精品 初三数学讲义 -实际问题与二次函数—知识讲解(基础)
初三数学知识梳理讲义

初三数学讲义第一讲将军饮马之线段和最小值问题领跑一线考点定位知识点一轴对称性质成轴对称的两个图形全等,其对应边相等,对应角相等.知识点二“将军饮马”解决线段最值问题的实质是利用轴对称性质“化折为直”,转化为两点之间线段最短或者点到直线垂线段最短.将军饮马基础模型如图,在直线异侧两个点A 和B ,在直线上求一点P ,使得PA+PB 最短.做法:1.找出定点和动点2.找河(即动点出现两次点所在直线或线段)3.做对称(做定点的对称点)4.连线计算典例分析例1(2016 某一中滨河分校模拟)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC思路点拨:因为AB=AC得△ABC为等腰三角形,根据等腰三角形“三线合一”,AD为底边中线,也为BC边上的高线,易得点B、点C关于AD对称.若求BP+EP最小,即求PE+PC最小值,再根据三角形三边关系得PE+PC最小值,即求线段CE的长度.解析:如图,连接PC,△AB=AC,AD为中线,△点B、点C关于AD对称△PB=PC,△PB+PE=PC+PE,在△CPE中,PC+PE≥CE△PE+PC最小值为CE长度,△PB+PE最小值为CE长度,故选B.例2(2015陕西)如图,在每一个四边形ABCD中,均有AD△BC,CD△BC,△ABC=60°,AD=8,BC=12.如图,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值.思路点拨:作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′,BC′=BN′+C′N′,△BN+NC′≥BC′,则可得到△BNC周长的最小值,即BN+NC′+BC=BC′+BC.解析:过点A作AE△BC于E,如图所示:△AD△BC,AE△BC,△ABC=60°,△CE=AD=8,△BE=4,AE=BE•3=43△CC′=2CD=2AE=83△BC=12,△BC22421′BC CC+=△△BNC周长的最小值为421+12.实战演练1.如图,菱形ABCD中,AB=2,△BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.2.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.3.如图,菱形ABCD的边长为6,M、N分别是边BC、CD上的点,且MC=2MB,ND=2NC,点P是对角线BD上一点,则PM+PN的最小值是________.4.如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,求PD + PE的最小值.5.如图,△ABC中,AB=AC=13,BC=10,AD是△BAC的角平分线,E是AD上的动点,F 是AB边上的动点,则BE+EF的最小值为.6.如图,正方形ABCD的边长是2,△DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.7.如图,在锐角△ABC中,AB=√2,△BAC=45°,△BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.8.如图,直线l外有一点D,D到l的距离为3,让腰长为2的等腰直角三角板ABC的腰AB 在直线l上滑动,则AD+DC的最小值为.9.如图,在菱形ABCD中,AB=10,∠ABC=60°,E为BC上一动点, P为BD上一动点,则PE+PC最小值为_______.10.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD 上的动点,则AQ+QP的最小值是_______.第二讲 折叠求长度问题知识点一折叠是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 解题步骤知识点二1. 找对应边、对应角2. 设未知数(一般设所求边或其对应相等边)3. 利用勾股定理列方程4. 计算典例分析例1.如图,在矩形纸片ABCD 中,AB =6,AD =8,点E 在BC 边上,将△DCE 沿DE 折叠,使点C 恰好落在对角线BD 上的点F 处,求DE 的长.解:△四边形ABCD 为矩形,△AB =CD ,AD =BC ,△DCB =90°,△AB =CD =6,AD =BC =8,在Rt△BCD 中,BD =222286AC AB +=+=10,由于折叠△DFE =△DCB =90°,DF =DC =6,EF =EC ,△△BFE =180°−△DFE =90°,设EC =x ,则BE =8−x ,在Rt△BEF 中,由勾股定理得:BE2=EF 2+BF 2,△(8−x )2=x 2+42,解得:x =3,即:EC =3,在Rt△DEC 中,由勾股定理得:DE 2=CE 2+DC 2,△DE =5363DC CE 2222=+=+例2.如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上.若AB =6,BC =9,求BF 的长.解:△将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上△BC'=21AB =3,CF =C'F 在Rt△BC'F 中,C'F 2=BF 2+C'B 2,△CF 2=(9−CF )2+9△CF =5△BF =41.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF △AC 于点F ,连接EC ,AF =3,△EFC 的周长为12,则EC 的长为( )A .B .3C .5D .62.(2017秋•长岭县月考)如图,正方形ABCD 中,AC 是对角线,AE 平分△BAC ,EF △AC 于点F ,求证:BE =CF .3.(2016春•潮南区期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()5.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若△A=60°,AD=6,AB=12,则AE的长为.6.如图,在Rt△ABC中,△ACB=90°,且AC=8,BC=6.点P是边AC上一动点,以直线BP为轴把△ABP折叠,使得点A落在图中点A′处,当△AA′C是直角三角形时,则线段CP 的长是.7.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与DC相交于G点,且OE=OD.(1)求证:AP=DG;(2)求AP的长度.8.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.10.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,EC交AD于F.(1)求证:△AFE△△CFD;(2)若AB=3,BC=6,求图中阴影部分的面积.第三讲菱形知识点:菱形定义:有一组临边相等的平行四边形叫做菱形。
NO.1教育讲义

NO.1教育学科教师辅导讲义学员编号: 年 级:初三 课时数:3课时 学员姓名: 辅导科目:数学 学科教师: 课 题 期末考前压轴题模拟练习授课日期及时段 2013-01-11教学目标通过考前压轴题模拟练习,找到做压轴题的感觉,高效率做对最后几道压轴题重点、难点 通过模拟练习对各种相似题型进行总结,找出规律,熟练方法和思路教学内容1. 已知二次函数y =ax 2+bx +c 的图象与反比例函数xa y 4+=的图象交于点A (a , -3),与y 轴交于点B .(1)试确定反比例函数的解析式;(2)若∠ABO =135︒, 试确定二次函数的解析式;(3)在(2)的条件下,将二次函数y =ax 2+ bx + c 的图象先沿x 轴翻折, 再向右平移到 与反比例函数x a y 4+=的图象交于点P (x 0, 6) . 当x 0 ≤x ≤3时, 求平移后的二次函数y 的取值范围. 1.(1)∵A (a , -3)在4a y x+=的图象上,∴43a a +=-.解得1a =-. ……………………………………1分 ∴反比例函数的解析式为3y x=. ……………………………………2分(2)过A 作AC ⊥y 轴于C .∵ A (-1, -3),∴ AC =1,OC =3. ∵ ∠ABO =135︒, ∴ ∠ABC =45︒. 可得 BC =AC =1. ∴ OB =2.∴ B (0, -2). …………………3分由抛物线2y ax bx c =++与y 轴交于B ,得c = -2. ∵ a = -1,∴22y x bx =-+-.Oxy-1-111234-2-3-4-4-3-2432C BA234-2-3-4-4-3-243211-1-1y xO∵ 抛物线过A (-1,-3), ∴ 123b ---=-. ∴ b =0.∴ 二次函数的解析式为22y x =--. ……………………………………4分 (3)将22y x =--的图象沿x 轴翻折,得到二次函数解析式为22y x =+. ……………5分设将22y x =+的图象向右平移后的二次函数解析式为2()2y x m =-+ (m >0). ∵ 点P (x 0, 6)在函数3y x=上,∴036.x =∴012x =.∴2()2y x m =-+的图象过点1(,6)2P .∴62)21(2=+-m .可得1253,22m m ==-(不合题意,舍去).∴ 平移后的二次函数解析式为25()22y x =-+. …………………………6分∵ a =1>0, ∴ 当2521≤≤x 时,62≤≤y ; 当325≤<x 时,492≤<y .∴ 当132x ≤≤时,26y ≤≤. ……………………………………7分∴ 平移后的二次函数y 的取值范围为 26y ≤≤. 2.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点坐标及顶点坐标(可以用含k 的代数式表示); (2)若记该抛物线的顶点坐标为(,)P m n ,直接写出n 的最小值; (3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求这个新函数的解析式(不要求写自变量的取值范围).2.解:(1)令0y =,则 2(2)20kx k x +--=. 整理,得 (1)(2)0x kx +-=. 解得 11x =-,22x k=.∴ 该抛物线与x 轴的交点坐标为(1,0)-,2(,0)k. ………………………2分Oxy -1-111234-2-3-4-4-3-2432ABC抛物线2(2)2y kx k x =+--的顶点坐标为2244(,)24k k k kk-++-. ………3分(2)|n |的最小值为 2 . …………………………………………………………4分 (3)平移后抛物线的顶点坐标为214(,)4k k k k+-.