《排队论》习题解答
运筹学第三版胡运权郭耀煌黄色封皮第九and十章排队论习题答案

运筹学第三版胡运权郭耀煌黄⾊封⽪第九and⼗章排队论习题答案9.1 有A,B,C,D,E,F 6项⼯作,关系分别如图9-38(a),(b),试画出⽹络图。
9.2 试画出下列各题的⽹络图(见表9-8,表9-9,表9-10),并为事项编号。
9.3 设有如图9-39,图9-40⽹络图,⽤图上计算法计算时间参数,并求出关键路线。
9.4 绘制表9-11,表9-12所⽰的⽹络图,并⽤表上计算法计算⼯作的各项时间参数、确定关键路线。
9.5 某⼯程资料如表9-13所⽰。
要求:(1)画出⽹络图。
(2)求出每件⼯作⼯时的期望值和⽅差。
(3)求出⼯程完⼯期的期望值和⽅差。
(4)计算⼯程期望完⼯期提前3天的概率和推迟5天的概率。
解:每件⼯作的期望⼯时和⽅差见表9-13的左部。
⼯程完⼯期的期望值为32个⽉,⽅差为5(1+1+1+1+1)。
⼯程期望完⼯期提前3天的概率为0.09,推迟5天的概率为0.987。
9.6 对图9-41所⽰⽹络,各项⼯作旁边的3个数分别为⼯作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完⼯时间的概率。
根据关键线路,再考虑到其他线路上的时差很多,可知最早完⼯时间应该等于关键线路上各个⼯作最早完⼯时间之和:4+2+6+2+3=2=19 。
概率为0.005 。
9.7 某项⼯程各道⼯序时间及每天需要的⼈⼒资源如图9-42所⽰。
图中,箭线上的英⽂字母表⽰⼯序代号,括号内数值是该⼯序总时差,箭线下左边数为⼯序⼯时,括号内为该⼯序每天需要的⼈⼒数。
若⼈⼒资源限制每天只有15⼈,求此条件下⼯期最短的施⼯⽅案。
解:最短⼯期还是15天。
各个⼯作的开始时间如下图所⽰:9.8 已知下列⽹络图有关数据如表9-14,设间接费⽤为15元/天,求最低成本⽇程。
解:将①→②缩短两天,总⼯期为25天,直接费⽤7420元,间接费⽤375元,最⼩总费⽤为7795元。
⽹络图和关键线路如下:9.9 ⼀项⼩修计划包括的⼯作如表9-15所⽰。
《排队论》习题解答

故方案I比方案II好。
2018/11/23 计算机科学与工程学院 顾小丰 18-9
习题4
某系统利用2台计算机进行容错处理。
如果 1 台计算机正常工作时间服从负指数 分布,平均 10 天,而计算机损坏时由 1 名 工程师维修,维修 1 台计算机的时间是负 指数分布的,平均 5天。求: 2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
m 1
2! 1 i ( ) i 0 ( 2 i )! 2
2
1
2 0. 4 5
P{计算机损坏无法运行}=p2
2! 1 2! 1 ( ) 2 p0 ( ) 2 0.4 0.2 ( 2 2)! 2 ( 2 2)! 2
计算机科学与工程学院 顾小丰 18-11
随机过程与排队论
计算机科学与工程学院 顾小丰 Email:guxf@ 2018年11月23日星期五
习题1
病人以每小时3人的泊松流到达医院,假
设该医院只有一个医生服务,他的服务时间服 从负指数分布,并且平均服务一个顾客时间为 15分钟。
(a) 医生空闲时间的比例? (b) 有多少病人等待看医生? (c) 病人的平均等待时间? (d) 一个病人等待超过一个小时的概率?
