两个重要极限、无穷小比较

合集下载

无穷小(大)与极限运算(无穷小的比较)及两个重要极限

无穷小(大)与极限运算(无穷小的比较)及两个重要极限

第4、5讲 无穷小(大)与极限运算(无穷小的比较)及两个重要极限 一、计划学时:2节 二、内容三、要求 四、重点 五、难点六、教学过程:(一) 无穷小与无穷大 一、无穷小量定义1 在某一极限过程中,以0为极限的变量,称为该极限过程中的无穷小量,简称为无穷小。

无穷小量只是极限的一个特殊情况(A =0),因而可由极限的不等式定义得到无穷小的精确定义,共有七种,先以x →x 0为例给出无穷小的精确定义:定义2 设函数f (x )当|x |充分大时有定义。

若 ∀ M >0,∃ X >0,∍ |x |> X ⇒ ⎪f (x ) ⎪>M ,则称函数f (x )当x →∞时为无穷大量,记为)()(∞→∞→x x f 或∞=∞→)(lim x f x . 注 由无穷大定义知,无穷大不是数,再大的数也不是无穷大。

且若函数是无穷大,则函数必无极限。

但为描述函数的这种变化趋势的性态,也称函数的极限是无穷大。

如:x →0时,x 1是无穷大;x → -1时,2)1(1x +也是无穷大;x →∞时,1-ln x 是无穷大。

显然这些无穷大的变化趋势不相同,随着x →∞,的值非负且越来越大,而1-ln x 则取负值且绝对值越来越大,在数学上加以区别就是正无穷大+∞与负无穷大-∞。

将定义2中的“|x |> X ”相应地改为“x < X ”和“x >-X ”即可得到x →∞时正无穷大和负无穷大的定义。

共有21种无穷大的定义。

例2 证明∞=-→11lim 1x x . 证 ∀ M >0,要使⎪f (x ) ⎪=│11-x │>M ,只要 | x -1|< M 1,取 δ =M1,则当δ<-<|1|0x 时,⇒ │11-x │>M , ∴ ∞=-→11lim1x x . 注❶ 证明无穷大的思想方法完全同于极限证明部分。

❷ 从图形(图10—13)上看直线 x =1是曲线y = 的垂直渐近线。

1.5极限的运算法则、两个重要极限

1.5极限的运算法则、两个重要极限
x3 + ax + b x 3 + ax + (−8 − 2a ) ∴ lim = lim 2 x →2 x→2 x −4 x2 − 4 2 ( x − 2)( x + 2 x + 4 + a) 12 + a = lim = x→2 ( x − 2)( x + 2) 4 12 + a ∴ =4 4 ∴ a = 4, b = −16
又 Q x1 = 3 < 3, 假定 x k < 3, x k + 1 = 3 + x k < 3 + 3 < 3,
∴ lim x n 存在.
n→∞
2 lim x n + 1 = lim ( 3 + x n ), n→ ∞ n→∞
2 Q x n+1 = 3 + x n , x n+1 = 3 + x n ,
存在如果推论2limlimlimlimlimlim分母的极限都是零分子1后再求极限因子先约去不为零的无穷小分母的极限都是无穷大分子再求极限分出无穷小去除分子分母先用无穷小因子分出法小结
1.5 极限的运算法则、两个重要极限 极限的运算法则、
• 一、极限的运算法则 • 二、两个重要极限 • 三、无穷小量的比较
1 2 n 1+ 2 +L+ n lim ( 2 + 2 + L + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
1 n( n + 1) 1 1 1 2 = lim = lim (1 + ) = . 2 n→ ∞ n→ ∞ 2 n n 2
例7
3 1 lim( − ) 3 x →1 1 − x 1− x

两个重要极限、无穷小的比较

两个重要极限、无穷小的比较
例如,在解决物理问题时,我们需要用到无穷小的概念和性质来建立数学模型;在解决经济问题时, 我们也需要用到无穷小的概念和性质来建立数学模型。
04
两个重要极限和无穷小的关

