小学奥数知识点梳理[1]

合集下载

小学奥数有哪些知识点

小学奥数有哪些知识点

小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。

2. 素因数分解:将一个合数分解为质数的乘积。

3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。

4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。

5. 整数的四则运算:掌握整数加减乘除的规则和技巧。

6. 同余定理:理解同余的概念及其在解决数论问题中的应用。

二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。

2. 分数的四则运算:分数的加、减、乘、除运算规则。

3. 分数的化简与比较:化简分数和比较分数大小的方法。

4. 小数的基本概念:小数的意义和性质。

5. 小数的四则运算:小数的加、减、乘、除运算规则。

6. 分数与小数的互化:分数与小数之间的转换方法。

三、几何知识1. 平面图形的认识:点、线、面的基本性质。

2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。

3. 面积和周长的计算:计算各种平面图形的面积和周长。

4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。

5. 空间想象能力:通过剖面图、视图等理解三维空间。

四、代数基础1. 变量与常数:理解变量和常数的概念。

2. 简易方程:一元一次方程的建立和解法。

3. 代数表达式的简化:合并同类项、分配律等代数运算。

4. 不等式的概念:理解不等式的意义和基本性质。

5. 简单不等式的解法:解一元一次不等式。

五、逻辑推理1. 合情推理:通过已知信息推断未知信息。

2. 演绎推理:从一般到特殊的逻辑推理过程。

3. 归纳推理:从特殊到一般的推理方法。

4. 逻辑应用题:解决需要逻辑推理的实际问题。

六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。

2. 简单排列组合问题:解决基础的排列组合问题。

3. 二项式定理:理解二项式定理并能够进行简单应用。

4. 容斥原理:解决涉及集合容斥问题的方法。

七、数列与级数1. 等差数列:理解等差数列的定义和性质。

小学数学奥数知识点整理

小学数学奥数知识点整理

小学数学奥数知识点整理数学奥赛是一项对学生数学能力的综合考验,旨在培养学生的逻辑思维能力、创造力和解决问题的能力。

在小学阶段,数学奥赛是对学生基础知识的考察和拓展,我们需要掌握一些数学奥数知识点。

以下是小学数学奥数知识点的整理。

1. 数与计算1.1 自然数的认识自然数包括正整数和零。

自然数的大小关系,加减法运算及其性质,以及自然数的各种分组形式都是数学奥数的基础。

1.2 分数与小数分数与小数在数学奥数中应用广泛。

分数与小数之间的相互转换,分数的比较与排序,以及分数的加减乘除等运算是数学奥数的重点。

1.3 数的约数与倍数数的约数是能够整除该数的数,倍数是某个数的整数倍。

理解和运用约数和倍数的性质是解决数学奥数题目的重要途径。

1.4 有理数的认识有理数是能够表示为两个整数的比的数,包括正有理数、负有理数和零。

有理数的运算和性质也是数学奥数的重要内容。

2. 几何与图形2.1 平面图形的认识几何图形包括点、线、面、角,其中直线、曲线和封闭曲线均是小学数学奥数的重点内容。

2.2 三角形的性质三角形是几何学中重要的基本图形。

在数学奥数中,需要熟练掌握三角形的分类、边长关系、角度关系和面积计算等内容。

2.3 平移、旋转和对称平移、旋转和对称是小学数学奥数中的重要几何变换。

掌握几何变换的特点和应用是解决几何问题的关键。

3. 数据分析3.1 调查与统计调查与统计是数学奥数中的常见题型,需要学生掌握统计图表的读取、分析和比较,以及数据的整理和处理等技巧。

3.2 概率概率是数学奥数中一种重要的数学思维方式。

掌握概率的基本概念和计算方法,包括事件的概率计算和概率的性质是数学奥数的重点。

4. 等式与方程4.1 算式与等式算式是数学奥数中常见的计算方式,等式是数学表达式中的重要形式。

了解算式和等式的基本概念,以及它们之间的关系和特点对于数学奥数的解题能力至关重要。

4.2 一元一次方程一元一次方程是小学数学奥数中的重要内容。

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点一、奥数概述小学奥数全称小学数学奥林匹克竞赛,是指面向小学生的一项数学竞赛活动。