…………………………………5分由1,14x kk y ⎧=⎪⎪⎨⎪=--⎪⎩可得 114y x =--.∴ 所求新函数的解析式为114y x=--. …………………………………7分3. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转α角, 旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为 ;(2)当CBD ∆是等边三角形时,旋转角α的度数是 (α为锐角时);(3)如图②,设EF 与BC 交于点G ,当EG =CG 时,求点G 的坐标.(4) 如图③,当旋转角90α= 时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.图① 图② 图③3. 解:(1)E (4,132) ………………………………………1分(2)︒60 …………………………………………………………………2分 (3)设x CG =,则x EG =,x FG -=6, 在Rt △FGC 中,∵222CGFGCF =+,∴222)6(4x x =-+,解得 313=x ,即313=CG .∴G (4,313). …………………………………………………………4分(4)设以点C 为顶点的抛物线的解析式为2)4(-=x a y . 把A (0,6)代入得,2)40(6-=a . 解得, 83=a .x y αF E DBO AC xy αF ED BOAC∴此抛物线的解析式为2)4(83-=x y .……………………………………6分∵矩形EDCF 的对称中心为对角线FD 、CE 的交点H , ∴由题意可知H 的坐标为(7,2). 当7=x 时,2827)47(832≠=-=y ,∴点H 不在此抛物线上. ………………………………………………7分 4.已知:关于x 的方程(1)(1)20a x a x --++=.(1) 当a 取何值时,方程2(1)(1)20a x a x --++=有两个不相等的实数根; (2) 当整数a 取何值时,方程(1)(1)20a x a x --++=的根都是正整数. 4.解:(1)∵ 方程2(1)(1)20a x a x --++=有两个不相等的实数根,∴ ⎩⎨⎧>∆≠-.0,01a即 []221,(1)4(1)2(3)0.a a a a ≠⎧⎪⎨∆=----⋅=->⎪⎩ ∴ 1≠a 且3≠a . ………2分(2)① 当10a -=时,即1a =时,原方程变为220x -+=.方程的解为 1x =; …………3分② 当10a -≠时,原方程为一元二次方程2(1)(1)20a x a x --++= .[]2224(1)4(1)2(3)0b ac a a a ∆=-=-+--=-≥ .(1)(3)2(1)a a x a -±-=-1221,.1x x a ==- ………4分∵ 方程(1)(1)20a x a x --++=都是正整数根.∴ 只需21a -为正整数.∴ 当11a -=时,即2a =时,22x =;当12a -=时,即3a =时,21x =; ………6分∴ a 取1,2,3时,方程(1)(1)20a x a x --++=的根都是正整数. ………7分5.(本小题满分6分)如图,在△ABC 中,∠ACB =90°,O 为BC 边上一点, 以O 为圆心,OB 为半径作半圆与AB 边和BC 边分别 交于点D 、点E ,连接CD ,且CD =CA ,BD =56, tan ∠ADC =2.(1)求证:CD 是半圆O 的切线; (2)求半圆O 的直径; (3)求AD 的长.(1)证明:如图,连接OD ,∵OD =OB ,∴∠1=∠2. ∵CA =CD ,∴∠ADC =∠A . 在△ABC 中,∵∠ACB =90°,∴∠A +∠1=90°. ∴∠ADC +∠2=90°. ∴∠CDO =90°. ∵OD 为半圆O 的半径,∴CD 为半圆O 的切线. ………………………………………………………………2分 (2)解:如图,连接DE .∵BE 为半圆O 的直径, ∴∠EDB =90°. ∴∠1+∠3=90°. ∴∠ADC =∠3. ∴23tan ==∠EDBD .∴53=ED . ∴1522=+=DEBDEB . ………………………………………………4分(3)解:作CF ⊥AD 于点F ,∴AF =DF .设x DF =,∵2tan =∠ADC ,∴CF =2x . ∵∠1+∠FCB =90°, ∴ADC FCB ∠=∠.∴2tan =∠FCB . ∴FB =4x . ∴BD =3 x =56. 解得52=x .∴A D =2D F =2x =54. ……………………………………………………………6分 6. 如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.6.(1)证明:∵AD C D =,D E A C ⊥,∴DE 垂直平分AC ,∴A F C F =,∠DFA =∠DFC =90°,∠DAF =∠DCF .E DOBCA321FDO EABCD P ·∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°, ∴∠DCF =∠DAF =∠B .∴△DCF ∽△ABC . …………………………………………………………1分 ∴CD CF ABCB=,即CD AF ABCB=.∴AB ·AF =CB ·CD . ………………………2分(2)解:①∵AB =15,BC =9,∠ACB =90°, ∴222215912AC AB BC=-=-=,∴6C F AF ==.……………………3分∴1963272y x x =+⨯=+()(0x >). ………………………………………4分②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小.由(1)知,点C 关于直线DE 的对称点是点A ,∴PB +PC =PB +P A ,故只要求PB +P A 最小.显然当P 、A 、B 三点共线时PB +P A 最小.此时DP =DE ,PB +P A =AB . …………………………5分 由(1),ADF FAE ∠=∠,90D FA AC B ∠=∠=︒,得△DAF ∽△ABC . EF ∥BC ,得11522AE BE AB ===,EF =92.∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15. ∴AD =10.Rt △ADF 中,AD =10,AF =6, ∴DF =8.∴925822D E D F FE =+=+=. …………………………………………6分∴当252x =时,△PBC 的周长最小,此时1292y =. ………………………………………7分7. 已知:如图,A B 是⊙O 的直径,点E 是O A 上任意一点,过点E 作弦C D AB ⊥,点F是 BC上任一点,连结A F 交C E 于H ,连结AC 、CF 、BD 、OD . (1)求证:AC H AFC △∽△;(2)猜想:A H A F ⋅与AE AB ⋅的数量关系,并证明你的猜想;(3)试探究:当点E 位于何处时,△A E C 的面积与△B O D 的面积之比为1:2?并加以证明.7.(1)证明:∵ 弦CD ⊥直径AB 于点E , ∴ A D A C =.∴ ∠ACD =∠AFC . 又 ∵ ∠CAH =∠F AC ,∴ △ACH ∽△AFC (两角对应相等的两个三角形相似).--------------1分(2)猜想:AH ·AF =AE ·AB .证明:连结FB .∵ AB 为直径,∴ ∠AFB =90°. 又∵ AB ⊥CD 于点E ,∴ ∠AEH =90°.∴AEH AFB ∠=∠. ∵ ∠EAH =∠F AB ,∴ △AHE ∽△ABF . ∴AFAB AEAH =.∴ AH ·AF =AE ·AB .------------------------------------------------- -----3分 (3)答:当点E 位于O A 的中点(或12A E O A =)时,△A E C 的面积与△B O D 的面积之比为1:2 .证明:设 △A E C 的面积为1S ,△B O D 的面积为2S . ∵ 弦CD ⊥直径AB 于点E , ∴ 1S =CE AE ⋅21,2S =DE BO ⋅21.∵E 位于O A 的中点,∴2O A A E =.又A B 是⊙O 的直径,∴ 2O B O A A E ==.∴12121222AE C ES C ES D E AE D E ⨯⋅==⨯⋅. 又 由垂径定理知 CE =ED ,∴ 1212S S =.∴ 当点E 位于O A 的中点时,△A E C 的面积与△B O D 的面积之比为1:2 . -------------------------------------------------7分8.已知:在A B C △中,A B A C =,点D 为B C 边的中点,点F 在A B 上,连结D F 并延长到点E ,使BAE BD F ∠=∠,点M 在线段D F 上,且ABE D BM ∠=∠. (1)如图1,当45A B C ∠=°时,求证:2AE M D =;(2)如图2,当60A B C ∠=°时,则线段A E M D 、之间的数量关系为 ;(3)在(2)的条件下,延长BM 到P ,使M P B M =, 连接C P ,若727AB AE ==,,求tan EAB ∠的值. 8.(1)证明:如图1连结A D,.cos 2............................................................1...............................................245AB AC BD C D AD BC BD AB ABC AB BD AE AB D MD BABC BAE BD M ABE D BMABE D BM ==∴⊥∴=∠=∴==∠=∠=∠∠=∠∴ 即分分又°△∽△22...........................................................3AE M D ∴=分(2)2AE M D =…………………………………4分 (3)解:如图2连结A D E P 、 ,2==∠=∠∴∆∆DBAB BMBE BMD AEB DBM ABE ∽∴BM EB 2= 又B M M P = ,EB BP ∴= .∵ABE D BM ∠=∠︒=∠=∠∴60ABC EBPB E P∴△为等边三角形………………………………..5分︒=∠⊥∴90,BMD BP EM︒=∠=∠∴90BMD AEB在R t A E B △中,27AE = , 7AB =, 分分7 (2)3tan 6 (212)2=∠∴=-=∴EAB AEAB BEtan ∠EAB 的值为329..