3 4 ( 1 4 ) 3 1 e e 4 4
3
≈0.276 即病人等待超过一个小时的概率约为0.276。
2018/11/23
计算机科学与工程学院
顾小丰
18-4
习题2
一台计算机有 2 个终端,假定计算一个题目
排队论习题及答案

排队论习题及答案排队论习题及答案排队论是概率论和数学统计中的一个重要分支,研究的是随机事件的排队问题。
在现实生活中,我们经常会遇到排队的情况,如等候乘坐公交车、购物结账等。
排队论的研究可以帮助我们更好地理解和优化排队过程,提高效率和服务质量。
下面,我们将介绍几个排队论的习题及其解答。
习题一:某银行有两个窗口,顾客到达银行的时间服从平均到达率为λ的泊松分布,每个顾客在窗口办理业务的时间服从平均服务率为μ的指数分布。
求平均等待时间和平均排队长度。
解答:首先,我们可以根据泊松分布和指数分布的性质,得到顾客到达时间和服务时间之间的关系。
假设顾客到达时间服从泊松分布,到达率为λ,那么两个顾客到达时间之间的时间间隔服从参数为λ的指数分布。
同样,假设顾客的服务时间服从指数分布,服务率为μ,那么两个顾客的服务时间之间的时间间隔服从参数为μ的指数分布。
根据排队论的基本原理,平均等待时间等于平均排队长度除以到达率。
平均排队长度可以通过利用排队论的公式计算得到。
在本题中,根据M/M/2模型,可以得到平均排队长度的公式为:Lq = λ^2 / (2μ(μ - λ))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率。
接下来,我们可以计算平均等待时间。
根据排队论的公式,平均等待时间等于平均排队长度除以到达率。
所以,平均等待时间的公式为:Wq = Lq / λ综上所述,我们可以通过计算得到平均等待时间和平均排队长度。
习题二:某餐厅有4个服务台,每个服务台的服务时间服从平均服务率为μ的指数分布,顾客到达时间服从平均到达率为λ的泊松分布。
求平均等待时间和平均排队长度。
解答:在这个问题中,我们可以使用M/M/4模型来求解。
根据M/M/4模型,平均排队长度的公式为:Lq = (λ/μ)^4 * (1/(4! * (1 - ρ)))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率,ρ表示系统繁忙度。
平均等待时间的公式为:Wq = Lq / λ通过计算可以得到平均等待时间和平均排队长度。
《排队论》习题解答

故方案I比方案II好。
习题4
某系统利用2台计算机进行容错处理。 如果1台计算机正常工作时间服从负指数 分布,平均10天,而计算机损坏时由1名 工程师维修,维修1台计算机的时间是负 指数分布的,平均5天。求:2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
= 3 ,该系统按M/M/1/型处理。
4
a)
P{医生空闲}=P{系统空闲}=p0=1-= =0.25。
1 4
b) 平均等待对长 N q 2
(3/4)2 9
2.25
1 13/4 4
即平均有2.25个病人等待看医生
c) 平均等待时间 Wq 3/4 30.75
(1 ) 4(13/4) 4
jc
pj
c (1c)c!p0
(53)2 1 25
0.7576
(156)2! 11 33
平均积压的题目数
Nq
c (1c)2
pc
(56)(53)2 1 125 (156)22!11333.7879
习题3
考虑一个M/M/1/K排队系统,λ=10人/小 时,μ=30人/小时,K=2。管理者想改进服务 机构,提出了两个方案。方案I:增加等待空 间,K=3;方案II:提高服务率,μ=40人/小 时。假设在单位时间内单位服务成本5元和每 服务一个顾客收益8元不变得情况下,哪个方 案获得更大的收益?当λ=30人/小时,又有什 么结果?
解
由题设知,=1/10(台/天),=1/5(台/天), =1/2,该系统按M/M/c/m/m型处理,c=1,m =2。
P{2台计算机都正常运行}=p0
排队论举例

经满员 就离去? 就离去? Lq Wq = = 1.39 = 0.48h = 28.86 min 2.89 λe
(5) 在可能到来的顾客中,有百分之几不等待就离开? 在可能到来的顾客中,有百分之几不等待就离开?