通过奥数的学习和参与,可以提高学生的数学思维能力、逻辑推理能力、问题解决能力和创新思维。

二、奥数知识点汇总1. 数学基础知识a. 数的读写:正整数、负整数和小数的读写方法。

b. 分数与小数的换算:将分数转化为小数、将小数转化为分数。

c. 数轴:理解数轴上数的相对位置,掌握数轴上正数、负数和零的位置表示。

d. 数的比较大小:通过数的大小比较符号(>、<、=)来比较大小。

e. 数的倍数与因数:了解倍数与因数的概念,能够判断一个数是另一个数的倍数或因数。

f. 素数与合数:理解素数与合数的定义,能够判断一个数是素数还是合数。

2. 算术运算a. 四则运算:掌握加、减、乘、除四则运算的基本规则,能够进行简单的算术运算。

b. 多位数的加减法:掌握多位数的加减法运算方法,能够灵活运用。

c. 分数的运算:学会分数的加减乘除运算,能够进行分数的化简和比较。

d. 百分数的运算:掌握百分数的加减乘除运算,能够解决与百分数相关的问题。

3. 几何知识a. 图形的分类与性质:了解图形的基本分类(三角形、四边形、圆等),掌握各类图形的性质。

b. 直角、钝角与锐角:理解直角、钝角和锐角的概念,能够判断角的大小。

c. 周长与面积:掌握求图形周长和面积的方法,能够计算各类图形的周长和面积。

d. 空间几何:了解三维图形的基本概念,如长方体、立方体等,并能够计算它们的体积和表面积。

4. 数列与推理a. 数列的概念:理解数列的定义,能够判断数列的规律。

b. 算术数列:了解算术数列的特点,能够求解算术数列的通项公式和前n项和。

c. 几何数列:认识几何数列的特点,能够求解几何数列的通项公式和前n项和。

d. 推理与归纳:培养推理和归纳的能力,能够根据已知条件进行推理和推算。

5. 逻辑推理与证明a. 推理方法:学会使用归纳法、逆否命题、反证法等推理方法。

小学奥数知识点

小学奥数知识点

小学奥数知识点小学奥数知识点小学奥数是指参加全国小学数学奥赛的学生,他们需要掌握一些数学的基础知识和解题技巧。

下面是一些小学奥数常见的知识点:1. 数的认识:认识0-9的数字,知道数字的大小关系和位置价值。

学生需要掌握数字的读法和写法,以及数字之间的加减乘除运算。

2. 计算:学生需要掌握基本的加减乘除法,包括整数的计算和小数的计算。

他们需要学会口算和写算式,能够熟练地进行简单的运算。

3. 分数:学生需要学会认识和运算基本的分数,包括分数的加减乘除运算和带分数的运算。

他们需要知道分数的意义和表示方法,并能够将分数转化为小数和百分数。

4. 小数:学生需要学会认识和运算小数,包括小数的读法和写法,以及小数的加减乘除运算。

他们需要掌握小数和分数之间的转化,并能够将小数进行四舍五入。

5. 数据与图表:学生需要学会统计和分析数据,包括图表的读取和制作。

他们需要能够解决有关数据的问题,比如平均数、中位数和众数的计算,以及数据的比较和排序。

6. 几何:学生需要学会认识几何图形,包括点、线、面和体。

他们需要掌握几何图形的基本性质和分类方法,能够进行几何图形的比较、分析和构造。

7. 逻辑推理:学生需要学会进行逻辑推理和解决逻辑问题。

他们需要学会找出规律和推断结论,能够进行类比和推理,以及解决一些逻辑难题。

8. 排列组合:学生需要学会进行排列和组合的计算。

他们需要掌握基本的排列和组合原则,能够解决与排列组合相关的问题,比如有关种类、选择和次序的问题。

9. 等式与方程:学生需要学会解决等式和方程的问题。

他们需要掌握等式和方程的基本概念和性质,能够解决一些简单的一元一次方程和一元一次不等式。

10. 数学思维:学生需要培养数学思维和解决问题的能力。

他们需要学会分析和解决数学问题,能够运用所学的知识和技巧,寻找解题的方法和策略。

以上是小学奥数常见的一些知识点,学生在备战小学奥数的时候可以重点学习和巩固这些知识点。

通过不断地练习和思考,学生可以提高数学能力,成为一个优秀的小学奥数选手。

小学数学奥数知识点全面梳理

小学数学奥数知识点全面梳理

小学数学奥数知识点全面梳理【小学数学奥数知识点全面梳理】在小学数学学科中,奥数是一项非常重要的内容之一,它旨在培养学生的逻辑思维能力和解决问题的能力。

本文将全面梳理小学数学奥数的知识点,帮助学生加深对这一领域的理解。

一、计数与排列组合计数是奥数的基础,它包含了统计、概率等概念。