在Rt △ABC 中,∠ACB =90 ,AC =BC ,CD ⊥AB 于点D ,点E 为AC 边上一点,联结BE 交CD 于点F ,过点E 作EG ⊥BE 交AB 于点G ,(1) 如图1,当点E 为AC 中点时,线段EF 与EG 的数量关系是 ; (2) 如图2,当12C E A E=,探究线段EF 与EG 的数量关系并且证明;(3) 如图3,当nAECE 1=,线段EF 与EG 的数量关系是 .图1 图2 图310..已知函数232+-=x mxy (m 是常数).(1)求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点;(2)若一次函数1+=x y 的图象与该函数的图象恰好只有一个交点,求m 的值 及这个交点的坐标. 解:(1)当x=0时,2y =.∴不论m 为何值,该函数图象过y 轴上的一个定点(0,2) ………………2分 (2)①当0m =时,函数232+-=x mx y 为一次函数23+-=x y ,令:123+=+-x x ,解得14x =,……………………………………………3分∴交点为(15,44);………………………………………………………………4分 ②当0m ≠时,函数232+-=x mx y 为二次函数.若一次函数1+=x y 的图象与函数232+-=x mx y 的图象只有一个交点,令2321mx x x -+=+,即2410mx x -+=,…………………………………5分 由△=0,得4m =, ………………………………………………………………6分 此时交点为(13,22).………………………………………………………………7分 11.如图, 已知抛物线经过坐标原点O 及)0,32(-A ,其顶点为B (m ,3),C 是AB 中点,点E 是直线OC 上的一个动点 (点E 与点O 不重合),点D 在y 轴上, 且EO =ED . (1)求此抛物线及直线OC 的解析式;(2)当点E 运动到抛物线上时, 求BD 的长; (3)连接AD , 当点E 运动到何处时,△AED 的面积为433,请直接写出此时E 点的坐标.(1)∵ 抛物线过原点和A (23,0-),∴ 抛物线对称轴为3-=x . ∴ B (3,3-).设抛物线的解析式为2+33y a x =+().∵ 抛物线经过(0, 0),∴ 0=3a +3. ∴ a =-1.∴3)3(2++-=x y =.322x x --…………………………………………1分 ∵ C 为AB 的中点, A (23,0-)、B (3,3-), 可得 C (333,22-) .可得直线OC 的解析式为x y 33-=. ………………………………………2分(2)连结OB . 依题意点E 为抛物线x x y 322--=与直线x y 33-=的交点(点E 与点O 不重合).由23323,y x y x x ⎧=-⎪⎨⎪=--⎩, CBA yxO解得53,35,3x y ⎧=-⎪⎪⎨⎪=⎪⎩ 或0,0.x y =⎧⎨=⎩(不合题意,舍).∴ E (535,33-) …………………………3分过E 作EF ⊥y 轴于F , 可得OF =53,∵ OE =DE ,EF ⊥y 轴, ∴ OF=DF . ∴ DO =2OF =103.∴ D (0,10)3. ……………………………………………………………4分∴ BD =2210233733-+-=()(). ………………………………………5分(3)E 点的坐标为(333,22-)或(31,22-). ……………………………………8分说明:此问少一种结果扣1分.12.在平面直角坐标系xOy 中,抛物线235y m x x m =+++与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C (0 , 4),D 为OC 的中点.(1)求m 的值;(2)抛物线的对称轴与 x 轴交于点E ,在直线AD 上是否存在点F ,使得以点A 、B 、F 为顶点的三角形与AD E ∆ 相似?若存在,请求出点F 的坐标,若不存在,请说明理由; (3)在抛物线的对称轴上是否存在点G ,使△GBC 中BC 边上的高为522?若存在,求出点G 的坐标;若不存在,请说明理由.(1)抛物线m m mxy +++=532与y 轴交于点C (0 , 4), ∴ 5 4.m +=∴ 1.m =- ………1分 (2)抛物线的解析式为 234y x x =-++.可求抛物线与x 轴的交点A (-1,0),B (4,0). 可求点E 的坐标3(,0)2.由图知,点F 在x 轴下方的直线AD 上时,ABF ∆是钝角三角形,不可能与AD E ∆相似,所以点F 一定在x 轴上方.此时ABF ∆与AD E ∆有一个公共角,两个三角形相似存在两种情况:FCD E B AyxOFxyO A BC EDE DABC xyOF① 当A B A E A FA D=时,由于E 为AB 的中点,此时D 为AF 的中点,可求 F 点坐标为(1,4). ………3分 ② 当A B A D A FA E=时,555,=5522AF AF=解得.过F 点作FH ⊥x 轴,垂足为H .可求 F 的坐标为352(,). ……………4分(3)(4)(3) 在抛物线的对称轴上存在符合题意的点G .由题意,可知△OBC 为等腰直角三角形,直线BC 为 4.y x =-+ 可求与直线BC 平行且的距离为522的直线为 y =-x +9或y =-x -1.∴ 点G 在直线y =-x +9或y =-x -1上. ∵ 抛物线的对称轴是直线23=x ,∴ ⎪⎩⎪⎨⎧+-==.9,23x y x 解得..215,23⎪⎪⎩⎪⎪⎨⎧==y x 或⎪⎩⎪⎨⎧--==.1,23x y x 解得⎪⎪⎩⎪⎪⎨⎧-==.25,23y x ∴ 点G 的坐标为31535(,)-2222或(,). ………8分 13. 已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,(,3)C n -(其中n >0),点B在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.(1)结合以上信息及图2填空:图2中的m = ; (2)求B ,C 两点的坐标及图2中OF 的长;(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时, ① 求此抛物线W 的解析式; ② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.(1)图2中的m =13.……………………………………………………………1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中的点P 运动到与点B 重合,∴ 1131222BO C C S O B y O B ∆=⨯⨯=⨯⨯=.解得 8O B =,点B 的坐标为(8,0). ……………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -, ∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过 点O 与AB 平行的直线l 上,∴ 点C 是直线3y =-与直线l 的交点,且ABM C O N ∠=∠. 又∵ 3A C y y ==,即AM= CN , 可得△ABM ≌△CON .∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分 ∵ 图12中 22223635AB AMBM=+=+=.∴ 图11中35DE =,221335D O F x D E =+=+. …………………4分(3)①当点P 恰为经过O ,B 两点的抛物线W 的顶点时,作PG ⊥OB 于点G .(如图13)∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B , ∴ 由抛物线的对称性可知P 点的横坐标为4,即OG=BG=4.由3tan 6AM PG ABM BMBG∠===可得PG=2.∴ 点P 的坐标为(4,2)P .………………5分 设抛物线W 的解析式为(8)y ax x =-(a ≠0). ∵ 抛物线过点(4,2)P ,∴ 4(48)2a -=. 解得 18a =-.∴ 抛物线W 的解析式为218y x x =-+.…………………………………6分②如图14.i )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的边时,∵ 点Q 在直线1y =-上方的抛物线W 上, 点P 为抛物线W 的顶点,结合抛物线的对称性可知点Q 只有一种情况,点Q 与原点重合,其坐标为1(0,0)Q .……………………………………………………………………7分ii )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的对角线时,可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-. ∴ 2Q 点的横坐标是方程212118x x x -+=-的解.将该方程整理得28880x x +-=. 解得4226x =-±.图13由点Q 在直线1y =-上方的抛物线W 上,结合图14可知2Q 点的横坐标 为2264-.∴ 点2Q 的坐标是2(2264,42619)Q --. …………………………8分 综上所述,符合题意的点Q 的坐标是1(0,0)Q ,2(2264,42619)Q --.14.已知抛物线y =ax 2+bx +6与x 轴交于A 、B 两点(点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,且OB=21OC ,tan ∠ACO =61,顶点为D .(1)求点A 的坐标.(2)求直线CD 与x 轴的交点E 的坐标.(3)在此抛物线上是否存在一点F ,使得以点A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(4)若点M (2,y )是此抛物线上一点,点N 是直线AM 上方的抛物线上一动点,当点N 运动到什么位置时,四边形ABMN 的面积S 最大? 请求出此时S 的最大值和点N 的坐标.(5)点P 为此抛物线对称轴上一动点,若以点P 为圆心的圆与(4)中的直线AM 及x 轴同时相切,则此时点P的坐标为 .备用图① 备用图②(朝阳期末)(1)根据题意,得C (0,6).在Rt △AOC 中,61tan =∠ACO ,OC =6,∴OA =1. ∴A (-1,0). ………………………………………………………1分(2)∵OC OB 21=,∴OB =3. ∴B (3,0).由题意,得 ⎩⎨⎧=++=+-.0639,06b a b a 解得 ⎩⎨⎧=-=.4,2b a∴6422++-=x x y .∴D (1,8). ………………………………………………………………2分 可求得直线CD 的解析式为62+=x y .图14xy8765-65-5-54321-1-2-3-4-1-2-3-41234Oxy8765-65-5-54321-1-2-3-4-1-2-3-41234O∴E (-3,0). …………………………………………………………………3分 (3)假设存在以点A 、C 、F 、E 为顶点的平行四边形,则F 1(2,6),F 2(-2,6),F 3(-4,-6).