两个重要极限与无穷小的关系
两个重要极限是:lim x->0+ (1/x) = +∞ 和 lim x->∞ (1/x) = 0。这两个 极限描述了函数在x趋向于0和无穷大 时的情况,与无穷小密切相关。
两个重要极限、无穷 小的比较
• 两个重要极限的介绍 • 无穷小的比较 • 无穷小在极限中的应用 • 两个重要极限和无穷小的关系 • 总结与展望
目录
01
两个重要极限的介绍
第一个重要极限
总结词
该极限描述了函数(1+1/x)^x在x趋向于无穷大时的行为,其结果为自然常数e。
详细描述
当x趋向于正无穷大时,函数(1+1/x)^x趋向于e,约等于2.71828。这个极限在 数学、物理和工程等领域有广泛应用,是微积分学中的一个基本概念。
05
总结与展望
总结两个重要极限和无穷小的性质和应用
两个重要极限
1
无穷小的比较
2
应用场景
3
对未来研究和学习的展望
结合计算机科学进行数值 计算和模拟
探索无穷小在数学和物理 中的应用
深入研究极限理论
01
03 02
感谢观看
THANKS
无穷小量比较
通过两个重要极限,我们 可以比较不同无穷小量的 阶,从而更好地理解极限 的概念。
微分学
在微分学中,两个重要极 限用于定义导数和积分, 是研究函数行为的关键工 具。
02
无穷小的比较
等价无穷小

高等数学(同济大学版) 课程讲解 1.6-1.7 两个重要极限 无穷小比较

高等数学(同济大学版) 课程讲解 1.6-1.7 两个重要极限 无穷小比较

课时授课计划课次序号:05一、课题:§1.6极限存在准则两个重要极限§1.7 无穷小的比较二、课型:新授课三、目的要求:1.了解极限的两个存在准则,并会利用它们求极限;2.掌握利用两个重要极限求极限的方法;3.掌握无穷小阶的概念以及利用等价无穷小替换求极限的方法.四、教学重点:利用两个重要极限以及等价无穷小替换求极限.教学难点:利用极限的存在准则求极限.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–6 1(1)(6),2(3);习题1–7 1,4(3)八、授课记录:九、授课效果分析:复习1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则. 有些函数的极限不能(或者难以)直接应用极限运算法则求得,往往需要先判定极限存在,再用其他方法求得.下面先介绍判定函数极限存在的两个准则,然后介绍两个重要极限.在此基础上,进一步介绍无穷小的比较与等价无穷小的性质.第六节 极限存在准则 两个重要极限一、极限存在准则1. 夹逼准则定理1 如果数列{}{}n n y x 、及{}n z 满足下列条件: (1)()...321,,=≤≤n z x y nn n , (2),,a z a y n n n n ==∞→∞→lim lim 那么数列{}n x 的极限存在,且a x n n =∞→lim 。

