New constraints on SN Ia progenitor models

合集下载

让Unity的Inspector面板支持字符限制(restrict)功能

让Unity的Inspector面板支持字符限制(restrict)功能

让Unity的Inspector⾯板⽀持字符限制(restrict)功能今天在优化红点组件,笔者打算将红点id由10进制改为16进制处理,就打算将红点id字段由uint类型改成string类型,⽤于填写16进制的字符(因为在Inspector⾯板⾥,uint/int类型字段不能直接填写16进制表⽰的数字),且希望限制该字段的输⼊限制,仅限于填写0-9A-Fa-f等16进制字符串,但unity并没有提供任何PropertyAttribute类来限制字符输⼊,达到类似于as3 text组件的restrict效果。

因此笔者⾃定义了⼀个RestrictAttribute类,⽤于实现字符限制效果。

/* ==============================================================================* 功能描述:限制string字段的输⼊类型* 创建者:shuchangliu* ==============================================================================*/using System.Text.RegularExpressions;using UnityEngine;#if UNITY_EDITORusing UnityEditor;#endifpublic class RestrictAttribute : PropertyAttribute{public string restrict;// Use this for initializationpublic RestrictAttribute(string restrict){this.restrict = restrict;}}#if UNITY_EDITOR[CustomPropertyDrawer(typeof(RestrictAttribute))]public class RestrictDrawer : PropertyDrawer{public override float GetPropertyHeight(SerializedProperty property,GUIContent label){return EditorGUI.GetPropertyHeight(property, label, true);}public override void OnGUI(Rect position,SerializedProperty property,GUIContent label){RestrictAttribute a = attribute as RestrictAttribute;EditorGUI.PropertyField(position, property, label, true);string v = property.stringValue;v = Regex.Replace(v, @"[^" + a.restrict + "]*", "");property.stringValue = v;}}#endifpublic class Test : MonoBehaviour{[Restrict("0-9a-fA-F")]public string pid;}在字段前加上[Restrict(string str)]参数,pid就只可以输⼊16进制数字(0-9及a-f的⼤⼩英⽂)了。

createoninitialize

createoninitialize

createoninitializeCreateOnInitialize是一种常见的编程概念,用于在程序初始化阶段创建对象。

在许多编程语言中,当程序开始运行时,系统会首先执行初始化操作,包括创建对象、分配内存等。

CreateOnInitialize就是在程序初始化的时候创建对象的一种方法。

在编程中,对象是由类定义的,而类是一种用来描述对象的模板。

CreateOnInitialize的意思是,在程序初始化的时候,根据类的定义创建一个对象。

这个对象可以是一个实例,也可以是一个静态对象,具体取决于编程语言和使用的场景。

使用CreateOnInitialize的好处是可以在程序开始运行之前创建必要的对象,并初始化它们的属性和方法。

这样,在程序的后续阶段就可以直接使用这些对象,而不需要再次创建。

这不仅可以提高程序的运行效率,还可以简化代码的编写和维护。

在编程中,CreateOnInitialize可以有多种方式实现。

一种常见的方式是在程序的入口函数中显式调用构造函数来创建对象。

另一种方式是使用依赖注入框架,通过配置文件或注解的方式来自动创建对象。

无论使用哪种方式,CreateOnInitialize都是在程序初始化阶段创建对象的一种机制。

CreateOnInitialize的使用场景很广泛。

比如,在一个图形化界面程序中,可以在程序初始化的时候创建窗口对象、菜单对象等。

在一个网络应用程序中,可以在程序初始化的时候创建网络连接对象、数据库连接对象等。

在一个游戏中,可以在程序初始化的时候创建游戏角色对象、游戏地图对象等。

需要注意的是,CreateOnInitialize只是创建对象的一种方式,并不代表对象只能在程序初始化阶段创建。

在程序运行过程中,也可以根据需要动态创建对象。

CreateOnInitialize更多的是指在程序初始化阶段创建必要的对象,以便后续使用。

CreateOnInitialize是一种在程序初始化阶段创建对象的机制。

constraintvalidator initialize

constraintvalidator initialize

constraintvalidator initializeConstraintValidator是Java Bean Validation API中的一个接口,用于实现自定义约束的验证逻辑。

在使用ConstraintValidator之前,需要先定义一个注解来描述约束条件,然后实现ConstraintValidator接口来验证注解所描述的约束条件是否满足。

initialize方法是ConstraintValidator接口中的一个方法,用于初始化ConstraintValidator实例。

在该方法中,可以获取注解中定义的属性值,并进行一些初始化操作,例如初始化一些资源或者建立一些连接等。

下面是一个简单的例子,用于演示如何使用ConstraintValidator和initialize方法来实现自定义约束的验证逻辑:首先,我们定义一个注解,用于描述约束条件:@Target({ElementType.FIELD})@Retention(RetentionPolicy.RUNTIME)@Constraint(validatedBy = MyConstraintValidator.class) public @interface MyConstraint {String message() default "Invalid value";Class<?>[] groups() default {};Class<? extends Payload>[] payload() default {};int minValue() default 0;int maxValue() default 100;}在该注解中,我们定义了两个属性:minValue和maxValue,用于描述约束条件的取值范围。

接下来,我们实现ConstraintValidator接口,来验证注解所描述的约束条件是否满足:public class MyConstraintValidator implements ConstraintValidator<MyConstraint, Integer> {private int minValue;private int maxValue;@Overridepublic void initialize(MyConstraint constraintAnnotation) {this.minValue = constraintAnnotation.minValue();this.maxValue = constraintAnnotation.maxValue();}@Overridepublic boolean isValid(Integer value, ConstraintValidatorContext context) {if (value == null) {return true;}return value >= minValue && value <= maxValue;}}在该实现中,我们实现了initialize方法,用于获取注解中定义的属性值,并进行一些初始化操作。