经验证,只有点(2,6)在抛物线6422++-=x x y 上,∴F (2,6). ……………………………………………………………………4分 (4)如图,作NQ ∥y 轴交AM 于点Q ,设N (m , 6422++-m m ).当x =2时,y =6,∴M (2,6). 可求得直线AM 的解析式为22+=x y . ∴Q (m ,2m +2).∴NQ =422)22(64222++-=+-++-m m m m m . ∵AMN ABM S S S ∆∆+=,其中126421=⨯⨯=∆ABM S ,∴当AMN S ∆最大时,S 值最大. ∵MNQ ANQ AMN S S S ∆∆∆+=)422(3212++-⨯⨯=m m ,6332++-=m m , 427)21(32+--=m .∴当21=m 时,AMN S ∆的最大值为427.∴S 的最大值为475.…………………………………………………………6分当21=m 时,2156422=++-m m .∴N (21,215). …………………………………………………………7分(5)P 1(1,15-),P 2(1,15--). …………………………………8分说明:写成P 1(1,154+),P 2(1,154--)不扣分.15.如图,矩形'''O BC A 是矩形ABCO 绕点B 顺时针旋转得到的.其中点C O ,'在x 轴负半轴上,线段OA 在y 轴正半轴上,B 点的坐标为()3,1-.(1)如果二次函数()02≠++=a c bx ax y 的图象经过'O O 、两点且图象顶点M 的纵坐标为1-.求这个二次函数的解析式;(2)求边''A O 所在直线的解析式;(3)在(1)中求出的二次函数图象上是否存在点P ,使得D CO M PO S S ''3∆∆=,若存在,请求出点P 的坐标,若不存在,请说明理由.(1)联结'BO 、BO ,由旋转知BO BO ='………………………………………1分OC BC ⊥∴OC C O =' ∵ ()3,1-B∴()()110,2'---,,M O ∴⎪⎩⎪⎨⎧=+--=+-=02410c b a c b a c ∴⎪⎩⎪⎨⎧===021c b a∴这个二次函数的解析式为: x x y 22+= ………………………………2分 (2)设()D y D A O BC ,1''-交于点与 显然CD O Rt D BA Rt ''∆≅∆ 在CD O Rt '∆中 ()2231y y -=+,解得34=y ………………………………………3分∴⎪⎭⎫ ⎝⎛-341,D∴可求边O’A ’所在直线的解析式为: 3834+=x y …………………………4分(3)由⎪⎭⎫ ⎝⎛-341,D ,易求323412121''=⨯⨯=⋅=∆CD C O S C DO若存在点P ,使得D CO M PO S S ''3∆∆=,则有23''==∆∆D CO M PO S S …………………………………………………5分 方法一(代数法):由()()110,2'---,,M O ,可得2:'--=x y l M O 设()x x x P 2,2+过P 作直线x PQ ⊥轴,交直线M O '于Q , 则()2,--x x Q ,''PQO PQM M PO S S S ∆∆∆-=()[]()[]()232121222122++=---⋅---+=x xx x x23'==∆DCOS即:4232=++x x ,解得2173±-=x∴⎪⎪⎭⎫⎝⎛-+-217721731,P , ⎪⎪⎭⎫⎝⎛+-2177217-32,P .……………7分 方法二(几何法):∵()()110,2'---,,M O ∴ 1'==CM C O 在CM O Rt '∆中, 可求︒=∠=452''M CO M O ,设M PO '∆的边M O '上的高为h 则2221=⋅⋅h ,求得22=h过点'O 作M O '的垂线交y 轴于点E ,则︒=∠45'O EO 且2'=OO 在O EO Rt '∆中,2245cos 2'=︒=E O ,2=OE∴()2,0E ,2'=∆MEOS过点E 作M O '的平行线l 交抛物线于两点21,P P 则直线l 的解析式为2+-=x y解方程组⎩⎨⎧+=+-=x x y x y 222 得⎪⎪⎩⎪⎪⎨⎧-=+-=21772173y x 或⎪⎪⎩⎪⎪⎨⎧+=--=21772173y x ∴二次函数图象上存在点P ,使得D CO M PO S S ''3∆∆=, 且点⎪⎪⎭⎫⎝⎛-+-217721731,P ,⎪⎪⎭⎫⎝⎛+-2177217-32,P ………………7分。
2020年中考一轮复习 二次函数的图像与性质 讲义

二次函数的图像与性质中考一轮复习教学目标1.理解懂得二次函数的图像的开口、对称轴、顶点坐标与a、b、c的关系;会根据图像推断a、b、c及相关式子的符号;2.能借助二次函数的图像进行推理探究;3.学会进行数形转化,能从图形中抽象出数量关系,建立方程模型和不等式模型求解.4.经典考题【例1】根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图象与x轴( ) A.只有一个交点B.有两个交点,且它们分别在x轴两侧C.有两个交点,且它们均在y轴同侧D.无交点x…-1 0 1 2 …y…-174--274-…【解法指导】本题要先画出啊、二次函数的图像。
根据对称性知(1,-2)是抛物线的顶点,且其开口向上。
因而二次函数的图像与x轴有两个交点,且它们分别在y轴两侧。
本题应选B。
【变式题组】1.2x…-2 -1 0 1 2 …y…162--4122--2122-…根据表格上的信息回答问题:该二次函数y=ax+bx+c在x=3时,y= 。
2.已知二次函数2x…-1 0 1 2 3 4 …y…10 5 2 1 2 5 …(1)(2)当x为何值时,y有最小值,最小值是多少?(3)若两点A(m,y1),B(m+1,y2)都在该函数的图像上,试比较y1与y2的大小.【例2】函数y=ax+1与y=ax2+bx+c(0a≠)的图像可能是()【解法指导】本题应用逐一排除法.解:两函数图像与y轴交于同一点(0,1),A不正确;B中直线中a>0,抛物线中a<0,不正确;D中直线的a<0,抛物线中a>0,不正确。
故应选C。
【变式题组】3.已知0a≠,在同一直角坐标系中,函数y=ax与y=ax2的图像有可能是()4.在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且0m≠)的图像可能是()5.二次函数y=ax2+bx+c的图像如图所示,则一次函数y=-bx-4ac+b2与反比例函数a b cyx++=在同一坐标系内的图像大致为()【例3】已知二次函数y=ax2+bx+c的图像与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方。
初三数学讲义第16讲:反比例函数的图像与性质_教案

【解析】D
在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,延长AB交x轴于P′,当点P与点P′重合时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大;把A( ,y1),B(2,y2)代入反比例函数y= 得:y1=2,y2= ,即可得A( ,2),B(2, );设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式为y=﹣x+ ,所以当y=0时,x= ,即P( ,0),故答案选D.
A.( ,0)B.( ,0)C.( ,0)D.( ,0)
4.如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线 上,边AD与 轴相交于点E, =10,则k的值是( )
(A) 16 (B) 9 (C) 8 (D) 12
5.双曲线y1、y2在第一象限的图象如图, ,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是
6.如图,双曲线y= 交矩形OABC的边分别于点D、E,若BD=2AD,且四边形ODBE的面积为8,则k=
答案与解析
1.【答案】D.
【解析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论:
∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称.
∵A(2,1),∴B(-2,-1).
∵知反比例函数 的图像经过P(-1,2),
∴k=-1×2=-2<0.
∴函数的图象位于第二,四象限.
故选D.
【总结与反思】本题较为简单,使用反比例函数的图像分布规律即可得出答案.
类型二反比例函数的增减性
一元二次方程复习课件

初三数学第21章一元二次方程复习讲义一、一元二次方程的定义方程中只含有一个未知数,•并且未知数的最高次数是2,•这样的整式的方程叫做一元二次方程,通常可写成如下的一般形式:ax 2+bx+c=0(a ≠0)其中二次项系数是a ,一次项系数是b ,常数项是c .例1.求方程2x 2+3=22x-4的二次项系数,一次项系数及常数项的积.例2.若关于x 的方程(m+3)27m x -+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.例3.若关于x 的方程(k 2-4)x 2+1k -x+5=0是一元二次方程,求k 的取值范围.例4.若α是方程x 2-5x+1=0的一个根,求α2+21α的值.1.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( ) A .4 B .0或2 C .1 D .1-2.一个三角形的两边长为3和6,第三边的边长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A.11 B.11或13 C.13 D.11和13 3.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.(部分参考数据:2321024=,2522704=,2482304=)二、一元二次方程的一般解法 基本方法有:(1)配方法; (2)公式法; (3) 因式分解法。