1 ρ 1 0.75 N P7 = ρ = × 0.757 = 3.71% 1 ρ N +1 1 0.758
= 1 . 89 + 1/0.4 = 4.39 分钟
例 题 解 析 售票处的空闲的概率为0 售票处的空闲的概率为0.0748
平均等待时间 平均逗留时间 95( 队长 L s=3.95(人)
89分钟 分钟, W q=1.89分钟, 39分钟 W s=4.39分钟 70( L q=1.70(人)
例 题 解 析
Ls = m
λ ( + λ )(1 P0 ) Lq = Ls (1 P0 ) = m λ 1 Ls m Ws = = (1 P0 ) m (1 P0 ) λ 1 = Lq Wq = Ws (1 P0 )
某车间有5台机器 台机器, 例3 某车间有 台机器,每台机器的连续运转时间服从负指数 分布。平均连续运转时间15分钟 有一个修理工, 分钟, 分布。平均连续运转时间 分钟,有一个修理工,修理时间 服从负指数分布,平均每次12分钟 分钟。 服从负指数分布,平均每次 分钟。求: (1) 修理工空闲时间
(1 P0 )
解:(1) ∵ m=5,λ=1/15,μ=1/12,ρ=4/5=0.8 m! i P0 = ∑ ρ i = 0 ( m i )!
m 1
5! 5! 5! 5! 5! 2 3 4 5 = 1 + × 0.8 + × 0.8 + × 0.8 + × 0.8 + × 0.8 3! 2! 1! 0! 4!
(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
运筹学 第三版 胡运权 郭耀煌 黄色封皮 第九and十章排队论习题答案

9.1 有A,B,C,D,E,F 6项工作,关系分别如图9-38(a),(b),试画出网络图。
9.2 试画出下列各题的网络图(见表9-8,表9-9,表9-10),并为事项编号。
9.3 设有如图9-39,图9-40网络图,用图上计算法计算时间参数,并求出关键路线。
9.4 绘制表9-11,表9-12所示的网络图,并用表上计算法计算工作的各项时间参数、确定关键路线。
9.5 某工程资料如表9-13所示。
要求:(1)画出网络图。
(2)求出每件工作工时的期望值和方差。
(3)求出工程完工期的期望值和方差。
(4)计算工程期望完工期提前3天的概率和推迟5天的概率。
解:每件工作的期望工时和方差见表9-13的左部。
工程完工期的期望值为32个月,方差为5(1+1+1+1+1)。
工程期望完工期提前3天的概率为0.09,推迟5天的概率为0.987。
9.6 对图9-41所示网络,各项工作旁边的3个数分别为工作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完工时间的概率。
根据关键线路,再考虑到其他线路上的时差很多,可知最早完工时间应该等于关键线路上各个工作最早完工时间之和: 4+2+6+2+3=2=19 。
概率为0.005 。
9.7 某项工程各道工序时间及每天需要的人力资源如图9-42所示。
图中,箭线上的英文字母表示工序代号,括号内数值是该工序总时差,箭线下左边数为工序工时,括号内为该工序每天需要的人力数。
若人力资源限制每天只有15人,求此条件下工期最短的施工方案。
解:最短工期还是15天。
各个工作的开始时间如下图所示:9.8 已知下列网络图有关数据如表9-14,设间接费用为15元/天,求最低成本日程。
解:将①→②缩短两天,总工期为25天,直接费用7420元,间接费用375元,最小总费用为7795元。
网络图和关键线路如下:9.9 一项小修计划包括的工作如表9-15所示。
(1)正常计划工期与最小工期各是多少天?(2)日常经营费为50元/天,最佳工期应是多少天?列出每项工作的相应工时。
排队论习题解

排队论习题解10.1某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求(1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间;(8) 必须在店内消耗15分钟以上的概率.04440s q s q 60M /M /1//3 6.1031(1)p 1162111(2)p (1)(1)()223211(3)1p 1223(4)L 1()631312(5)L ()632111(6)()633112(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--⋅===--===--===--解:该系统为()模型,,;;;人;人;小时;小时;1515-(6-3)--(-)6020eee .μλω⨯===11(1)(2)(3)23211(4)(5)2211(6)(7)(8)3615.15-20答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人;在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内消耗分钟以上的概率为e10.22015(1)(2)(3)(4) 1.25M /M /1.603(/20λ==设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间;若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).1531(1)p 11443(2)L 3()4311(3)1()431(4)1.2511.25 3.23.230.2(/).4W W μρλμλμλμλλλ===-=-====--===--=>-≥>-=-Q ,人小时;人;小时;;,,人小时1(1)(2)3(3)41(4)0.2/.答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 10.3 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
服务一个顾客收益 8 元不变得情况下,哪个方
案获得更大的收益?当λ=30人/小时,又有什 么结果?