数据库添加外键错误:[Err]1215-Cannotaddforeignkeyconstr。。。

数据库添加外键错误:[Err]1215-Cannotaddforeignkeyconstr。。。

数据库添加外键错误:[Err]1215-Cannotaddforeignkeyconstr。

今天给mysql数据库中的表添加外键,保存时出现错误:[Err] 1215 - Cannot add foreign key constraint,导致⽆法添加外键。

外键定义添加的条件:
(1)外键对应的字段数据类型保持⼀致
(2)所有tables必须是InnoDB型,它们不能是临时表.因为在MySQL中只有InnoDB类型的表才⽀持外键(两张表的存储引擎⼀致)。

(3)设置外键时“删除时”设置为“SET NULL”
采⽤排除法,最后发现对应的数据类型不同,改正后即添加成功外键。

最后补充添加外键的语法,基本语法格式如下:
ALTER TABLE 数据表名 ADD CONSTRAINT 外键别名
FOREIGN KEY(字段1.1,字段1.2,...,字段1.n)
REFERENCES 表名(字段2.1,字段2.2,...,字段2.n)
其中:
数据表名:要添加外键约束的数据表的名称。

外键别名:表⽰外键的代号。

字段1:表⽰⼦表中设置的外键。

表名:表⽰⽗表的名称。

字段2:表⽰⽗表的主键。

以上即为添加数据库外键的基本内容。

constraintlayout 源码解析

constraintlayout 源码解析

constraintlayout 源码解析ConstraintLayout是 Android 中用于构建复杂 UI 的强大布局管理器。

它允许你通过约束来定义 UI 元素的位置和大小,而无需使用绝对布局参数。

理解ConstraintLayout的工作原理和源码实现对于深入了解Android 布局系统和性能优化至关重要。

以下是对ConstraintLayout源码解析的概述:1.初始化与设置:o ConstraintLayout初始化时,会创建内部的ConstraintSet对象,用于管理约束。

o设置布局参数,如宽度、高度、对齐方式等。

2.约束系统:o ConstraintSet负责管理约束。

它允许你设置元素的约束条件,如对齐、边界、大小等。

o约束条件可以是基于另一个元素(如另一个视图)的属性,也可以是固定的位置或百分比。

3.布局过程:o在onMeasure()方法中,ConstraintLayout遍历所有子视图,根据约束系统计算每个元素的大小和位置。

o onLayout()方法根据计算出的位置信息设置子视图的位置。

4.性能优化:o ConstraintLayout使用多种优化策略来提高布局性能,例如延迟测量和布局视图的重用。

o它还支持“快速路径”和“慢路径”两种测量过程,根据情况选择最有效的路径。

5.视图属性和视图更新:o ConstraintLayout支持多种视图属性,如边距、偏移、尺寸等。

这些属性可以在运行时动态修改。

o视图更新机制确保当约束或属性发生变化时,布局能够正确地重新测量和布局。

6.与其他布局的交互:o ConstraintLayout能够与其他Android 布局(如LinearLayout、FrameLayout等)混合使用,支持嵌套布局。