联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次. ②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.例1、用三种方法解下列一元二次方程1、x 2 +8x+12=02、3x 23x-6=0用适当的方法解一元二次方程1、x2-2x-2=02、2x23、x(2x-3)=(3x+2)(2x-3)4、4x2-4x+1=x2+6x+95、(x-1)2-2(x2-1)=0注意:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法三、判定一元二次方程的根的情况?一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac,1.△=b2-4ac>0↔一元二次方程有两个不相等的实根;2.△=b2-4ac=0↔一元二次方程有两个相等的实数;3.△=b2-4ac<0↔一元二次方程没有实根.例1、不解方程判断下列方程根的情况1、x2-(2、x2-2kx+(2k-1)=0例2、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a 的值为例3、已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为例5、已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根求4)2(222-+-baab的值例6、(2006.广东)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.四、一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x 1x2x1 + x 2= -bax 1 x2=ca例1.方程的x2-2x-1=0的两个实数根分别为x1,x2, 则(x1 -1)(x 2-1)=例2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.五、一元二次方程与实际问题的应用步骤:①审②设③列④解⑤答应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例1:某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份平均每月增长的百分率是多少?例2:某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。
暑期新初三数学讲义第一讲二次根式及一元二次方程

第一讲 二次根式及一元二次方程【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2⎩⎨⎧<-≥)0()0(a a a a 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算6.分母有理化(1)定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:a =b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a +与a -,,(3)分母有理化的方法与步骤:(1)先将分子、分母化成最简二次根式;(2)将分子、分母都乘以分母的有理化因式,使分母中不含根式;(3)最后结果必须化成最简二次根式或有理式。
7、一元二次方程:(1)定义:在一个等式中,只含有一个未知数,且未知数的最高项的次数的和是2次的整式方程叫做一元二次方程。
人教版 初三数学讲义(共27页)

第二十二章 二次函数测试1 二次函数y =ax 2及其图象学习要求1.熟练掌握二次函数的有关概念.2.熟练掌握二次函数y =ax 2的性质和图象.课堂学习检测一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -= a =______,b =______,c =______. (2)y =πx 2a =______,b =______,c =______.(3)105212-+=x x ya =______,b =______,c =______. (4)2316x y --= a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( ); (3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ).9.已知函数,232x y -=不画图象,回答下列各题.(1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______.10.画出y =-2x 2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值.综合、运用、诊断一、填空题11.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大. 函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______. 函数______有最小值为______.12.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.13.已知函数y =(m 2-3m )122--m m x的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴方程为______,开口______. 14.已知函数y =m 222+-m m x+(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 15.已知函数y =m mm x+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题16.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x (x +1) B .xy =1C .y =2x 2-2(x +1)2D .132+=x y17.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③ 18.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 19.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线y=-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点三、解答题20.函数y =(m -3)232--m mx 为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.拓展、探究、思考21.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.22.已知抛物线y =ax 2经过点A (2,1).(1)求这个函数的解析式;(2)写出抛物线上点A 关于y 轴的对称点B 的坐标; (3)求△OAB 的面积;(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.测试2 二次函数y =a (x -h )2+k 及其图象学习要求掌握并灵活应用二次函数y =ax 2+k ,y =a (x -h )2,y =a (x -h )2+k 的性质及图象.课堂学习检测一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______. (2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m xm y 是二次函数,则m =______.3.抛物线y =2x 2的顶点,坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______. 4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A .y =2x 2与y =3x 2 B .2212+=x y 与2122+=x yC .y =2x 2与y =x 2+2D .y =x 2与y =x 2-2 9.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( )A .2)5(31-=x yB .5312--=x yC .2)5(31+-=x yD .2)5(31+=x y三、解答题10.在同一坐标系中画出函数=+=221,321y x y 3212-x 和2321x y =的图象,并说明y 1,y 2的图象与函数221x y =的图象的关系.11.在同一坐标系中,画出函数y 1=2x 2,y 2=2(x -2)2与y 3=2(x +2)2的图象,并说明y 2,y 3的图象与y 1=2x 2的图象的关系.综合、运用、诊断一、填空题12.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 1314.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y 的最______值是______;当x ______时,y 随x 增大而增大.15.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为______.二、选择题16.一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( ) A .y =-2(x -1)2+3 B .y =-2(x +1)2+3 C .y =-(2x +1)2+3 D .y =-(2x -1)2+317.要得到y =-2(x +2)2-3的图象,需将抛物线y =-2x 2作如下平移( )A .向右平移2个单位,再向上平移3个单位B .向右平移2个单位,再向下平移3个单位C .向左平移2个单位,再向上平移3个单位D .向左平移2个单位,再向下平移3个单位三、解答题18.将下列函数配成y =a (x -h )2+k 的形式,并求顶点坐标、对称轴及最值.(1)y =x 2+6x +10 (2)y =-2x 2-5x +7(3)y =3x 2+2x (4)y =-3x 2+6x -2(5)y =100-5x 2 (6)y =(x -2)(2x +1)拓展、探究、思考19.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.测试3 二次函数y =ax 2+bx +c 及其图象学习要求掌握并灵活应用二次函数y =ax 2+bx +c 的性质及其图象.课堂学习检测一、填空题1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x xy +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4) 10.抛物线x x y --=221的顶点坐标是( ) A .)21,1(- B .)21,1(- C .)1,21(-D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )三、解答题12.