在小学数学中,我们需要掌握基本的计数原理,如“乘法原理”和“加法原理”。

此外,排列与组合也是重要的奥数知识点,它涉及到确定不同排列和组合的方法和公式。

二、数论与整数数论是数学的一个重要分支,它主要研究整数的性质与规律。

小学奥数中的数论知识主要包括整数的性质、质数与合数、倍数与约数等等。

通过学习这些知识点,可以帮助学生提高解决整数问题的能力。

三、图形与几何图形与几何是小学奥数中的另一个重要内容。

学生需要掌握基本的图形,如三角形、正方形、长方形等,并深入了解它们的性质和关系。

此外,对平面图形的变换操作,如翻折、旋转和平移等,也是奥数的重点内容之一。

四、函数与方程在小学奥数中,学生不仅需要学习基本的算式运算,还需要理解函数和方程的概念。

学生需要了解一次方程、二次方程等,以及解方程的常见方法和技巧。

通过学习这些内容,可以提高学生的代数思维能力和问题解决能力。

五、数列与等差数列数列是小学奥数中常见的内容之一,它是由一系列有规律的数按一定顺序排列而成的。

数列的概念和性质对于学生来说非常重要,而等差数列则是数列中的一种特殊形式。

学生需要理解等差数列的定义、性质和求和公式,并能够熟练应用于解决相关问题。

六、概率与统计概率与统计也是小学奥数中的一部分内容,它主要涉及到对数据的处理和分析。

在学习概率时,学生需要掌握事件的基本概念、概率的计算方法和概率的性质。

在统计方面,学生需要了解数据的收集和整理方法,并能够运用图表等形式展示数据。

综上所述,小学数学奥数的知识点涵盖了计数与排列组合、数论与整数、图形与几何、函数与方程、数列与等差数列以及概率与统计等多个领域。

奥数知识点总结

奥数知识点总结

奥数知识点总结一、整数与分数1.1 奇数与偶数•奇数是指不能被2整除的数,如1、3、5等。

•偶数是指能被2整除的数,如2、4、6等。

1.2 质数与合数•质数是指除了1和自身外没有其他因数的数,如2、3、5等。

•合数是指除了1和自身外还有其他因数的数,如4、6、8等。

1.3 最大公约数与最小公倍数•最大公约数是指两个或多个数的公共因数中最大的一个数,常用符号为gcd。

•最小公倍数是指两个或多个数的公共倍数中最小的一个数,常用符号为lcm。

二、代数与方程2.1 代数运算•加法是指两个或多个数相加,常用符号为+。

•减法是指一个数减去另一个数,常用符号为-。

•乘法是指两个或多个数相乘,常用符号为*。

•除法是指一个数除以另一个数,常用符号为/。

2.2 一元一次方程•一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。

•解一元一次方程的步骤:1.将方程中的常数项移到等式的右边。

2.将未知数的系数移到等式的左边。

3.化简方程,求得未知数的值。

2.3 二元一次方程•二元一次方程是指含有两个未知数的一次方程,如2x+3y=7。

•解二元一次方程的步骤:1.选择一种方法消去其中一个未知数,得到一个只含有一个未知数的一次方程。

2.解这个一次方程,得到一个未知数的值。

3.将得到的未知数的值代入原方程中,求得另一个未知数的值。

三、几何与概率3.1 直线与角•直线是指在平面上无限延伸的一条线段。

•角是指由两条线段共享一个端点所形成的图形。

3.2 三角形与四边形•三角形是指由三条线段所围成的图形。

•四边形是指由四条线段所围成的图形。

3.3 圆与圆周角•圆是指平面上一组离一个固定点相等距离的点的集合。

•圆周角是指以圆心为顶点的角。

3.4 概率与统计•概率是指事件发生的可能性大小。

•统计是指对数据进行收集、整理、分析和解释的过程。

四、数论与逻辑4.1 数列与递推•数列是指按照一定规律排列的一组数。

•递推是指根据数列中前一项或前几项推导出后一项的方法。

小学奥数知识点梳理1——数论教学提纲

小学奥数知识点梳理1——数论教学提纲

数论:1、奇偶;2、整除;3、余数;4、质数合数‘5、约数倍数;6平方;7、进制;8、位值。

一、奇偶:一个整数或为奇数,或为偶数,二者必居其一。

奇偶数有如下运算性质:(1)奇数土奇数=偶数偶数土偶数= 偶数奇数土偶数=奇数偶数土奇数二奇数(2)奇数个奇数的和(或差)为奇数;偶数个奇数的和(或差)为偶数,任意多个偶数的和(或差)总是偶数。