o它能够处理复杂的布局嵌套,确保正确的测量和布局过程。

7.自定义视图:o ConstraintLayout支持自定义视图,允许开发者扩展其功能。

constraintlayout 基准线

constraintlayout 基准线

constraintlayout 基准线
在ConstraintLayout中,基准线(baseline)是用来对齐文字
或其他元素的水平参考线。

它被用来确定TextView等元素的最低部分,以便与TextView中的文字对齐。

当使用基准线对齐文字时,可以通过以下步骤进行设置:
1. 在ConstraintLayout中添加一个TextView或其他需要对齐文字的
元素。

2. 选择该元素,然后在右侧的属性检查器中找到"Layout Constraints"部分。

3. 在水平约束(Horizontal Constraints)中,选择"Align Baseline"选项。

4. 在Baseline Constraint弹出窗口中,选择要对齐的其他元素,或
者选择一个基准线作为对齐参考。

5. 确认选择后,元素将根据选择的基准线进行对齐。

使用基准线对齐文字可以使视觉效果更加整齐,尤其在多行文本
的情况下。

C++出错提示英汉对照表

C++出错提示英汉对照表

Ambiguous operators need parentheses -----------不明确的运算需要用括号括起Ambiguous symbol ''xxx'' ----------------不明确的符号Argument list syntax error ----------------参数表语法错误Array bounds missing ------------------丢失数组界限符Array size toolarge -----------------数组尺寸太大Bad character in paramenters ------------------参数中有不适当的字符Bad file name format in include directive --------------------包含命令中文件名格式不正确Bad ifdef directive synatax ------------------------------编译预处理ifdef有语法错Bad undef directive syntax ---------------------------编译预处理undef有语法错Bit field too large ----------------位字段太长Call of non-function -----------------调用未定义的函数Call to function with no prototype ---------------调用函数时没有函数的说明Cannot modify a const object ---------------不允许修改常量对象Case outside of switch ----------------漏掉了case 语句Case syntax error ------------------ Case 语法错误Code has no effect -----------------代码不可述不可能执行到Compound statement missing{ --------------------分程序漏掉"{"Conflicting type modifiers ------------------不明确的类型说明符Constant expression required ----------------要求常量表达式Constant out of range in comparison -----------------在比较中常量超出范围Conversion may lose significant digits -----------------转换时会丢失意义的数字Conversion of near pointer not allowed -----------------不允许转换近指针Could not find file ''xxx'' -----------------------找不到XXX 文件Declaration missing ; ----------------说明缺少";" Declaration syntax error -----------------说明中出现语法错误Default outside of switch ------------------ Default 出现在switch语句之外Define directive needs an identifier ------------------定义编译预处理需要标识符Division by zero ------------------用零作除数Do statement must have while ------------------ Do-while语句中缺少while部分Enum syntax error ---------------------枚举类型语法错误Enumeration constant syntax error -----------------枚举常数语法错误Error directive :xxx ------------------------错误的编译预处理命令Error writing output file ---------------------写输出文件错误Expression syntax error -----------------------表达式语法错误Extra parameter in call ------------------------调用时出现多余错误File name too long ----------------文件名太长Function call missing -----------------函数调用缺少右括号Fuction definition out of place ------------------函数定义位置错误Fuction should return a value ------------------函数必需返回一个值Goto statement missing label ------------------ Goto语句没有标号Hexadecimal or octal constant too large ------------------16进制或8进制常数太大Illegal character ''x'' ------------------非法字符x Illegal initialization ------------------非法的初始化Illegal octal digit ------------------非法的8进制数字houjiumingIllegal pointer subtraction ------------------非法的指针相减Illegal structure operation ------------------非法的结构体操作Illegal use of floating point -----------------非法的浮点运算Illegal use of pointer --------------------指针使用非法Improper use of a typedefsymbol ----------------类型定义符号使用不恰当In-line assembly not allowed -----------------不允许使用行间汇编Incompatible storage class -----------------存储类别不相容Incompatible type conversion --------------------不相容的类型转换Incorrect number format -----------------------错误的数据格式Incorrect use of default --------------------- Default使用不当Invalid indirection ---------------------无效的间接运算Invalid pointer addition ------------------指针相加无效Irreducible expression tree -----------------------无法执行的表达式运算Lvalue required ---------------------------需要逻辑值0或非0值Macro argument syntax error -------------------宏参数语法错误Macro expansion too long ----------------------宏的扩展以后太长Mismatched number of parameters in definition---------------------定义中参数个数不匹配Misplaced break ---------------------此处不应出现break语句Misplaced continue ------------------------此处不应出现continue语句Misplaced decimal point --------------------此处不应出现小数点Misplaced elif directive --------------------不应编译预处理elifMisplaced else ----------------------此处不应出现else Misplaced else directive ------------------此处不应出现编译预处理elseMisplaced endif directive -------------------此处不应出现编译预处理endifMust be addressable ----------------------必须是可以编址的Must take address of memory location ------------------必须存储定位的地址No declaration for function ''xxx'' -------------------没有函数xxx的说明No stack ---------------缺少堆栈No type information ------------------没有类型信息Non-portable pointer assignment --------------------不可移动的指针(地址常数)赋值Non-portable pointer comparison --------------------不可移动的指针(地址常数)比较Non-portable pointer conversion ----------------------不可移动的指针(地址常数)转换Not a valid expression format type ---------------------不合法的表达式格式Not an allowed type ---------------------不允许使用的类型Numeric constant too large -------------------数值常太大Out of memory -------------------内存不够用Parameter ''xxx'' is never used ------------------能数xxx没有用到Pointer required on left side of -> -----------------------符号->的左边必须是指针Possible use of ''xxx'' before definition -------------------在定义之前就使用了xxx(警告)Possibly incorrect assignment ----------------赋值可能不正确Redeclaration of ''xxx'' -------------------重复定义了xxx Redefinition of ''xxx'' is not identical ------------------- xxx的两次定义不一致Register allocation failure ------------------寄存器定址失败Repeat count needs an lvalue ------------------重复计数需要逻辑值Size of structure or array not known ------------------结构体或数给大小不确定Statement missing ; ------------------语句后缺少";" Structure or union syntax error --------------结构体或联合体语法错误Structure size too large ----------------结构体尺寸太大Sub scripting missing ] ----------------下标缺少右方括号Superfluous & with function or array ------------------函数或数组中有多余的"&"Suspicious pointer conversion ---------------------可疑的指针转换Symbol limit exceeded ---------------符号超限Too few parameters in call -----------------函数调用时的实参少于函数的参数不Too many default cases ------------------- Default太多(switch 语句中一个)Too many error or warning messages --------------------错误或警告信息太多Too many type in declaration -----------------说明中类型太多Too much auto memory in function -----------------函数用到的局部存储太多Too much global data defined in file ------------------文件中全局数据太多Two consecutive dots -----------------两个连续的句点Type mismatch in parameter xxx ----------------参数xxx类型不匹配Type mismatch in redeclaration of ''xxx'' ---------------- xxx 重定义的类型不匹配Unable to create output file ''xxx'' ----------------无法建立输出文件xxxUnable to open include file ''xxx'' ---------------无法打开被包含的文件xxxUnable to open input file ''xxx'' ----------------无法打开输入文件xxxUndefined label ''xxx'' -------------------没有定义的标号xxx Undefined structure ''xxx'' -----------------没有定义的结构xxxUndefined symbol ''xxx'' -----------------没有定义的符号xxx Unexpected end of file in comment started on line xxx----------从xxx行开始的注解尚未结束文件不能结束Unexpected end of file in conditional started on line xxx ----从xxx 开始的条件语句尚未结束文件不能结束Unknown assemble instruction ----------------未知的汇编结构Unknown option ---------------未知的操作Unknown preprocessor directive: ''xxx'' -----------------不认识的预处理命令xxxUnreachable code ------------------无路可达的代码Unterminated string or character constant -----------------字符串缺少引号User break ----------------用户强行中断了程序Void functions may not return a value ----------------- Void类型的函数不应有返回值Wrong number of arguments -----------------调用函数的参数数目错''xxx'' not an argument ----------------- xxx不是参数''xxx'' not part of structure -------------------- xxx不是结构体的一部分xxx statement missing ( -------------------- xxx语句缺少左括号xxx statement missing ) ------------------ xxx语句缺少右括号xxx statement missing ; -------------------- xxx缺少分号xxx'' declared but never used -------------------说明了xxx 但没有使用xxx'' is assigned a value which is never used----------------------给xxx赋了值但未用过Zero length structure ------------------结构体的长度为零。

constraintviolationexception处理方法

constraintviolationexception处理方法

constraintviolationexception处理方法一、概述ConstraintViolationException是Java框架中常见的一个异常类,用于表示在数据验证过程中违反了约束条件。