证 ,,a z a y n n →→ 使得,0,0,021>>∃>∀N N ε1,n n N y a ε>-<当时,恒有 2,n n N z a ε>-<当时,恒有},,max{21N N N =取上两式同时成立, ,εε+<<-a y a n 即 ,εε+<<-a z a n所以恒有时当,N n >,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n.lim a x n n =∴∞→例1 求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解11112222+<++++<+n n nn n nn n ,而 11limlim22=+=+∞→∞→n n nn n n n , 所以原式极限为1.定理1/ 设在点x 0的某去心邻域有12()()()F x f x F x ≤≤, 且0lim x x →F 1(x )= 0lim x x →F 2(x )=A ,则0lim ()x x f x →=A .证 由已知条件, ∃δ1>0,当x ∈0U (x 0,δ1)时, 12()()()F x f x F x ≤≤.又由0lim x x →F 1(x )=0lim x x →F 2(x )=A 知: ∀ε>0,∃δ2>0,当x ∈0U (x 0,δ2)时,|F 1(x )-A |<ε,∃δ3>0,当x ∈0U (x 0,δ3)时,|F 2(x )-A |<ε.取δ=min(δ1,δ2,δ3),则当x ∈0U (x 0,δ)时,得 A -ε<12()()()F x f x F x ≤≤<A +ε.由极限定义可知,0lim ()x x f x A →=.夹逼定理虽然只对x →x 0的情形作了叙述和证明,但是将x →x 0换成其他的极限过程,定理仍成立,证明亦相仿.例如,若∃X >0使x >X 时有12()()()F x f x F x ≤≤,且lim x →+∞F 1(x )=lim x →+∞F 2(x )=A , 则lim x →+∞f (x )=A.2. 单调有界准则定义 数列{}n x 的项若满足x 1≤x 2≤…≤x n ≤x n +1≤…,则称数列{}n x 为单调增加数列;若满足x 1≥x 2≥…≥x n ≥x n +1≥…,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.定理2 单调有界数列必有极限.该准则的证明涉及较多的基础理论,在此略去.例2 证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证 只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界.当a >b >0时,有 a n +1-b n +1=(a -b )(a n +a n -1b +…+ab n -1+b n )<(n +1)(a -b )a n , 即a n [(n +1)b -na ]<b n +1. (8)取a =1+1n ,b =1+11n +代入(8)式,得 11n n ⎛⎫+ ⎪⎝⎭<1111n n +⎛⎫+ ⎪+⎝⎭,即数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是单调增加的.取a =1+12n ,b =1代入(8)式,得 112nn ⎛⎫+ ⎪⎝⎭<2,从而2112nn ⎛⎫+ ⎪⎝⎭<4,n =1,2,…,又由于 211121n n -⎛⎫+ ⎪-⎝⎭<2112nn ⎛⎫+ ⎪⎝⎭<4,所以11nn ⎛⎫+ ⎪⎝⎭<4对一切n =1,2,…成立,即数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭有界,由收敛准则可知11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.我们将11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的极限记为e ,即 1l i m 1nn n →∞⎛⎫+ ⎪⎝⎭=e .二、两个重要极限利用夹逼定理,可得两个非常重要的极限.1. 第一个重要极限 0sin lim1x x x→=我们首先证明0sin lim1x x x+→=.因为x →0+,可设x ∈(0,2π).如图1-35所示,其中, EAB为单位圆弧,且OA =OB =1,∠AOB =x ,则OC =cos x ,AC =sin x ,DB =tan x ,又△AOC 的面积<扇形OAB 的面积<△DOB 的面积, 即 cos x sin x <x <tan x .因为x ∈(0,2π),则cos x >0,sin x >0,故上式可写为cos x <sin x x<1cos x.由0lim cos 1x x →=,01lim1cos x x→=,运用夹逼定理得 0sin lim 1x x x+→=. 注意到sin x x是偶函数,从而有0sin sin()sin limlim lim 1x x z x x z xxz--+→→→-===-.图1-35综上所述,得 0s i n l i m1x x x →=.例3 证明0tan lim1x x x→=.证 0tan sin 1limlimcos x x x x xxx→→=⋅sin 1limlim1cos x x x xx→→=⋅=.例4 求21cos limx xx→-.解 22220002(sin )sin1cos 1122lim lim lim 222x x x xx x xx x →→→⎛⎫ ⎪-=== ⎪⎪⎝⎭. 例5 求3tan sin lim x x xx →-.解 33tan sin sin (1cos )limlimcos x x x xx x xx x→→--=20s i n 1c o s 11l i m c o s 2x x x x x x→-=⋅⋅=.例6 求1lim sinx x x→∞.解 令u =1x,则当x →∞时,u →0,故01sin lim sinlim1x u u x x u→∞→==.从以上几例中可以看出,0sin lim1x x x→=中的变量可换为其他形式的变量,只要在极限过程中,该变量趋于零.即如果在某极限过程中有lim ()0u x =(()u x ≠0),则sin ()lim1()u x u x =.2.第二个重要极限 1lim (1)e x x x→∞+=前面我们已证明了1lim (1)e nn n→∞+=.对于任意正实数x ,总存在n ∈N ,使n ≤x <n +1,故有1+11n +<1+1x≤1+1n,及1111(1)(1)(1)1nxn n xn++<+<++.由于x →+∞时,有n →∞,而11(1)11lim (1)lime 1111n nn n n n n +→∞→∞+++==+++,1111lim (1)lim (1)(1)e n nn n nnn+→∞→∞+=++= ,由夹逼定理使得1lim (1)e xx x→+∞+=.