已知二次函数y =2x 2+4x -6.(1)将其化成y =a (x -h )2+k 的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象;(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.综合、运用、诊断一、填空题13.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线的顶点是原点,则____________;(2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y轴上,则____________;(4)若抛物线的顶点在x轴上,则____________.14.抛物线y=ax2+bx必过______点.15.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m=______,这个函数的解析式是______.16.若抛物线y=x2-4x+c的顶点在x轴上,则c的值是______.17.若二次函数y=ax2+4x+a的最大值是3,则a=______.18.函数y=x2-4x+3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位.19.抛物线y=ax2+bx(a>0,b>0)的图象经过第______象限.二、选择题20.函数y=x2+mx-2(m<0)的图象是( )21.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么( )A.a<0,b>0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<022.已知二次函数y=ax2+bx+c的图象如右图所示,则( )A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>023.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,∆=0B .b <0,c >0,∆=0C .b <0,c <0,∆=0D .b >0,c >0,∆>024.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <325.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )26.函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )三、解答题27.已知抛物线y =x 2-3kx +2k +4.(1)k 为何值时,抛物线关于y 轴对称; (2)k 为何值时,抛物线经过原点.28.画出23212++-=x x y 的图象,并求:(1)顶点坐标与对称轴方程;(2)x 取何值时,y 随x 增大而减小? x 取何值时,y 随x 增大而增大?(3)当x 为何值时,函数有最大值或最小值,其值是多少? (4)x 取何值时,y >0,y <0,y =0? (5)当y 取何值时,-2≤x ≤2?拓展、探究、思考29.已知函数y 1=ax 2+bx +c (a ≠0)和y 2=mx +n 的图象交于(-2,-5)点和(1,4)点,并且y 1=ax 2+bx +c 的图象与y 轴交于点(0,3).(1)求函数y 1和y 2的解析式,并画出函数示意图; (2)x 为何值时,①y 1>y 2;②y 1=y 2;③y 1<y 2.30.如图是二次函数y =ax 2+bx +c 的图象的一部分;图象过点A (-3,0),对称轴为x=-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是________________.(填序号)测试4 二次函数y =ax 2+bx +c 解析式的确定学习要求能根据条件运用适当的方法确定二次函数解析式.一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式________ __________;③双根式__________________________(b 2-4ac ≥0).2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23(则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程____________;(2)函数解析式____________;(3)当x ______时,y 随x 增大而减小;(4)由图象回答:当y >0时,x 的取值范围______;当y =0时,x =______;当y <0时,x 的取值范围______.5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y=x2+bx+c的图象过点A(-2,5),且当x=2时,y=-3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数的图象上.9.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.10.抛物线过(-1,-1)点,它的对称轴是直线x+2=0,且在x轴上截得线段的长度为,22求抛物线的解析式.综合、运用、诊断11.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点,求抛物线的解析式.12.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式.13.二次函数y=ax2+bx+c的最大值等于-3a,且它的图象经过(-1,-2),(1,6)两点,求二次函数的解析式.14.已知函数y1=ax2+bx+c,它的顶点坐标为(-3,-2),y1与y2=2x+m交于点(1,6),求y1,y2的函数解析式.拓展、探究、思考15.如图,抛物线y=ax2+bx+c与x轴的交点为A,B(B在A左侧),与y轴的交点为C,OA=OC.下列关系式中,正确的是( )A .ac +1=bB .ab +1=cC .bc +1=aD .c ba =+1 16.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直,若小正方形边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间的函数关系的大致图象是( )17.如图,在直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转90°得到△COD .(1)求C ,D 两点的坐标;(2)求经过C ,D ,B 三点的抛物线的解析式;(3)设(2)中抛物线的顶点为P ,AB 的中点为M (2,1),试判断△PMB 是钝角三角形,直角三角形还是锐角三角形,并说明理由.测试5 用函数观点看一元二次方程学习要求1.理解二次函数与一元二次方程的关系,掌握抛物线与x 轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题.2.掌握并运用二次函数y =a (x -x 1)(x -x 2)解题.课堂学习检测一、填空题1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0;若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________.2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______.3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______.4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______.5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______.6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限.二、选择题7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( )A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于28.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,∆>0 B.a>0,∆<0C.a<0,∆>0 D.a<0,∆<0三、解答题11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.12.对称轴平行于y 轴的抛物线过A (2,8),B (0,-4),且在x 轴上截得的线段长为3,求此函数的解析式.综合、运用、诊断一、填空题13.已知直线y =5x +k 与抛物线y =x 2+3x +5交点的横坐标为1,则k =______,交点坐标为______.14.当m =______时,函数y =2x 2+3mx +2m 的最小值为⋅98 二、选择题15.直线y =4x +1与抛物线y =x 2+2x +k 有唯一交点,则k 是( )A .0B .1C .2D .-116.二次函数y =ax 2+bx +c ,若ac <0,则其图象与x 轴( )A .有两个交点B .有一个交点C .没有交点D .可能有一个交点17.y =x 2+kx +1与y =x 2-x -k 的图象相交,若有一个交点在x 轴上,则k 值为( )A .0B .-1C .2D .41 18.已知二次函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )A .无实根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根19.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),若a >0,则函数解析式为( )A .a x b a y +=B .a x ba y +-=22 C .a x ba y --=22 D .a x b a y -=22 20.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,m ,n 的大小关系是( )A .m <a <b <nB .a <m <n <bC .a <m <b <nD .m <a <n <b三、解答题21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如(1)(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.