在开发过程中,为了确保数据的一致性、正确性和安全性,通常需要进行各种约束条件的验证。

当验证失败时,就会抛出ConstraintViolationException异常。

本文将介绍如何处理ConstraintViolationException异常。

二、常见原因1. 数据类型不匹配:在操作数据时,如果传入的参数与数据表中的数据类型不匹配,就会导致ConstraintViolationException异常。

2. 缺少必要的约束条件:在数据表定义中,可能存在一些必要的约束条件,如果没有正确设置这些约束条件,也会导致异常。

3. 并发冲突:在多线程环境下,如果两个或多个线程同时修改同一份数据,就可能导致约束条件违反。

三、处理方法1. 捕获异常:在代码中添加对ConstraintViolationException 异常的捕获,以便在出现异常时能够进行相应的处理。

```javatry {// 执行可能抛出异常的代码// 处理异常的逻辑}```2. 输出错误信息:在捕获异常后,可以输出错误信息,以便于排查问题。

```javaSystem.out.println("发生ConstraintViolationException异常: " + e.getMessage());```3. 回滚操作:在处理异常时,可以考虑将已经进行的操作回滚,以避免数据不一致的问题。

4. 验证前置:在执行可能引发ConstraintViolationException异常的代码之前,可以先进行相关的验证操作,确保输入的数据满足要求。

5. 使用注解:可以使用Java中的注解来定义数据表中的约束条件,以便在代码中自动进行验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /0502196v 2 27 A p r 2005Draft version February 2,2008Preprint typeset using L A T E X style emulateapjNEW CONSTRAINTS ON SN IA PROGENITOR MODELSKrzysztof Belczynski 1,2,Tomasz Bulik 3,Ashley J.Ruiter 11New Mexico State University,Dept.of Astronomy,1320Frenger Mall,Las Cruces,NM 880032Tombaugh Fellow3Nicolaus Copernicus Astronomical Center,Bartycka 18,00-716Warszawa,Poland;kbelczyn@,bulik@.pl,aruiter@Draft version February 2,2008ABSTRACTWe use the StarTrack population synthesis code to discuss potential progenitor models of SN Ia:single degenerate scenario,semi-detached double white dwarf binary and double degenerate ing the most recent calculations of accretion onto white dwarfs,we consider SN Ia explosions of various white dwarfs in binary systems.We calculate the evolutionary delay times from the zero age main sequence to the explosion,and verify which scenarios can satisfy the constraints found by Strolger et al.(2004),i.e.a delay time of 2-4Gyrs.It is found that the semi-detached double white dwarf binary model is inconsistent with observations.Only SN Ia progenitors in the double degenerate scenario are compatible with observations in all tested evolutionary models,with a characteristic delay time of ∼3Gyrs.If double degenerate mergers are excluded as SN Ia progenitors,we find that the single degenerate scenario may explain the observed delay times for models with low common envelope efficiency.It is also noted that the delay time distributions within the various tested SN Ia scenarios vary significantly and potentially can be used as an additional constraint on progenitor models.Subject headings:binaries:close —stars:evolution —stars:formation —supernovae:general1.INTRODUCTIONSupernovae Ia are used as precise distance indicators,and the results of deep supernova searches (Schmidt et al.1998;Perlmutter 1999;Riess et al.2001;Tonry 2003)have led to the conclusion that the Universe expansion rate is accelerating.This along with the WMAP results (Tegmark et al.2004)provide evidence that the matter density in the Universe is ΩM ≈0.3,and that the cosmo-logical constant density is ΩΛ≈0.7.These results depend crucially on the assumption that SN Ia are standard can-dles.This assumption could be tested if the origins of SN Ia are recognized.Therefore,any new observational and theoretical constraints on their progenitors are very useful.The theoretical search for SN Ia progenitors is usually carried out with the population synthesis method and it was pioneered by Tutukov &Yungelson (1981)followed by the number of other studies (e.g.,Iben &Tutukov 1984;Tornambe &Matteucci 1987;Jorgensen et al.1997;Yungelson &Livio 2000;Han &Podsiadlowski 2004;Fe-dorova,Tutukov &Yungelson 2004).There are still many open problems in the field.As long as it is accepted that SN Ia are caused by the disruption of a white dwarf,the specific physical conditions leading to the explosion are widely discussed.Some important issues concern the white dwarf mass at which disruption followed by a SN can take place,accumulation rates on the white dwarf accretors,the outcome of double white dwarf mergers (SN Ia versus accretion induced collapse to neutron star)or the recently discussed issue of effects of rotation on white dwarf fate.Also,formation rates of different proposed SN Ia progeni-tors are not well constrained.The fact is that we lack an understanding of several evolutionary processes involved in the specific formation scenarios (e.g.,common envelope phase).We refer the reader to several reviews for a de-tailed discussion on an open issue of SN Ia progenitors (e.g.,Branch et al.1995;Renzini 1996;Livio 2000).We consider three basic scenarios for SN Ia progenitors:single degenerate scenario (SDS,Whelan &Iben 1973;Nomoto 1982),semi-detached double white dwarf binary (SWB,Solheim &Yungelson 2004)model and double de-generate scenario (DDS,Webbink 1984;Iben &Tutukov 1984).In the SDS scenario a white dwarf (WD)accumu-lates mass from a non-degenerate companion star.Nuclear reactions are ignited in a WD which has accreted a suffi-cient layer of material on its surface.At the time of igni-tion the WD can have a mass below the Chandrasekhar limit,or the accretion may push it over this limit,and the ignition takes place when the WD is already unsta-ble.Binaries consisting of two WDs may lead,under fa-vorable conditions,to two qualitatively different progeni-tor SN Ia models.Both models involve WD pairs which are close enough such that at some point in their evo-lution,the less-massive (larger)WD overflows its Roche lobe,initiating the mass transfer phase.The SWB sce-nario takes place if mass transfer is dynamically stable and the pair evolves through the AM CVn stage (e.g.,Nelemans et al.2001)and the system may produce SN Ia if (i)the accreting WD is pushed over the Chandrasekhar limit or (ii)the accreted material is ignited on the WD of sub-Chandrasekhar mass leading to the edge-on lit deto-nation.The DDS takes place when the mass transfer is