(3)奇数x奇数二奇数偶数x偶数二偶数奇数X偶数二偶数(4)若干个整数相乘,其中有一个因数是偶数,则积是偶数;如果所有的因数都是奇数,则积是奇数。

(5)偶数的平方能被4整队,奇数的平方被4除余1。

上面几条规律可以概括成一条:几个整数相加减,运算结果的奇偶性由算式中奇数的个数所确定;如果算式中共有偶数(注意:0也是偶数)个奇数,那么结果一定是偶数;如果算式中共有奇数个奇数,那么运算结果一定是奇数。

二、整除:掌握能被30以下质数整除的数的特征。

被2整除的数的特征为:它的个位数字之和可以被2整除.被3 (9)整除的数的特征为:它的各位数字之和可以被 3 (9)整除。

被5整除的数的特征为:它的个位数字之和可以被5整除。

被11整除的数的特征是:它的奇位数字之和与偶位数字之和的差(大减小)能被11整除。

下面研究被7、11、13整除的数的特征。

有一关键性式子:7X11X13=1001。

判定某数能否被7或11或13整除,只要把这个数的末三位与前面隔开,分成两个独立的数,取它们的差(大减小),看它是否被7或11或13整除。

此法则可以连续使用。

例:N=987654321判定N是否被11整除。

9 8 7-333第一歩:第二歩6 54因为654不能被11整除,所以N不能被11整除例:N= 215332判定N是否被7、11、13整除。

由于117= 13X 9,所以117能被13整除,但不能被7、11整除,因此N 能 被13整除,不能被7、11整除此方法的优点在于当判定一个较大的数能否被 7或11或13整除时,可用减 法把这个大数化为一个至多是三位的数,然后再进行判定。

小学奥数模块教程1 数的认识

小学奥数模块教程1 数的认识

第一讲数的认识第一部分知识点梳理1.自然数、整数、负数。

(1)自然数:用来表示物体个数的0,1,2,,3……叫自然数。

任何非“0”的自然数都是若干个“1”组成,所以“1”是自然数的基本单位。

1也是最小的一位数。

“0”是最小的自然数。

(2)正数、负数:数的定义:像—1,—2,—3,…这样的数叫做负数。

“—”叫做负号,读作:负。

正数的定义:学过的1,2,3,…这样的数叫做正数。

正数的前面可以加“+”,一般情况下省略不写。

(3)负数、0、正数间的关系:正数>0>负数,0既不是正数也不是负数。

(3)整数:整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。

(4)整数的读写:先分级(从右到左每四位数为一级),再从高位到低位一级一级地读写读法:从高位到地位,一级一级地读,每级末尾的0都不读出来,其它数位连续几个0的都只读一个零。

写法:从高位到地位,一级一级地写,哪个数位上一个单位也没有,就在那个数位上写0。

(5)整数的大小比较:数位不同时,数位多的数就大。

数位相同时,左起第一位上的数大那个数就大,如果左起第一位数相同就比较左起第二位上的数,以此类推比较出数的大小。

(6)数位顺序表:把按照数位的顺序从右到左排列的表,叫数位顺序表。

(注意区别:数级、数位、计数单位)(7)多位数的改写:如果改写的是整万或整亿的数,就把原数末尾划去4个0或8个0,同时加上“万”或“亿”字。

如果改写的多位数不是整万或整亿的数,就在万位或亿位的右下角点上小数点,去掉小数点末尾的0,再在小数的后面加上“万”或“亿”字。

(8)准确数和近似数、省略:数据与实际完全符合的,叫准确数。

数据只是与实际大体符合或者说接近实际的数,叫近似数。

先用四舍五入法省略万位或亿位后面的数,再在这个数的后面加写“万”或“亿”字。

因为得出的数是近似数,所以要用“≈”连接。

2.数的整除(1)整除的意义:整数a除以整数b(b≠0),除得的商正好是整数,就说a能被b整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数知识点梳理前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若111a b c >>,则c>b>a.。

形如:312123m m m n n n >>,则312123n n n m m m <<。

5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②)()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c① 如果c|a 、c|b ,那么c|(a ±b)。

② 如果bc|a ,那么b|a ,c|a 。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。

5.带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≢r<b,使得a=b×q+r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a÷b=q……r, 0≢r<b a=b×q+r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p11a× p22a×...×p k ak7.约数个数与约数和定理设自然数n的质因子分解式如n= p11a× p22a×...×p k ak那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P12+…p11a)(1+P2+P22+…p22a)…(1+Pk+Pk2+…pk ak)8.同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