①223,02121<<<<-x x ②252,21121<<-<<-x x ③252,02121<<<<-x x ④223,21121<<-<<-x x 22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23.当m 取何值时,抛物线y =x 2与直线y =x +m(1)有公共点;(2)没有公共点.拓展、探究、思考24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.测试6 实际问题与二次函数学习要求灵活地应用二次函数的概念解决实际问题.课堂学习检测1.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.测试7 综合测试一、填空题1.若函数y=x2-mx+m-2的图象经过(3,6)点,则m=______.2.函数y=2x-x2的图象开口向______,对称轴方程是______.3.抛物线y=x2-4x-5的顶点坐标是______.4.函数y=2x2-8x+1,当x=______时,y的最______值等于______.5.抛物线y=-x2+3x-2在y轴上的截距是______,与x轴的交点坐标是____________.6.把y=2x2-6x+4配方成y=a(x-h)2+k的形式是_______________.7.已知二次函数y=ax2+bx+c的图象如图所示.(1)对称轴方程为____________;(2)函数解析式为____________;(3)当x______时,y随x的增大而减小;(4)当y>0时,x的取值范围是______.8.已知二次函数y=x2-(m-4)x+2m-3.(1)当m=______时,图象顶点在x轴上;(2)当m=______时,图象顶点在y轴上;(3)当m=______时,图象过原点.二、选择题9.将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为( ) A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-1 10.抛物线y=x2-mx+m-2与x轴交点的情况是( )A.无交点B.一个交点C.两个交点D.无法确定11.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和4 12.已知函数y=a(x+2)和y=a(x2+1),那么它们在同一坐标系内图象的示意图是( )13.y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a-b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个14.若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+-B .-1C .251--D .1三、解答题15.已知函数y 1=ax 2+bx +c ,其中a <0,b >0,c >0,问:(1)抛物线的开口方向?(2)抛物线与y 轴的交点在x 轴上方还是下方?(3)抛物线的对称轴在y 轴的左侧还是右侧?(4)抛物线与x 轴是否有交点?如果有,写出交点坐标;(5)画出示意图.16.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.18.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.19.如图,从O 点射出炮弹落地点为D ,弹道轨迹是抛物线,若击中目标C 点,在A测C 的仰角∠BAC =45°,在B 测C 的仰角∠ABC =30°,AB 相距,km )31( ,OA =2km ,AD =2km .(1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.20.二次函数y 1=ax 2-2bx +c 和y =(a +1)²x 2-2(b +2)x +c +3在同一坐标系中的图象如图所示,若OB =OA ,BC =DC ,且点B ,C 的横坐标分别为1,3,求这两个函数的解析式.答案与提示第二十二章 二次函数测试11.y =ax 2+bx +c (a ≠0),x ,常数,a . 2.抛物线,y 轴,(0,0). 3.(0,0),y 轴,上,下. 4.减小,增大,x =0,小. 5.增大,减小,x =0,大. 6.(1).0,3,1- (2)π,0,0, (3),10,5,21- (4).6,0,31--7.越小,越大.8.(1)D ,(2)C ,(3)A ,(4)B ,(5)F ,(6)E .9.(1)向下,(2)y 轴.(3)(0,0).(4)减小.(5)=0(6)=0,大,0. 10.略.11.(1)②、③;①、④.(2)③;②.(3)①、④;③.(4)①,0;④,0. 12.(1)a ≠0,(2)a =0且b ≠0,(3)a =c =0且b ≠0. 13.y =4x 2;(0,0);x =0;向上. 14.(1)2;y =2x 2;抛物线;一、二,(2)0;y =-2x ;直线;二、四. 15.-2或1;1;-2.16.C 、B 、A . 17.C . 18.D . 19.C . 20.(1)m =4,y =x 2;(2)m =-1,y =-4x 2.21.(1)a =-1,b =-1;(2));2,2().2,2(---C B(3)S △OBC =22. 22.(1)241x y =; (2)B (-2,1);(3)S △OAB =2; (4)设C 点的坐标为),41,(2m m 则.221|141|4212⨯=-⨯⨯m 则得6±=m 或.2±=m∴C 点的坐标为).21,2(),21,2(),23,6(),23,6(-- 测试21.(1)(0,0),y 轴;(2)(0,c ),y 轴; (3)(m ,0),直线x =m .2.m =-13.(0,0),y 轴,x ≤0,x >0,0,小,0. 4.向下,相同,(0,0),y 轴.5.(0,3),y 轴,x ≤0,0,小,3,上,3.6.向上,(2,0),直线x =2,x ≥2,2,小,0,右,2. 7.C . 8.D . 9.C . 10.图略,y 1,y 2的图象是221x y =的图象分别向上和向下平移3个单位.11.图略,y 2,y 3的图象是把y 1的图象分别向右和向左平移2个单位. 12.(h ,k ),直线x =h ;h ,k ,x ≤h . 131415..52312)3(3122+-=+-=x x x y16.B . 17.D .18.(1)y =(x +3)2+1,顶点(-3,1),直线x =-3,最小值为1.(2),881)45(22++-=x y 顶点),881,45(-直线,45-=x 最大值为⋅881(3),31)31(32-+=x y 顶点),31,31(--直线,31-=x 最小值为⋅-31(4)y =-3(x -1)2+1,顶点(1,1),直线x =1,最大值为1. (5)y =-5x 2+100,顶点(0,100),直线x =0,最大值为100.(6),825)43(22--=x y 顶点),825,43(-直线,43=x 最小值为⋅-82519.(1);5,1,21-===k h a (2)开口向上,直线x =1,顶点坐标(1,-5).测试31.).44,2(,44)2(222a b ac ab a b ac a b x a y ---++= ⋅-<-≥--=-=abx a b x a b ac a b x a b x 2,2,44,2,222.,43),849,43(-小,⋅>≤---43,43),5,0(),0,1()0,25(,849x x 、3.(-1,4),(-3,0)、(1,0),(0,3).4.y =(x -2)2+1,低,(2,1). 5.-2,-7,x ≥-2,.72±-=x 6.±2. 7.右,3,上,4.8.D . 9.B. 10.B . 11.C .12.(1)y =2(x +1)2-8;(2)开口向上,直线x =-1,顶点(-1,-8);(3)与x 轴交点(-3,0)(1,0),与y 轴交点(0,-6); (4)图略;(5)将抛物线y =x 2向左平移1个单位,向下平移8个单位;得到y =2x 2+4x -6的图象; (6)x ≤-1;(7)当x <-3或x >1时,y >0;当x =-3或x =1时,y =0; 当-3<x <1时,y <0; (8)x =-1时,y 最小值=-8; (9)-8≤y <10; (10)S △=12.13.(1)b =c =0;(2)c =0;(3)b =0;(4)b 2-4ac =0. 14.原. 15.2,y =2x 2-3x . 16.4. 17.-1. 18.1. 19.一、二、三.20.C. 21.B . 22.D . 23.B . 24.C . 25.B . 26.C . 27.(1)k =0;(2)k =-2. 28.,2)1(212+--=x y ①顶点(1,2),直线x =1; ②x ≥1,x <1; ③x =1,y 最大=2;④-1<x <3时,y >0;x <-1或x >3时y <0;x =-1或x =3时,y =0;.225≤≤-y ⑤ 29.(1)y 1=-x 2+2x +3,y 2=3x +1.(2)①当-2<x <1时,y 1>y 2.②当x =-2或x =1时,y 1=y 2. ③当x <-2或x >1时y 1<y 2. 30.①,④.测试41.①y =ax 2+bx +c (a ≠0); ②y =a (x -h )2+k (a ≠0); ③y =a (x -x 1)(x -x 2)(a ≠0). 2..2± 3.).0,211(4.(1)x =-1; (2)y =x 2+2x -3;(3)x ≤-1; (4)x <-3或x >1,x =-3或x =1,-3<x <1.5..421212+--=x x y 6..438342+--=x x y7.y =-2(x -2)2+4即y =-2x 2+8x -4.8.y =x 2-2x -3,点B (0,3)不在图象上. 9..1212x x y +-= 10.y =x 2+4x +2. 11.y =-x 2+4x . 12.y =x 2-2x -3. 13.y =-2x 2+4x +4.14..42,25321221+=++=x y x x y15.A . 16.B .17.解:(1)由旋转的性质可知:OC =OA =2,OD =OB =4.∴C 、D 两点的坐标分别是C (-2,0),D (0,4). (2)设所求抛物线的解析式为y =ax 2+bx +c .根据题意,得⎪⎩⎪⎨⎧==+-=++.4,024,0416c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧==-=.4,1,21c b a∴所求抛物线的解析式为.4212++-=x x y (3)如图,△PMB 是钝角三角形,图中,PH 是抛物线=++-=4212x x y 29)1(212+--x 的对称轴.M 、P 点的坐标分别为).29,1(),1,2(P M ∴点M 在PH 的右侧,∵∠PHB =90°,∠1>90°,∠PMB >∠1, ∴∠PMB >90°,则△PMB 为钝角三角形.