dynamically unstable and the less massive WD is rapidly accreted onto the companion WD.If the total mass of the WDs exceeds the Chandrasekhar limit the accretor either goes through accretion induced collapse and forms a neu-tron star or explodes in SN Ia (see Livio 2000for review).In this work we assume that DDS results in a SN Ia ex-plosion,in order to assess the model viability based on the time delay observations.All of the above scenarios imply2an evolutionary time delay between formation of the bi-nary on the zero age main sequence(ZAMS)and the SN Ia explosion.The recent results of the Hubble Higher z Supernova Search yielded a number of detections with redshifts up to z=1.6.This allowed experimental determination of the delay time between the formation of a star on the ZAMS and supernova explosion(Strolger et al.2004).They used three trial functions describing the delay time distribution: exponential,wide Gaussian and narrow ing the exponential function to describe the delay leads to a lower limit of2.2-2.6Gyrs,while the Gaussianfits lead to a constraint on the delay in the range of2.4-3.8Gyrs,or3.6-4.6Gyrs depending on the assumed star formation rate. In a separate study Gal-Yam&Maoz(2004)constrained the delay time to be longer than1.7Gyr.In this paper we concentrate on calculation of the evo-lutionary delay times for different SN Ia progenitors,and compare them with the observational estimates of Strolger et al.(2004).2.MODEL DESCRIPTIONThe detailed description of the StarTrack population synthesis code is presented in Belczynski et al.(2002; 2005,in preparation).In the following we give an overview of the calculation scheme and summarize the most impor-tant features of the code.2.1.Standard modelEach model calculation is started with an instanta-neous starburst in which106binaries are formed and then evolved through the next15Gyrs.The mass of the pri-mary(the more massive component)is drawn from the IMF with a three-component slope(−1.3/−2.2/−2.7with the exponent changing at0.5and1.0M⊙;Kroupa&Wei-dner2003)within the range0.8−20M⊙.The secondary mass is taken within the0.08−20M⊙range through a flat mass ratio(secondary/primary)distribution.The dis-tribution of orbital separations is taken to beflat in the logarithm(∼1/a)and we assume a thermal eccentricity distribution(2e).The evolutionary calculations for stars(binary com-ponents)are based on modified formulae of Hurley et al.(2000).The modifications,which are described in Bel-czynski et al.(2002)are not relevant for this study(e.g., black hole mass spectrum).For all our presented calcula-tions we evolve stars with a solar metallicity(Z=0.02). Orbits of binary systems are allowed to change due to a number of physical processes.The recent magnetic brak-ing law of Ivanova&Taam(2003)is included,with the saturation for fastest spinning stars.For tidal interac-tions we use the Hut(1981)equations but we increase the efficiency of tidal forces by an order of magnitude to re-cover the cutoffperiods for several open clusters(Mathieu et al.1992).We use Peters(1964)equations to include orbital decay due to the emission of gravitational radia-tion(GR).We also calculate the orbital expansion due to wind mass loss from binary components(Jeans mode mass loss).The wind mass loss rates are taken from Hur-ley et al.(2000),but extended to include winds for low-and intermediate-mass main sequence stars(Nieuwenhui-jzen&de Jager1990).The StarTrack Roche lobe overflow(RLOF)treatment involves the detailed calculation of the mass transfer rates based on radius-mass exponents calculated both for the donor stars and their Roche lobes.The results of our cal-culations have been compared to a set of published de-tailed RLOF sequences(Wellstein,Langer&Braun2001; Tauris&Savonije1999;Dewi&Pols2003)as well as to calculations obtained with an updated stellar evolu-tion code(Ivanova et al.2003).Our approach to the mass transfer calculations allows for the possibility of(i) conservative versus non-conservative RLOF episodes(ii) thermally driven RLOF versus nuclear/magnetic brak-ing/gravitational radiation losses driven RLOF and(iii)a separation of systems as persistent or transient,depending on whether the donor RLOF mass transfer rate lies below the critical rate for instability to develop in the accretion disk(adopted from Dubus et al.1999or Menou,Perna &Hernquist2002for different compositions of transferred material).For WD,neutron star(NS)and black hole(BH)accre-tors during dynamically stable RLOF phases the accretion is limited to Eddington critical rate with the rest of the transferred material lost from the system with the spe-cific angular momentum of the accretor.For all the other accretors,we assume that only half of the transferred ma-terial is accreted(Meurs&van den Heuvel1989)and the rest is lost with the specific binary angular momentum (Podsiadlowski,Joss&Hsu1992).mon Envelope PhasesStandard Energy Balance Prescription If dynamical in-stability is encountered the binary may enter a common envelope(CE)phase.We use the standard energy equa-tions(Webbink1984)to calculate the outcome of the CE phaseαce GM f don M acc2A i =GM i don M don,env3 lope evolution based on comparing the binding and or-bital energies(Webbink1984)we investigate the alter-native approach(Nelemans&Tout2005),based on thenon-conservative mass transfer analysis by Paczynski&Ziolkowski(1967),with the assumption that the mass lossreduces the angular momentum in a linear way.This leadsto reduction of the orbital separationA fM i tot M f tot M f don M f acc 2(2)where M don,env is the mass of the lost envelope,M i tot,M f tot are the total masses of the system before and after CE,and γis a scaling factor.We useγ=1.5following Nelemans &Tout(2005).2.3.Mass Accumulation on White