2014-11-8
计算机科学与工程学院
顾小丰
18-7
解
单位时间内的纯收入为
(1 ) K f 8 (1 p K ) 5 8 (1 ) 5 k 1 1
方案I(λ =10人/小时,μ =30人/小时,K=3):
c 1
5 25 9 1 1 0.0909 11 3 13 P{积压题目}= P{题目到达时需要等待} c (5 3)2 1 25 pj p0 0.7576 (1 c ) c! (1 5 6) 2! 11 33 j c 平均积压的题目数 c (5 6) (5 3)2 1 125 Nq p 3.7879 2 c 2 (1 c ) (1 5 6) 2! 11 33
故方案I比方案II好。
2014-11-8 计算机科学与工程学院 顾小丰 18-8
解( 续)
当λ=30人/小时: 方案I(λ=30人/小时,μ=30人/小时,K=3):
1 f 8(1 p K ) 5 8 30 (1 ) 5 30 30 31
方案II(λ=30人/小时,μ=40人/小时,K=2):
顾小丰
18-12
习题5
某电视台有 2 部发射机, 1 部发射 1 部备用。
如果 1 部正常工作时间服从负指数分布,平均 9 天,而调整维修1部机器的是负指数分布的,平
均3天。求无备用机而正常运转的概率和由于停
机无法发射的概率。
2014-11-8
计算机科学与工程学院
顾小丰
18-13
解
由题设知,=1/9(台/天), =1/3(台/天),
2014-11-8
解( 续)
平均发生故障的计算机数
N jpj p1 2p 2
j 0 m
(1 p0 p2 ) 2p2 (1 0.4 0.2) 2 0.2 0.8
系统中平均运行的计算机数为2-0.8=1.2(台)
2014-11-8
计算机科学与工程学院
随机过程与排队论
计算机科学与工程学院 顾小丰 Email:guxf@ 2014年11月8日星期六
习题1
病人以每小时3人的泊松流到达医院,假
设该医院只有一个医生服务,他的服务时间服 从负指数分布,并且平均服务一个顾客时间为 15分钟。
(a) 医生空闲时间的比例? (b) 有多少病人等待看医生? (c) 病人的平均等待时间? (d) 一个病人等待超过一个小时的概率?
114-11-8
计算机科学与工程学院
顾小丰
18-14
解( 续)
对M/M/1/1+1/1型系统
m i 1 m i m m! p 0 ic c! i c c c! i 0 i!
c 1 i K 1 i K K m
1 i ic ( m i K )! iK c
2014-11-8 计算机科学与工程学院 顾小丰 18-16
解
方案1 =9/5(个/分钟),=4(个/分钟), =9/20<1,该系统按M/M/1/∞型处理,平均等 待时间
Wq (1 )
9 0.20 (分钟) 9 44 4 (1 ) 20
9 20
2014-11-8
计算机科学与工程学院
顾小丰
18-17
解( 续)
方案2 =9/5(个/分钟),=2(个/分钟),=
1
9/10,该系统按M/M/c/∞型处理, c=2,c=9/20
< 1,
9 2 2 ( ) c 1 j c c 9 10 p 0 [ ]1 1 9 c! (c ) j 0 j! 10 2 ( 2 ) 10
2
11 29
1 c 1 9 11 891 pc p0 2 10 29 5800 c! 平均等待时间
c 891 891 Wq p 0.13(分钟) c 2 9 9 2 5800 7018 (1 c ) (1 ) 5 20
m 1
2! 1 i ( ) i 0 ( 2 i )! 2
2
1
2 0. 4 5
P{计算机损坏无法运行}=p2
2! 1 2! 1 ( ) 2 p0 ( ) 2 0.4 0.2 ( 2 2)! 2 ( 2 2)! 2
计算机科学与工程学院 顾小丰 18-11
2014-11-8
计算机科学与工程学院
顾小丰
18-10
解
由题设知,=1/10(台/天),=1/5(台/天),
= 1/2 ,该系统按 M/M/c/m/m 型处理, c = 1 , m
= 2。
P{2台计算机都正常运行}=p0
m! i i 0 ( m i )!