下面证1lim (1)e xx x→-∞+=.令x =-(t +1),则x →-∞时,t →+∞,故(1)(1)11lim (1)lim (1)lim ()11xt t x t t t xt t -+-+→-∞→+∞→+∞+=+=++lim ()()e 11tt t t t t →+∞==++.综上所述,即有 1l i m (1)e xx x→∞+=.在上式中,令z =1x,则当x →∞时,z →0,这时上式变为1lim (1)e z z z →+=.为了方便地使用以上公式,常将它们记为下列形式:(1) 在某极限过程(x →x 0,x →∞,x →-∞,x →+∞)中,若lim ()u x =∞,则()1lim 1e ()u x u x ⎡⎤+=⎢⎥⎣⎦;(2) 在某极限过程中,若lim ()0u x =,则 []1()lim 1()e u x u x +=.例7 求lim (1)xx k x→∞+(k ≠0).解 l i m (1)l i m (1)xkxk x x k k xx →∞→∞+=+ l i m (1)ekx kkx k x →∞⎡⎤=+=⎢⎥⎣⎦. 例8 求1lim 2xx x x →∞+⎛⎫⎪+⎝⎭. 解 22111lim lim 1lim 1222xxx x x x x x x x +-→∞→∞→∞+--⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭22111lim 1lim 1e22x x x x x +--→∞→∞--⎛⎫⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭ .例9 求0ln(1)limx x x→+.解 1ln(1)limlim ln(1)ln e =1x x x x x x→→+=+=.例10 求0e 1limxx x→-.解 令u =e x -1,则x =ln (1+u ),当x →0时,u →0,故e 11limlimlim1ln(1)ln(1)xx u u u u xu u→→→-===++.例11 求ln ln limx ax a x a→--(a >0).解 令u =x -a ,则x =u +a ,当x →a 时,u →0,故ln ln ln()ln limlimx au x a u a ax au→→-+-=-011limln(1)au u u aaa→=+=.第七节 无穷小的比较同一极限过程中的无穷小量趋于零的速度并不一定相同,研究这个问题能得到一种求极限的方法,也有助于以后内容的学习.我们用两个无穷小量比值的极限来衡量这两个无穷小量趋于零的快慢速度.一、无穷小阶的概念定义 设(),()x x αβ是同一极限过程中的两个无穷小量:lim ()0,lim ()0x x αβ==.若()lim0()x x αβ=,则称()x α为()x β的高阶无穷小,记为α(x )= o (β(x )). 若()lim()x x αβ=∞,则称()x α为()x β的低阶无穷小,记为β(x )= o (α(x )). 若()lim ()x A x αβ=(A ≠0),则称()x α是()x β的同阶无穷小. 特别地,当A =1时,则称α(x )与β(x )是等价无穷小,记为α(x )~β(x ). 若在某极限过程中,α是βk的同阶无穷小量(k >0),则称α是β的k 阶无穷小. 例如:因为01cos lim0x xx →-=,所以当x →0时,1-cos x 是x 的高阶无穷小量,即1-cos x =o (x ) (x →0).因为21cos 1lim2x xx→-=,所以当x →0时,1-cos x 是x 2的同阶无穷小量,即1-cos x =O (x 2)(x →0).因为0sin lim1x x x→=,所以当x →0时,与sin x 与x 是等价无穷小量,即sin x x (x →0).二、等价无穷小的性质等价无穷小在极限计算中有重要作用.定理1 设α ,β为同一极限过程的无穷小量,则()o αββαα⇔=+ .定理2 设,,,ααββ''为同一极限过程的无穷小量,,ααββ'' ,若limαβ存在,则 limlimααββ'='.证 因为,ααββ'' ,则lim1αα'=,lim1ββ'=,由于αααββαββ'''=',又limαβ存在,所以 l i m l i m l i ml i m l i m αααβαβαβββ''==''. 定理2表明,在求极限的乘除运算中,无穷小量因子可用其等价无穷小量替代,这个结论可写为以下的推论.推论1 设,ααββ'',若()lim f x αβ存在或为无穷大量,则 ()()limlimf x f x ααββ'='.推论2 设αα' ,若lim ()f x α存在或为无穷大,则 lim ()lim ()f x f x αα'=. 在极限运算中,常用的等价无穷小量有下列几种:当x →0时,sin ,tan ,arcsin ,arctan ,x x x x x x x x ,1-cos x ~212x ,ex-1~x ,ln (1+x )~x,1~2x ,(1)a x +-1~αx (α∈R ).例1 当x →0时,22~2x x x -,232~x x x -, 2sin ~x x x +, c o s ~2x x .例2 求0tan 7limsin 5x x x→.解 因为x →0时,tan7x ~7x ,sin5x ~5x ,所以 00tan 777limlimsin 555x x x x xx→→==.例3 求0eelimsin sin axbxx ax bx→-- (a ≠b ).解 ()0e ee [e 1]limlimsin sin 2cossin22axbxbx a b xx x a ba b ax bxx x-→→--=+--()0e e1limlim cos2sin22bx a b xx x a b a b xx-→→-=+- 0()lim1()22x a b x a b x→-==- .例4 求223lim ln(1)x x x→∞+. 解 当x →∞时,2233ln(1)xx+,故222233lim ln(1)lim 3x x x x xx→∞→∞+== .例5 当x →0时,tan x -sin x 是x 的几阶无穷小量?解 23330tan sin tan (1cos )12limlimlim2x x x xx x xx x xxx →→→⋅--===, 所以,当x →0时,tan x -sin x 是x 的三阶无穷小量. 例6求21limsin 2x x x→+.解211~()~22x x x +,2sin 2~sin 2~2x x x x +,所以20112limlim sin 224x x xx xx →→==+. 课堂总结1.极限的存在准则:夹逼准则、单调有界准则;2.两个重要极限:1sin 1lim1,lim (1)e lim (1)e xx x x x x x xx→→∞→=+=+=或;3.无穷小的比较:高阶、低阶、同阶、等价、k 阶;4.等价无穷小替换求极限的方法.。