DwarfsIn the following we describe mass accumulation on white dwarf accretors during dynamically stable RLOF phases. If mass transfer in a binary system containing a white dwarf and a non-degenerate companion is dynamically un-stable,the system goes through a common envelope phase and we assume that the white dwarf does not accrete any matter.If dynamical instability is encountered for a bi-nary with two white dwarfs we assume a merger.If the total mass of the two merging WDs is higher than1.4M⊙we assume a SN Ia explosion,independent of what type of WDs are merging.We comment on relaxing that assump-tion in the last section.Accretion onto WDs may lead to a number of impor-tant phenomena,like nova or Type Ia SN explosions or even to an accretion induced collapse(AIC)of WD to a NS.In contrast to previous population synthesis studies, we incorporate the most recent results to estimate the ac-cumulation efficiencies on WDs,which is crucial for the formation of SN Ia progenitors.In particular we consider accretion of matter of various compositions onto different white dwarf types.We also include the possibility that neutron star formation can occur via an AIC of a massive ONeMg white dwarf(Belczynski&Taam2004a).The effect of an optically thick wind from the white dwarf sur-face,which can stabilize the mass transfer in the system at high mass transfer rates is taken into account(see Kato& Hachisu1994;Hachisu,Kato,&Nomoto1996,1999).The accumulation rate of hydrogen-rich and helium-rich matter is taken from Hachisu et al.(1999)and Kato&Hachisu (1999)respectively(see also Ivanova&Taam2004).For the direct accretion of helium or carbon/oxygen matter onto the ONeMg white dwarfs we make use of the work of Kawai,Saio&Nomoto(1987)in determining the evolution of the accreting white dwarf.In the last few years several groups have initiated calcu-lations of the effects of white dwarf rotation and spin-up due to the accretion(e.g.,Piersanti et al.2003;Uenishi, Nomoto&Hachisu2003;Saio&Nomoto2004;Yoon& Langer2005).Some interesting results(obtained with1-or2-D simulations)were presented,e.g.the possibility of WD reaching super-Chandrasekhar mass,the possibly easier mass accumulation for SDS progenitors or avoid-ance of SN explosion through edge-on lit detonation at sub-Chandrasekhar mass.These results are not yet in-corporated into our model,but they may have important consequences on progenitor models if they are confirmed.Accretion onto Helium white dwarf.If the mass trans-fer rate˙M don from the H-rich donor is smaller than some critical value˙M crit1,there are strong nova explosions on the surface of the accreting WD,and no material is accu-mulated.The accumulation efficiencyηacu=0.0,i.e.the entire transferred material is lost from the binary.If the ˙Mdon>˙M crit1then the material piles up on the WD and leads to an inspiral.For giant-like donors we evolve the system through CE to see if the system survives;for all other donors we call it a merger and halt binary evolution. The critical transfer rate is calculated from:˙Mcrit1=l0Mλacc(X∗Q)−1M⊙yr−1(3)where,Q=6×1018erg g−1is an energy yield of Hy-drogen burning,X is the Hydrogen content of accreted material,and l0andλare coefficients.For Population I stars(metallicity Z>0.01)the values are X=0.7,l0= 1995262.3,λ=8,while for Population II stars(Z≤0.01) we get X=0.8,l0=31622.8,λ=5(Ritter1999,see his eq.10,12and Table2).If the mass transfer rate from the He-rich donor is higher than˙M crit2=2×10−8M⊙yr−1all the material is accu-mulated(ηacu=1.0)until the accreted layer of material ignites in a helium shellflash at which point degeneracy is broken and a main sequence helium star is formed.Follow-ing the calculations of Saio&Nomoto(1998)we estimate the maximum mass of the accreted shell at whichflash occurs:∆M= −7.8×104˙M+0.13˙M<1.64×10−60(instantaneousflash)˙M≥1.64×10−6(4) where˙M is expressed in M⊙yr−1.The newly formed helium star may overfill its Roche lobe,in which case either a single helium star is formed (He WD companion),a helium contact binary is formed (helium main sequence companion)or the system goes through CE evolution(evolved helium star companion). For the lower than˙M crit2transfer rates,accumulation is also fully efficient(ηacu=1.0).However,the SN Ia occurs at the sub-Chandrasekhar mass:M SNIa=−400˙M don+1.34M⊙,(5)where˙M don is expressed in M⊙yr−1.For mass transfer rates close to˙M crit2,the above extrapolations from the re-sults of Hashimoto et al.(1986)yield masses smaller than the current mass of the accretor,and we assume instanta-neous SN Ia explosion.We do not consider the accumu-lation of heavier elements since they could only originate from more massive WDs(e.g.,CO or ONeMg WDs),which would have smaller radii and could not be donors to lighter He WDs.Accretion onto Carbon/Oxygen white dwarf.We adopt the prescription from Ivanova&Taam(2004).In the case of H-rich donors for the mass transfer rates lower than10−11M⊙yr−1there are strong nova explosions and no material is accumulated(ηacu=0.0).In the range 10−6<˙M don<10−11M⊙yr−1we interpolate forηacu from Prialnik&Kovetz(1995,see their Table1).For the4rates higher than10−6M⊙yr−1all transferred material burns into helium(ηacu=1.0).Additionally we account for the effects of strong optically thick winds(Hachisu et al.1999),which blow away any material transferred over the critical rate˙Mcrit3=0.7510−6(M acc−0.4)M⊙yr−1.