③两数的和除以m的余数等于这两个数分别除以m的余数和。

④两数的差除以m的余数等于这两个数分别除以m的余数差。

⑤两数的积除以m的余数等于这两个数分别除以m的余数积。

9.完全平方数性质①平方差: A2-B2=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。

④平方和。

10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、几何图形1.平面图形⑴多边形的内角和N边形的内角和=(N-2)×180°⑵等积变形(位移、割补)① 三角形内等底等高的三角形② 平行线内等底等高的三角形③ 公共部分的传递性④ 极值原理(变与不变)⑶三角形面积与底的正比关系S 1︰S 2 =a ︰b ; S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4⑷相似三角形性质(份数、比例)①a b c h A B C H === ; S 1︰S 2=a 2︰A 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; S=(a+b )2⑸燕尾定理例如弦图中长短边长的关系。

⑻组合图形的思考方法①化整为零②先补后去③正反结合2.立体图形⑴规则立体图形的表面积和体积公式⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V升水=V物②测啤酒瓶容积:V=V空气+V水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。

四、典型应用题1.植树问题①开放型与封闭型②间隔与株数的关系2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数3.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间4.年龄问题差不变原理5.鸡兔同笼假设法的解题思想6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间7.平均数问题8.盈亏问题分析差量关系10.和倍问题11.差倍问题12.逆推问题还原法,从结果入手13.代换问题列表消元法等价条件代换五、行程问题1.相遇问题路程和=速度和×相遇时间2.追及问题路程差=速度差×追及时间3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷24.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数5.环形跑道6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。

速度一定,路程和时间成正比。

时间一定,路程和速度成正比。

7.钟面上的追及问题。

①时针和分针成直线;②时针和分针成直角。

8.结合分数、工程、和差问题的一些类型。

9.行程问题时常运用“时光倒流”和“假定看成”的思考方法。

六、计数问题1.加法原理:分类枚举2.乘法原理:排列组合3.容斥原理:①总数量=A+B+C-(AB+AC+BC)+ABC②常用:总数量=A+B-AB4.抽屉原理:至多至少问题在图形计数中应用广泛①角、线段、三角形,②长方形、梯形、平行四边形③正方形七、分数问题1.量率对应2.以不变量为“1”3.利润问题4.浓度问题倒三角原理例:5.工程问题①合作问题②水池进出水问题6.按比例分配八、方程解题1.等量关系①相关联量的表示法例:甲+ 乙=100 甲÷乙=3x 100-x 3x x②解方程技巧恒等变形2.二元一次方程组的求解代入法、消元法3.不定方程的分析求解以系数大者为试值角度4.不等方程的分析求解九、找规律⑴周期性问题①年月日、星期几问题②余数的应用⑵数列问题① 等差数列通项公式 a n =a 1+(n-1)d求项数: n=11n a a d-+ 求和: S=1()2n a a n + ② 等比数列求和: S=1(1)1n a q q -- ③ 裴波那契数列⑶策略问题① 抢报30② 放硬币⑷最值问题① 最短线路a.一个字符阵组的分线读法b.在格子路线上的最短走法数② 最优化问题a.统筹方法b.烙饼问题十、 算式谜1. 填充型2. 替代型3. 填运算符号4. 横式变竖式5. 结合数论知识点十一、 数阵问题1. 相等和值问题2. 数列分组⑴知行列数,求某数⑵知某数,求行列数3. 幻方⑴奇阶幻方问题:杨辉法 罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、二进制1.二进制计数法①二进制位值原则②二进制数与十进制数的互相转化③二进制的运算2.其它进制(十六进制)十三、一笔画1.一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;2.哈密尔顿圈与哈密尔顿链3.多笔画定理奇点数笔画数=2十四、逻辑推理1.等价条件的转换2.列表法3.对阵图竞赛问题,涉及体育比赛常识十五、火柴棒问题1.移动火柴棒改变图形个数2.移动火柴棒改变算式,使之成立十六、智力问题1.突破思维定势2.某些特殊情境问题十七、解题方法(结合杂题的处理)1.代换法2.消元法3.倒推法4.假设法5.反证法6.极值法7.设数法8.整体法9.画图法10.列表法11.排除法12.染色法13.构造法14.配对法15.列方程⑴方程⑵不定方程⑶不等方程另外补充说明:在华校课本六年级中有“棋盘上的数学”三讲,其实是找规律类型,知识点涉及棋盘格,几何,数论等,属于综合性问题。

相关文档
最新文档