3 4 ( 1 4 ) 3 1 e e 4 4
3
≈0.276 即病人等待超过一个小时的概率约为0.276。
2014-11-8
计算机科学与工程学院
顾小丰
18-4
习题2
一台计算机有 2 个终端,假定计算一个题目
的时间服从负指数分布,平均20分钟。假定题目
是以泊松流到达,平均每小时到达 5 个。求积压
2014-11-8 计算机科学与工程学院 顾小丰 18-6
1
习题3
考虑一个 M/M/1/K排队系统, λ=10 人/小
时,μ=30人/小时,K=2。管理者想改进服务 机构,提出了两个方案。方案 I :增加等待空 间,K=3;方案II:提高服务率,μ=40人/小 时。假设在单位时间内单位服务成本 5 元和每
2014-11-8 计算机科学与工程学院 顾小丰 18-2
解
由题设知, =3(人/小时),=4(人/小时),
3 = ,该系统按M/M/1/型处理。 4
1 a) P{医生空闲}=P{系统空闲}=p0=1-= 4
2 (3 / 4)2 9 b) 平均等待对长 Nq 2.25 1 1 3 / 4 4
= 1/3 ,该系统按 M/M/c/m+k/m 型处理, c = 1 ,
m=1,k=1。 若无备用机器,即 K = 0 ,化为 M/M/c/m/m 型系统: P{无备用机而正常运转}=p0
m! i i 0 ( m i )!
m 1
1! 1 i ( ) i 0 (1 i )! 3
=0.25。
即平均有2.25个病人等待看医生
3/ 4 3 0.75 c) 平均等待时间 Wq (1 ) 4(1 3 / 4) 4
即病人的平均等待时间为 0.75 小时,即 45 分钟。
2014-11-8 计算机科学与工程学院 顾小丰 18-3
解( 续)
d) P{等待超过一个小时} =P{Wq>1} =1-P{Wq≤1} =1-Wq(1) =e-(1-)
(1 3 4)( 3 4) 2 f 8 30 (1 ) 5 40 31.35 3 1 ( 3 4)
故方案I比方案II好。
2014-11-8 计算机科学与工程学院 顾小丰 18-9
习题4
某系统利用2台计算机进行容错处理。
如果 1 台计算机正常工作时间服从负指数 分布,平均 10 天,而计算机损坏时由 1 名 工程师维修,维修 1 台计算机的时间是负 指数分布的,平均5 天。求:2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
题目的概率及平均积压的题目数。
2014-11-8
计算机科学与工程学院
顾小丰
18-5
解
由题设知, =5(题/小时),=3(题/小时),c=2,
该系统按M/M/c/型处理。 5 3 , c 5 6
j cc 1 21 (5 3)j 2 (5 3)2 1 p 0 [ ] [ ] c!(c ) j! 2! (2 5 3) j 0 j! j 0
11 1! 1 2 9 1 ( ) 0.0769 2 1 (1 2 1)! 1 1! 3 13 13
2014-11-8 计算机科学与工程学院 顾小丰 18-15
习题6
在一商店,顾客以泊松流到达收银台, 平均5分钟到达9个顾客;而服务员每5分钟能 服务 10 个顾客,服务时间服从指数分布。商 店经理希望将顾客等待时间不超过 1分钟。他 有两个方案: 1) 增加一名服务同样效率的服务员 ,即提高服 务率一倍。 2) 增加一新柜台。 试分析选择那种方案?
1
1
11 11 1 i 11 1! 11 1 1 i ( ) ( ) i 1 1! i 1 1 (1 i 1)! 3 i 0 i! 3
9 1 1 1 ( )2 0.6923 13 3 3
1
P{由于停机无法发射}=p2
(1 1 3)(1 3) 3 f 8 10 (1 ) 5 30 72 4 1 (1 3)
方案II(λ =10人/小时,μ =40人/小时,K=2):
(1 1 4)(1 4) 2 f 8 10 (1 ) 5 40 123.8 3 1 (1 4)
2014-11-8 计算机科学与工程学院 顾小丰 18-18
9 20