(6) This corresponds toηacu=˙M crit3/˙M don for˙M don≥˙Mcrit3.The accretor is allowed to increase mass up to1.4M⊙,and then explodes in a Chandrasekhar mass SN Ia.In the case of He-rich donors,if the mass transfer rate is higher than1.259×10−6M⊙yr−1helium burning is stable and contributes to the accretor mass(ηacu=1.0). For the rates in the range5×10−8<˙M don<1.259×10−6M⊙yr−1accumulation is calculated fromηacu=−0.175(lg(˙M don)+5.35)2+1.05(7) and represents the amount of material that is left on the surface of the accreting WD after the helium shellflash cycle(Kato&Hachisu1999).The mass of the CO WD accretor is allowed to increase up to1.4M⊙,and then a Chandrasekhar mass SN Ia takes place in the two above He-rich accretion regimes.If mass transfer rates drops below5×10−8M⊙yr−1,the helium accumulates on top of the CO WD and once the accumulated mass reaches 0.1M⊙(Kato&Hachisu1999),a detonation follows and ignites the CO core leading to the disruption of the ac-cretor in a sub-Chandrasekhar mass SN Ia(e.g.,Taam 1980;Garcia-Senz,Bravo&Woosley1999).If the mass of the accreting WD has reached1.4M⊙before the accretion layer has reached0.1M⊙then the accretor explodes in a Chandrasekhar mass SN Ia.Carbon/Oxygen accumula-tion takes place without mass loss(ηacu=1.0)and leads to SN Ia if Chandrasekhar mass is reached.Accretion onto Oxygen/Neon/Magnesium white dwarf. Accumulation onto ONeMg WDs is treated the same way as for CO WD accretors.The only difference arises when an accretor reaches Chandrasekhar mass.In the case of ONeMg WD this leads to an accretion induced collapse and neutron star formation,and binary evolution contin-ues(see Belczynski&Taam2004a;Belczynski&Taam 2004b).3.RESULTS3.1.Typical evolution leading to SN IaThe following examples of evolution leading to the for-mation of SN Ia progenitors in three different scenarios were calculated within our standard evolutionary model (see§2.1).DDS Example.The evolution starts with two intermediate-mass main sequence stars(M1=6.0,M2= 4.5M⊙)on a rather small(a∼200R⊙)and eccentric orbit(e∼0.7).First RLOF begins at∼70Myrs right after the primary evolves offthe main sequence and is crossing the Hertzsprung Gap.The orbit has been al-ready circularized(a∼60R⊙).The ensuing MT is dy-namically stable but proceeds on the thermal timescale of the donor and is characterized by a high transfer rate (∼3×10−4M⊙yr−1).After the rapid evolution through the Gap,the donor starts climbing the red giant branch,where mass transfer continues but at slower rate driven by the nuclear evolution of donor(∼10−7M⊙yr−1). Mass transfer stops when most of the donor envelope is exhausted.By this point the system has changed sig-nificantly;the primary becomes the less massive com-ponent(M1=1.0M⊙),the secondary is rejuvenated (M1=7.0M⊙)by accreted material,while the orbit has expanded(a∼380R⊙)after mass ratio reversal.The rest of the primary envelope is lost in a stellar wind dur-ing core Helium burning and the primary becomes a low-mass naked helium star.The primary keeps evolving and at later stages expands and initiates the second RLOF (88Myrs since ZAMS)which ends up in the formation of a CO WD(M1=0.9M⊙)when the primary is stripped this time of its helium-rich envelope.Then the secondary evolves offthe main sequence and after93Myrs since ZAMSfills its Roche lobe while on the red giant branch. This leads to CE phase and a helium star(M1=1.4M⊙) is formed,this time out of the secondary,while the orbit shrinks significantly(a∼3R⊙).The secondary evolves and eventually starts another RLOF,which stops after about10Myrs.The primary CO WD becomes quite mas-sive(M1=1.1)due to accretion while the secondary losses most of its helium-rich envelope and becomes a CO WD (M2=0.8M⊙).This is the second mass ratio reversal in the system;the primary once again is the more massive binary component.A double CO WD binary,with total mass exceeding Chandrasekhar mass(M1+M2=1.9M⊙), is formed on a tight orbit(a=2.7R⊙)after about 100Myrs since binary formation.The following orbital decay takes∼5Gyrs leading to the merger of two WDs and a possible SN Ia explosion.SWB Example.The evolution starts with two relatively low-mass main sequence stars(M1=1.7,M2=1.5M⊙) on a wide(a∼1000R⊙)and highly eccentric orbit (e∼0.9).After about2Gyrs the primary star evolves offthe main sequence and shortly begins climbing up the red giant branch.The orbit circularizes and in the process the system becomes tighter(a∼200R⊙).Eventually the primary overfills its Roche lobe,leading to afirst CE phase.The primary losses its entire envelope and becomes a He WD(M1=0.4M⊙),and the orbit contracts farther (a∼10R⊙).The secondary follows the same path as the primary–it evolves offthe main sequence(in3Gyrs since ZAMS),becomes a red giant,overfills its Roche lobe and forms a second He WD(M2=0.2M⊙)in a second CE event(orbit contracts to a∼0.08R⊙).The most recently formed(and lower mass)WD must be close to filling its Roche lobe so the gravitational radiation and as-sociated orbital decay brings the system to contact within a Hubble time.Atfirst RLOF proceeds with a high(but dynamically stable)mass transfer rate(∼10−6M⊙yr−1) but soon it drops down(∼10−8M⊙yr−1)to the regime when the material can accumulate on the primary leading to thefinal explosion and disruption of the primary WD. At the moment of explosion,the primary WD has accreted about0.1M⊙and exploded at sub-Chandrasekhar mass (M1=0.5M⊙).SDS Example.The evolution starts with two intermediate-mass main sequence stars(M1=4.5,M2= 3.4M⊙)on a very wide(a∼4400R⊙)and highly eccen-tric orbit(e∼0.8).The primary evolves all the way to5the late asymptotic giant branch beforefilling its Roche lobe.The orbit circularizes before contact is reached (a∼1500R⊙).The RLOF leads tofirst CE phase,or-bital contraction(a∼60R⊙)and formation of a CO WD (M1=0.9M⊙)at∼160Myrs since ZAMS.The sec-ondary takes another∼100Myrs to evolve offthe main sequence.This time due to the smaller orbit size,the Roche lobe is encountered when the donor(secondary) is on the red giant branch.The second CE phase en-sues,leading to further orbital contraction(a∼0.5R⊙), and