两个重要极限无穷小比较

两个重要极限无穷小比较

注1:无穷小量与极限过程分不开, 不能脱离极限过程 谈无穷小量,如sinx是x0时的无穷小量, 但 lim sin x 1.因此,它不是 x 时的无穷小 . 2 x
2
39
例1
(1) lim x2 0, x 0 时, x2 是一个无穷小量 .
x0
(2) limsin x 0, x 0 时, sin x 是一个无穷小量 .
( k为常数 )
3. lim f ( x ) g ( x ) lim f ( x ) lim g ( x )
f ( x ) lim f ( x ) 4. lim g ( x ) lim g ( x ) ( lim g ( x ) 0 )
5. lim[ f ( x )]n [lim f ( x )]n
( 即 k = 2 的情形)
29
对于 ( 1 )型 极限问题中常使用指数公式
(i)
a xy a

x y
a

kx

y k
(ii)
a a
x
xk k
a xk a k
1 化为 lim 1 e型极限 x x
x
30
例12
x 1 求 lim x x 1
y g ( x)
O
x0
x0 x0
x
8
例1
2 求 lim x . x 0 x
由取整函数的定义, 有 2 2 2 1 , x x x

故当 x 0 时, 当 x 0 时,
2 2 x x 2; x 2 2 x x 2, x
x

第3周:极限四则运算2、两个重要极限、无穷小阶的比较

第3周:极限四则运算2、两个重要极限、无穷小阶的比较

(3

cos
x)
注7:利用“无穷小与有界函数的乘积仍为无穷 小”这一性质求极限也是一种常用方法。
例:lim ( n
1 n2

2 n2

n 1 n2
n n2
)
注8:无穷多个无穷小相加,先求和,再求极限。
求极限的常用方法小结:
1.求初等函数在 x x0时的极限,如果把 x x0 代 入函数有意义,则函数值就是极限值。
(二) lim(1 1)x e
x
x
1.特点:⑴底数是数1 加 无穷小量;
⑵指数是底中无穷小的倒数。
公式推广:1.
f
lim
( x )
1

f
1 (x)

f
(
x)

e
1
f (x)
2. lim 1 f (x) e f ( x)0
(二) lim(1 1)x e
f (x)0 f (x)
f (x)
lim
1
f (x)0 sin f (x)
例:1.lim sin 2x
x0 x
例:2.lim tan 3x
x0 x
3.lim sin 5x x0 sin 3x
注:对含有三角函数的 0型极限,常用第一个重
要极限求解。
0
例:4.lim x3
sin(x 3) x2 7x 12
同理:sin 2x ~ 2x
sin x2 ~ x2
1.定理:设 ,1, , 1 是无穷小量,且 ~ 1,
~ 1 ,则有: (1) lim f (x) lim1 f (x),


a0 b0

两个重要极限

两个重要极限

两个重要极限、无穷小量的比较一、教学内容两个重要极限、无穷小量的比较; 二、教学目的1.掌握用两个重要极限求极限的方法 2.掌握利用等价无穷小求极限的方法; 三、教学重点 1.两个重要极限 四、教学难点 1.两个重要极限§4 两个重要极限一 夹逼定理定理1 如果函数)(x f ,)(x g 及)(x h 满足下列条件:(1)δ<-0x x (且 0x x ≠ ),(或 M x >)时,有)()()(x h x f x g ≤≤成立。