测试5 1.≥0,y =a (x -x 1)(x -x 2). 2.⋅493.31->m 且m ≠0. 4.0. 5.(-1,0). 6.一.7.D . 8.B . 9.C . 10.D . 11.y =2x 2+2x -4.12.45665182-+-=x x y 或y =2x 2+2x -4.13.4,(1,9). 14.⋅9815.C . 16.A . 17.C . 18.D . 19.B . 20.A . 21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<21m 23.由x 2-x -m =0(1)当∆=1+4m ≥0,即41-≥m 时两线有公共点.(2)当∆=1+4m <0,即41-<m 时两线无公共点. 24.(1) ∆=(m +2)2>0,∴m ≠-2;(2)m =-1,∴y =-x 2+5x -6.测试61.y =-x 2+3x (0<x <3)图略. 2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5. 当x 2=3时,BC =24-3³3>10,不合题意,舍去; 当x 2=5时,BC =24-3³5=9,符合题意. 故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃. 由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 324625.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元. 6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720. (2)∵y =-4x 2+64x +30720=-4(x -8)2+30976, ∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴(2)把s =30代入,2212t t s -=解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -=得7月末的累积利润为s 7=10.5(万元). 把t =8代入,2212t t s -=得8月末的累积利润为s 8=16(万元). ∴s 8-s 7=16-10.5=5.5(万元). 即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).测试7 1.⋅=21m 2.向下,x =1. 3.(2,-9). 4.2,小,-7. 5.-2,(1,0)、(2,0). 6.⋅--=21)23(22x y 7.(1);23=x (2)y =x 2-3x -4;(3);23≤x (4)x <-1或x >4. 8.(1)m =14或2; (2)m =4; (3)⋅=23m 9.D . 10.C . 11.C . 12.C . 13.C . 14.D . 15.(1)开口向下; (2)上方; (3)右侧;(4)有,).0,24(),0,24(22aacb b a ac b b ----+- (5)略. 16.⋅+--=3534312x x y 17.y =x 2+2x -3.18.23212--=x x y 或⋅+-=23272x x y 19.作CE ⊥x 轴于E ,设CE =x 千米.∵∠CAB =45°,∴CE =AE =x ,在Rt △BCE 中,,33,30x CE EB CBA ==∴=∠ AB =AE +EB ,即,331x x +=+解得x =1,∴OE =OA +AE =2+1=3. 由C (3,1),D (4,0),O (0,0),设y =a (x -4)(x -0),把(3,1)代入上式:1=a (3-4)(3-0),解得),40)(0)(4(31,31≤≤---=∴-=x x x y a 即2)2(31--=x y34+,抛物线对称轴:x =2,炮弹运行最高点时距地面高度是34千米.20.⋅+-=+-=310432,31312221x x y x y。
二,三元一次方程组讲义

上海市重点中学六年级数学精讲精练二元一次方程组解法:○1代入消元法○2加减消元法● 例14x+7y=24x=9y+3● 例23x-2y=-16x+5y=16● 例3111311=--+=-++y x y x y x y x三元一次方程●例4 3x+2y+z=14x+y+z=102x+3y-z=1●例5932 4=+++ =+=+zyxyxxzzy二元一次方程的整数解●例6 求:7x+4y=100的整数解●例7 如果关于x,y的方程组ax+3y=73x+6y=2 无解,那么a等于?●例8 若3x2m+5n+9+4y4m-2n-7=2是关于x,y的二元一次方程,求(x+1)1996+m的值●例9 已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时就有一个方程,而这些方程有一个公共解,求出这个公共解,并证明对任何a值它都能方程成立。
●例10 如果|x|+x+y=10, x+|y|-y=12 那么x+y的值是?●例11 当k,b为何值时,方程组y=kx+by=(3k-1)x+2 有唯一解:没有解?有无穷多解?例12 求下列方程组中的k值x+(1+k)y=0(1-k)x+ky=1+k(1+k)x+(12-k)y=-(1+k)填空题1.若2x m+n-1-3y m-n-3+5=0是关于x,y的二元一次方程,则m=_____,n=_____.2.在式子3m+5n-k中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a+b=_______.4.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k_____.5.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.6.若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么│a-b│=_____.7.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出9件衬衫和6条裤子共660元,则每件衬衫售价为_______,每条裤子售价为_______.8.为了有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00•用电每千瓦时0.30元(“谷电”价),王老师家使用“峰谷”电后,•五月份用电量为300kW·h,付电费115元,则王老师家该月使用“峰电”______kW·h.二、选择题9.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个B.2个C.3个D.4个10.已知x ay b=⎧⎨=⎩是方程组||223xx y=⎧⎨+=⎩的解,则a+b的值等于()A.1 B.5 C.1或5 D.0 11.已知│2x-y-3│+(2x+y+11)2=0,则()A.21xy=⎧⎨=⎩B.3xy=⎧⎨=-⎩C.15xy=-⎧⎨=-⎩D.27xy=-⎧⎨=-⎩12.在解方程组278ax bycx y-=⎧⎨+=⎩时,一同学把c看错而得到22xy=-⎧⎨=⎩,正确的解应是32xy=⎧⎨=⎩,那么a,b,c的值是()A.不能确定B.a=4,b=5,c=-2C.a,b不能确定,c=-2 D.a=4,b=7,c=213.如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g14.4辆板车和5辆卡车一次能运27t货,10辆板车和3辆卡车一次能运20t货,设每辆板车每次可运xt货,每辆卡车每次能运yt货,则可列方程组()A.452710327x yx y+=⎧⎨-=⎩B.452710320x yx y-=⎧⎨+=⎩C.452710320x yx y+=⎧⎨+=⎩D.427510203x yx y-=⎧⎨-=⎩15.七年级某班有男女同学若干人,女同学因故走了14名,•这时男女同学之比为5:3,后来男同学又走了22名,这时男女同学人数相同,那么最初的女同学有()A.39名B.43名C.47名D.55名16.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,•捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组.()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩17.甲,乙两人分别从两地同时出发,若相向而行,则ah相遇;若同向而行,则bh甲追上乙,那么甲的速度是乙的速度为()A.a bb+倍B.ba b+倍C.b ab a+-倍D.b ab a-+倍18.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,•信封个数分别为()A.150,100 B.125,75 C.120,70 D.100,150三、解答题19.解下列方程组:(1)35821x yx y+=⎧⎨-=⎩(2)271132x yyx-=⎧⎪⎨--=⎪⎩20.为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,•如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.为支持四川抗震救灾,重庆市A,B,C三地现在分别有赈灾物资00t,100t,80t,需要全部运往四川重灾地区的D,E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20t.(1)求这批赈灾物资运往D,E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60t,A地运往D县的赈灾物资为xt(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25t.则A,B•两地的赈灾物资运往D,E两县的方案有几种?请你写出具体的运送方案:(3)已知A,B,C三地的赈灾物资运往D,E两县的费用如表所示:为及时将这批赈灾物资运往D,E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?22.甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?23、某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。