求解得到1s =,此时平均队长9.5s L =台,又因为当维修工数10s =时平均队长8s L =,说明此模型不合理。

对模型进行修正,由于要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。

所以假设一名修理工修复一台机器平均需0.5小时,即设2μ=。

用lingo 求解得维修工数3s =,平均队长,此时的最小费用为35.97元。

(1)程序:model:lamda=1;mu=2;rho=lamda/mu;m=10;load=m*rho;L_s=@pfs(load,s,m);lamda_e=lamda*(m-L_s);min=6*s+4*L_s;endLocal optimal solution found.Objective value: 35.97341Objective bound: 35.97341Infeasibilities: 0.1000005E-09Extended solver steps: 0Total solver iterations: 388Variable ValueLAMDA 1.000000MU 2.000000RHO 0.5000000M 10.00000LOAD 5.000000L_S 4.493352S 3.000000LAMDA_E 5.506648(ii)若要求不能运转的机器的期望数小于4台,则应设多少名修理工;L ,求得应设解:同上,用有限源排队模型求解,增加约束条件4 s4名修理工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排队论例题
1、某重要设施是由三道防线组成的防空系统。

第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。

所有的武器类型一样。

武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。

试估计该防空系统的有效率。

解: 武器联合发挥作用
该防空系统有效率 = 1- (三道防线后的损失率)
三道防线均可看成M/M/1/1系统
第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器)
ρ=λ/μ=1
.P )A (P ,P ,P ,P P P 1212111110001=======λλρ损
第二道防线 :
.P )A (P ,P ,P ,P P P ,)(.414
143313131122100011=========
===λλρμλρμλλ损损三座武器第三道防线: 975
.0,025.0.05.020
1)(,51,54,1,41,41,1.41
313310100012===========∴=+====
===总损失率该防空系统的有效率总损失率损损损-12
0.05λλλλρμλρμλλP A P P P P P P P P
2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。

平均到达率和平均服务率分别为λ和μ。

已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。

试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统
μλρ=
W q ==-)(λμμλρρ-12
P0 = 1-ρ=μλ
(空闲概率)
每小时空闲时间为1×P0= P0
总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q
对 ρ 求导 C C C C y 22
22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ
又∵
ρ<1 ∴22-=ρ
由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值
动态规划问题
1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。

在上半年(1至6月)其生产成本(万元/
6个月的生产量使既能满足各月的订单需求同时生产成本最低?
参考解答:
(1) 首先建模描述为动态规划问题
●阶段k:月份,k=1,2, (7)
●状态变量x k:第k个月初(发货以前)的库存量;
●决策变量d k:第k个月的生产量;
●状态转移方程:x k+1=x k-R k+d k;
●决策允许集合:D k(x k)={d k| d k≥0, R k+1≤x k+1≤90千件}
={d k | d k≥0, R k+1≤x k-R k+d k≤ 90千件};
●阶段指标:v k(x k,d k)=C k d k;
●终端条件:f7(x7)=0, x7=40;
(2) 计算过程:
对于k = 6
因为x7 =40,x6 - r6 + d6 = x7 = 40
因此d6 = x7+r6-x6 = 40 +44 - x6 = 84 - x6
是唯一的决策,于是递推方程为:
f6(x6) = min { c6d6+f7(x7) }
d6=84 - x6
=2.5 d6=2.5 (84 - x6)=210 – 2.5x6
注意:由于d6 =84 - x6 ≥ 0,故x6 ≤ 84;
对于k = 5:d5∈D5(x5) ={d5| d5≥0, 111-x5≤d5≤(84+67)151 - x5} (x5 ≤ 90)f5(x5) = min { c5d5 + f6(x6) }
= min { 2.0d5+210 – 2.5 x6 }
= min { 2.0d5+210 – 2.5 (x5-67+d5) }
= min { -0.5d5 - 2.5 x5 + 377.5 } d5*= 151 - x5
= -0.5(151 - x5) – 2.5 x5+377.5
= 302 -2.0x5
对于k=4:d4∈D4(x4) = {d4| d4≥0, 99 - x4≤d4 ≤122 - x4 }
f4(x4) = min { c4d4+f5(x5) }
= min { 2.7d4 + 302 - 2.0x5 }
= min { 2.7d4 + 302 -2.0(x4-32+d4)}
= min { 0.7d4 – 2.0x4 + 366 } d4= 99 - x4 (x4 ≤ 90)
= 435.3 - 2.7x4
对于k=3:d3∈D3(x3) = {d3| d3≥0, 82-x3≤d3≤140 - x3 }
f3(x3) = min {c3d3+f4(x4)}
= min {2.3d3+435.3 – 2.7 (x3-50+d3)}
= min { -0.4d3 – 2.7x3 + 570.3 } d3*=140 - x3
= 514.3 - 2.3 x3
对于k=2:d2∈D2(x2) = {d2| d2≥0,113 - x2≤d2≤153 - x2}
f2(x2) = min { c2d2 + f3(x3) }
= min {2.8d2+514.3 - 2.3 (x2-63+d2)}
= min { 0.5d2 – 2.3x2 + 659.2 } d2* = 113-x2
= 715.7 – 2.8x2
对于k=1:d1∈D1(x1) = {d1|d1≥0,98 - x1≤d1≤125 - x1} = { d1| 58 ≤d1 ≤ 85 } f1(x1) = min {c1d1+f2(x2)}
= min { 2.1d1+715.7 – 2.8 (x1-35+d1)}
= min {-0.7d1 – 2.8x1+813.7} d1 = 85,x1=40
= 642.2
(3) 最优解:x1 = 40, d1 = 85, x2 = 90, d2 = 23, x3 = 50, d3 = 90;
x4 = 90, d4 = 9, x5 = 67, d5 = 84, x6 = 84, d6 = 0
2.有一种设备最长使用3年时间,现考虑它在3年的更新问题,在每年年初要作出决策是继续使用还是更新。

如果继续使用,已知每年需要支付的维修费用如
如果更新设备已知在各年年初购置改种设备的价格如下表所示(残值忽略不计):
已知开始时设备已经使用了1年,问每年年初应怎样作出决策,才能使得3年内设备的购置和维修总费最少?
参考解答
(1)、首先建模描述为动态规划问题
● 阶段k :年份,k =1,2,3,4;
● 状态变量x k :设备的役龄t ;
● 决策变量d k :⎩⎨⎧=继续使用更新K R d k
● 状态转移方程:⎩⎨⎧=+==+K d 1x R
d 1x k k k 1k
● 阶段指标:⎩
⎨⎧==+=K d )x (C R d )0(C )k (P v k k k k 记:维修费用C (0)=5,C (1)=6,C (2)=8,
购买价格P (1)=11,P (2)=12,P (3)=13
● 递推方程:⎩⎨⎧=++=++=++K d )1x (f )x (C R
d )1(f )0(C )k (P )x (f k k 1k k k 1k k k
● 终端条件:f 4(x 4)=0
(2) 求解过程:。

相关文档
最新文档