(2)A x h A x g x x x x x x ==∞→∞→→→)(lim ,)(lim )(0)(0,那么,)(lim )(0x f x x x ∞→→ 存在,且等于 A 。

2、两个重要极限 (1)limsin x xx→=01证明:记 f x x x()sin = , 由于 f x f x ()()-=, 我们不妨只究 1sin lim 00=+→xxx 这一情形加以证明,如下图所示:从几何图形上可清楚地看出:弦弧弦CD x BC x AB x =<=<=sin tan 于是有两边夹的不等式cos sin x x x<<1而 lim cos x x →=01 事实上, 当 x →+00,有:11122122121222←>=-⋅≥-⋅=-→cos (sin )()x x x x 据两边夹准则, 我们有: lim sin x x x→+=001而 f x x x()sin = 是偶函数, 故 lim sin x x x→-=001由函数的左右极限的性质知, lim sin x x x→=01单调有界准则 单调有界数列必有极限。

(2)lim()n nne →∞+=11 极限还可推广到更一般的情形:e xxx =+∞→)11(lim 原极限可变成一种新的形式 e z zz =+→1)1(lim例 求 xx x x 2)1222(lim ++∞→解:12111222++=++x x x ,令 121+=x z ,而0→⇔∞→z x ,且)11(21-⋅=z x例 求极限 xxx )11(lim 2-∞→ 解:令tx =-,x t →∞⇔→∞e ttt t t tx x t t t x 1)11(lim 1)11(1lim )11(lim )11(lim =+=+=-+=-∞→∞→∞→∞→x x x x x x x x x x x )11(lim )11(lim )11()11(lim -⋅+=-+=∞→∞→∞→原式11=⋅=ee四、无穷小与无穷大 1、无穷小 无穷小的定义:0>∀ε,0>∃δ(或0>X ),当δ<-<00x x (或X x >)时,有 ε<)(x f 成立,则称函数)(x f 为当0x x →(或∞→x )时的无穷小,记作)0)(lim (0)(lim 0==∞→→x f x f x x x 或定理 在自变量的同一变化过程 x x →0(或 x →∞ )中,具有极限的函数等于它的极限与一个无穷小之和;反之,如果函数可表示成常数与无穷小之和的形式, 则该常数就是函数的极限。

两个重要极限、无穷小的比较

两个重要极限、无穷小的比较

例如
0 4.无穷小的比较是 型极限的另外一种说法; 0 ()和 lim lim 5.有两个重要的符号 0 0
x2 2 2 2 (1) lim 0, 当 x 0 时 , 3 x x 是比 3 x x 低 高阶的无穷小; 即 x o (3 x ) ( x 0). x 0 3 x sin x (2) lim 1, 当 x 0x 时, sin 与 x 是等价无穷小. 即 sin x~ (x x0). x0 x 1 2 1 cos x 1 2 ( 3) lim 1 , 当 x 0 时, 1 cos x 与 x (3) , 0 时, 1 cos x 是 x 是同阶无穷小. 的二阶无穷小. 即 1 cos x ~ x ( x 0). 2 x 0 1x 2 2 2 x 2 19
形状一致.
1 sin sin 2 x x 1 如: lim 1 u 2 x (令 ) lim x0 2x x 1 x 即 lim x sin 1 1 sin(sin x ) sin( x 1) lim 1 lim 1 x + x x 1 x 0 x 1 sin x 0 可以解决含有三角函数的 型的极限问题. 0 2) 作用: 0 , 0 都适用
又 x1 3 3,假定 xk 3, x k 1 3 x k
x n 存在. xn 是有界的; lim n
3 3 3,
xn1 3 xn , x
2 n1
3 x n , lim x
n
2 n1
lim( 3 x n ),
(1 )
11