the exposed core of the secondary(which is non-degenerate)forms a naked helium main sequence star (M2=0.5M⊙).The orbit slowly decays owing to the tidal spin up of the secondary,andfinally after synchronization is reached the third RLOF is encountered when the He-lium star exceeds its Roche lobe(a∼0.4R⊙)275Myrs since ZAMS.This time mass transfer is dynamically stable (∼10−8M⊙yr−1),and helium-rich material is transferred and accumulated on the CO WD primary.After about5 Myrs of accretion the layer accumulated on the WD ex-plodes leading to primary(M1=1.0M⊙)disruption in sub-Chandrasekhar SN Ia.3.2.Delay TimesThe delay times can be contributed to three major pro-cesses:(i)evolution of stars to form two WDs(DDS, SWB),or to form a WD in RLOF system with non-degenerate companion(SDS);(ii)orbital decay(GR)to bring a system to contact after formation of WD-WD bi-nary(DDS,SWB);(iii)accumulation of sufficient amount of material on the WD surface to initiate SN Ia explosion (SWB,SDS).Thefirst contribution(i)is set by the mass of the secondary star,since the evolution time depends very strongly on initial mass and is longer for lower mass stars. These times are on average:0.1Gyr(DDS,secondaries ∼3−8M⊙),0.4−12Gyr(SWB,secondaries∼1−3M⊙), and∼0.5Gyr(SDS,secondaries∼2−4M⊙).The second contribution(ii)is set by the GR timescale for a given system,which depends very strongly on the orbital separation of two WDs.The orbital separation in turn is basically set by the CE efficiency.The major-ity of SN Ia progenitors evolve through one or two CE phases.The only significant changes to orbital separation are encountered during these phases(orbital contractions by factors of10-100).Therefore,this part of delay is set by the CE efficiency and it may vary over a wide range, basically from zero to a Hubble time.The third contribution(iii)is set by the accumulation efficiencies described in§2.3.For a given type of system, we expect a specific mass transfer rate and a corresponding accumulation rate which sets the time of SN Ia explosion. The efficient accumulation happens only in a given mass transfer range,and this part of the delay is easily pre-dicted.On average these times are around one Myr for SWB and several Myrs for SDS progenitors. Summarizing,we see that for DDS progenitors the delay time is set basically by the GR orbital decay,for SWB sys-tems both GR and evolutionary effects play an important role,while for SDS systems the major contribution comes from evolutionary times.In general,the time needed for the accumulation on the WD surface does not play a sig-nificant role.3.3.StatisticsIt may be inferred from the evolutionary histories of SN Ia progenitors that the CE efficiency is a major factor in-fluencing the SN Ia delay times.Almost all progenitors evolve through at least one CE phase.The CE phase ba-sically sets the timescale for GR orbital decay of DDS and SWB systems.For SDS systems the CE orbit contraction sets the initial conditions for a RLOF phase with corre-sponding mass transfer rate,which if falls into a specific regime,may lead a system to SN Ia explosion.Unfortu-nately,the CE phase is not well constrained,therefore we will perform the calculation of the delay times with differ-ent CE efficiencies and treatments.Standard Model.It is found that within the SDS,ex-ploding WDs are:mainly CO WDs(82%)and a smaller number of He WDs(11%),ONeMg WDs(4%)and hybrid (CO core/He envelope)WDs(3%)with various types of donors.In the SWB progenitor group the systems are: double He WD binaries(77%),CO WD–hybrid WD sys-tems(21%),with the rest being different combinations of He,CO,hybrid and ONeMg WDs.Within the DDS class wefind that most of the SN Ia progenitors are CO-CO WDs(88%),and the rest are binaries hosting one or two ONeMg WDs(12%).The relative numbers of potential SN Ia progenitors are:13%(SDS),49%(SWB)and38% (DDS).We note that DDS progenitors constitute the most uniform group among three progenitor classes. Alternative CE Models.In the models with decreased CE efficiency we note a decrease in the number of poten-tial SN Ia progenitors by factors of3and6,corresponding to models withαλ=0.3andγ=1.5,respectively.This is expected since many potential progenitors evolve through a CE phase,and will not survive this phase if the effi-ciency is smaller than in our standard model.However,as argued by Nelemans&Tout(2005),the decreased CE effi-ciency may be needed to explain the observed population of double WDs.We also note that for these models DDS is more efficient in producing SN Ia progenitors(70%)as compared to the combined SDS and SWB classes(30%). In all models DDS progenitors(by definition)explode at Chandrasekhar mass.It is found in all calcula-tions that progenitors in the SWB class explode at sub-Chandrasekhar mass.For the SDS scenario in the stan-dard model and the model withαλ=0.3it is found that only a small fraction of WDs(6%)explode at Chan-drasekhar mass with the majority of systems(94%)ex-ploding at sub-Chandrasekhar mass.Only for the model with the alternative CE prescription withγ=1.5will the fraction of SDS progenitors exploding at Chandrasekhar mass become significant(37%).3.4.Delay time distributionsFor each scenario leading to a potential formation of a SN Ia we note the time T between the formation of the bi-nary system on ZAMS and the explosion.This gives us a distribution of time delays.Ideally we would wish to com-pare such a distribution with the observed one.However, observations provide us with one characteristic property of the delay distribution,i.e.the typical delay time.Thus for each distribution we obtain,we calculate two timescales: the mean t av and the median t50and use them for com-parison.In order to better characterize the distributions。

相关文档
最新文档