3 x 2x m n mn 补例.1.求 lim( ) . (a ) a 1 x 2 x 2x 1 2( x 2) 4 (1+ 3 ) 解: 原式 lim(1 ) x x x 原式 2 lim 2 2x 1 2( x 2 1 x lim(1 ) ) (1 )4 (1 x ) x x2 x 2 3 x *6 3 1 x 2 2 2 (1+ ) 2 lim[(1 ) ]e . x e . lim x x2 x x 2 2 *4 1 (1 ) x 1 x 2.求 lim x 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
arcsin x 例4. 求 lim . x 0 x t arcsin x lim t 解: 原式 t 0
x sin t
sin t
arcsin x lim 1 x 0 x
1 1 si nt lim t 0 t
0 经验:含有三角函数,反三角函数的 型的极限问题常用 0 第一个重要极限解决.
n
A 2 3 A, 解得 A 1 13 , A 1 13
1 13 lim x n . n 2
2 2
(舍去)
5
二、两个重要极限 sin x 1. lim 1 x 0 x 设单位圆O, 圆心角AOB x, 0 x , 2 作单位圆的切线 AC .
x0
x 0
6
0 sin 1)特点: (1) 型不定式, lim 1 0 0 (2) sin 后的变量 与分母的变量 (3) 极限值 1.
注意:
sin ( x ) sin u sin x lim 1 1 lim 1 lim u 0 ( x ) 0 ( x ) x 0 u x
形状一致.
1 sin sin 2 x x 1 如: lim 1 u 2 x (令 ) lim x0 2x x 1 x 即 lim x sin 1 1 sin(sin x ) sin( x 1) lim 1 lim 1 x + x x 1 x 0 x 1 sin x 0 可以解决含有三角函数的 型的极限问题. 0 2) 作用: 0 , 0 都适用
第五节 极限存在准则
一、极限存在准则 夹逼准则 ;单调有界准则 二、两个重要极限
两个重要极限
sin x lim 1 x 0 x
1 x lim(1 ) e x x
1
一、极限存在准则 1. 夹逼准则
(1) yn xn zn ( n 1, 2, 准则І :
(2) lim yn lim zn a
9
1 x 2. lim(1 ) e x x
证明略
我们从三方面来认识这个极限: lim(1 1 ) e 1) 极限形式是 1
3
又 lim
n n2 n
li m
1,
2、单调有界准则 准则Ⅱ 单调有界数列必有极限.
lim xn a ( M )
n
a
lim xn b ( m )
n
b
证明略
4
例2 证明数列 xn
式 )的极限存在 .
3 3 3 ( n重根
证 显然 xn1 xn , xn 是单调递增的 ;
又 x1 3 3,假定 xk 3, x k 1 3 x k
x n 存在. xn 是有界的; lim n
3 3 3,
xn1 3 xn , x
2 n1
3 x n , lim x
n
2 n1
lim( 3 x n ),
7
sin ( x ) tan x lim 1 例1.求 lim =1 ( x ) 0 ( x ) x 0 x sin x 1 sin x 1 tan x lim 1. ) lim 解:lim lim( x 0 x 0 x x 0 cos x x cos x x 0 x sin kx ( k 0). 例2. 求 lim x 0 x sin kx k sin kx sin kx k. lim k lim kx 解:lim kx 0 0 kx x 0 kx x 2 x 2 x 1 cos x 1 cos x 2sin , 1 cos x 2cos 例3. 求 lim . 2 2 x 0 x2 x 2 x 2 x sin sin 2sin 1 1 1 2 2 2 2 解: lim lim( ) . 原式 lim 2 x 0 x0 x 2 x 0 x 2 2 x 2 ( ) 2 2
C
B
o
x
sinx BD, x AB, tan x AC , SAOB<S扇形AOB<SAOC
D
A
1 1 1 1 sin x< 1 x< 1 tan x sin x x tan x , 2 2 2 sin x 即 cos x 1, 上式对于 x 0也成立. 2 x sin x 即当 0 x 时, 有 cos x 1, sin x 2 x lim 1. lim cos x 1, 又 lim1 1, x 0 x
n n
)
lim xn a
n
准则I :x U 0 ( x0 )(或 x M )时,有
(1) g( x ) f ( x ) h( x ),
(2) lim g ( x ) A,
x x0 ( x ) x x0 ( x )Βιβλιοθήκη lim h( x ) A,
sin x ? 0 思考 : lim x x
sin x 1 lim ? x 0 x
sin x lim ? x x
sin x t x sin t sin( t ) lim 1 lim lim t 0 x x t 0 t t
x x0 ( x )
lim f ( x ) A
2.单调有界准则 准则Ⅱ :单调有界数列必有极限.
2
( 例1 求 lim n

1 n 1
2

1
1 n 2
2

1
1 n n
2
).
n n2 1 ,
n n2 n
n

n 1
2
n

1
n n
2

1 1 n n 1 lim lim 1, 由两边夹法则得 n 2 n 1 n 1 1 2 n 1 1 1 lim( 2 ) 1. 2 2 n n 1 n 2 n n
相关文档
最新文档